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Abstract

This chapter is dedicated to modeling, system identification, and control of electromag-
netic actuators with the main focus on the actuators used in magnetic levitation, in fuel
injection systems, and in variable valve timing (VVT). These actuators have a simple
structure, good reliability, and low manufacturing costs. However, from control view-
point, they are nonlinear systems and are open-loop unstable. Therefore, mathematical
modeling, system identification-based parameter estimation, and control strategies are
presented, when the moving armature is controlled around an equilibrium position or is
controlled between the two extreme positions of the armature.

Keywords: electromagnetic actuator, modeling, identification, gain scheduled control

1. Introduction

Electromagnetic actuators are widely used in the industry, and they transform the electric

energy into linear motion. From the large variety of applications, in this chapter we are going

to focus on:

• Magnetic levitation

• Fuel injection systems and variable valve timing actuators used in internal combustion

engines

These applications are relevant from control point of view: in the first case, the moving

armature is controlled around an equilibrium position; in the second case, the armature might

go under control between the two extreme positions—armature open and armature close.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Nevertheless, magnetic levitation—in particular a magnetically levitated train—is a good exam-

ple, where closed-loop control plays a key role, since the open-loop system is unstable [1]. The

system can be linearized around an operating point, and a linear controller can be designed.

Furthermore, magnetic bearings and their control are from a long time the focus of control

system design community. Feedback linearization and asymptotically exact linearization of an

active magnetic bearing are presented in [2, 3]. Advanced control strategies are discussed in

detail in [4, 5].

Therefore, it makes sense to develop high-accuracy mathematical models, to investigate

methods for parameter identification, and finally to apply control strategies to improve per-

formance and reliability of the system.

We will discuss these topics in the next sections, but before that let us focus on applications,

where electromagnetic actuators are widely used.

1.1. Magnetic levitation

Magnetic bearings in combination with high-speed electric motors are used across many

industries, from oil and gas industry to electric power generation industry (i.e., high-speed

electric generators) and from the semiconductor industry to nuclear industry, etc.

The main structure of the magnetic bearing is shown in Figure 1 (reproduced from [6]).

Another well-known application of the magnetic levitation is the magnetically levitated high-

speed train (Maglev; see Figure 1), having speeds over 500 [km/h] [7, 8].

1.2. Fuel injection and variable valve timing (VVT)

The main purpose of the fuel injection system is to deliver fuel to the cylinders. However, how

that fuel is delivered is that it makes the difference in engine performance, emissions, and noise

characteristics.

Figure 1. Applications of magnetic levitation.
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Most notable advances achieved in diesel engines resulted directly from superior fuel injection

system designs [9].

Unlike its spark-ignited engine counterpart, the diesel fuel injection system delivers fuel under

extremely high injection pressures (e.g., around 2000 [bar]). This means that the system com-

ponent designs and materials should be selected to withstand higher stresses [10].

The actuators used in diesel fuel injection systems can be either electromagnetic (our focus) or

piezoelectric [11]. A diesel fuel injection system using an electromagnetic actuator, from Bosch

[12], is shown in Figure 2.

Nowadays, most of the fuel injection systems are electronically controlled. However, it is still not

enough to deliver an accurate amount of fuel at the proper time to achieve good combustion.

Additional aspects are critical to ensure proper fuel injection system performance, such as [9]:

• Fuel atomization—ensuring that fuel atomizes into very small fuel particles is a primary

design objective for diesel fuel injection systems.

• Bulk mixing—while fuel atomization and complete evaporation of fuel are critical, ensur-

ing that the evaporated fuel has sufficient oxygen during combustion is equally important

to ensure optimum engine performance.

• Air utilization—effective utilization of the air in the combustion chamber is closely tied to

bulkmixing and can be accomplished by dividing the total injected fuel into a number of jets.

While conventional fuel injection systems employ a single injection event for every engine

cycle, newer systems can use multiple injection events [12].

Using multiple injections—during every engine cycle—higher engine performance and lower

engine noise can be achieved. However, the injector lifetime might be reduced, and therefore

advanced control algorithms as well as malfunction detection and fault isolation algorithms

can be applied (see next sections).

Figure 2. Diesel fuel injection system from Bosch.
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Another relevant application is the electromechanical valve actuators used in automotive engines,

to achieve variable valve timing (VVT). With VVT, larger valve overlap, valve lift, duration, and

timing adjustments can be achieved depending on engine speed, load, and temperature.

Variable valve timing leads to improved fuel economy and lower emissions by decoupling the

valve timing from the piston motion [13]. This is especially valid in case of advanced combus-

tion technologies, as described in [14, 15].

However, the moving components of the valve actuators create unnecessary wear and exces-

sive noise. The armature landing speed shall be kept, e.g., under 0.1 [m/s]; otherwise, they are

excessively loud and are damaging to the actuator and engine valve.

Whenever high-performance and high-accuracy control is required, the electromagnetic actu-

ator is driven by a half H-bridge (see Figure 3), which might be equipped optionally with a

current sensing resistor RSENSE.

Typical voltage and current waveforms as well as the switching order of the commutation

elements T1 and T2 are shown in Figure 3.

After the electromagnetic armature is pulled up, the actuator current is reduced, and the

commutation elements are controlled via pulse-width modulation (PWM).

During armature movement, due to the induced electromotive force (e.m.f.), a small current

dip as well as a small current peak might be observed (see Figure 3).

The duty factor of the actuator—specified on the data sheet—is defined as

Duty %½ � ¼
TON

TON þ TOFF
100 %½ � (1)

In practice, exceeding this value might shorten significantly the lifetime of the actuator.

Figure 3. Electromagnetic actuator driven by a half H-bridge.
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2. Mathematical modeling

The mathematical model of the electromagnetic actuator is described by the voltage equation

and by the motion equation.

The voltage equation is

vin ¼ Riþ
∂Ψ

∂i

di

dt
þ
∂Ψ

∂z

dz

dt
(2)

where vin is the applied voltage, i is the armature current, Ψ is the armature flux, z is the

armature position, and R is the electrical resistance of the coil.

If we note with v ¼ _z, the armature speed and then the equation of the motion can be

written as

m€z ¼ FS � Fm (3)

where m is the moving mass, Fm is the electromagnetic force, and FS is the spring force. Since

the armature displacement often is very short, the spring force can be considered constant. In

case of magnetic levitation, the spring force is replaced by the weight of the moving mass.

The electromagnetic force can be expressed based on the electromagnetic co-energy Wco:

Wco ¼

ð

i

0

Ψdi (4)

Fm ¼ �
∂Wco

∂z

�

�

�

�

i¼ct

(5)

Then, we can also write

Fm ¼ �

ð

i

0

∂Ψ

∂z
di (6)

The Ψ ¼ Ψ i; zð Þ and Fm ¼ Fm i; zð Þ static characteristics can be measured. The flux-linkage

characteristic is derived by integration (very often the current decay test is used). Thus, the

flux linkage for one fixed position z is calculated by

Ψ i; zð Þ ¼

ð

∞

0

vin tð Þ � R � i tð Þ½ �dt (7)

where at t ¼ 0 and the following conditions hold: vin ¼ 0, i 6¼ 0, and di=dt ¼ 0.

Although the model does not take into account the effect of eddy currents, the numerical

model can be very accurate and might be written formally into a nonlinear form:
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_x ¼ f xð Þ þ
X

m

i¼1

g xð Þu (8)

where x ¼ i v z½ �T represents the state of the nonlinear system, u ¼ vin FS½ �T is the input

vector, and f xð Þ and g xð Þ are nonlinear functions of the state x. The output vector y is

y ¼ h xð Þ (9)

where h xð Þ in the most general case is a nonlinear function.

Finally, in the aim to illustrate our investigations, let us consider an electromagnetic actuator

with parameters (catalog data) mentioned in Table 1 [16].

2.1. Nonlinear model and piecewise linearization

The mathematical model described above is too general and is difficult to handle in analytical

form. Therefore, we define an analytical model set, which describes the flux-linkage character-

istic as

Ψ i; zð Þ ¼ Ψmax 1� exp �
i

c1 þ c2z

� �� �

(10)

where the parameters of the model set are Ψmax, c1, and c2.

Furthermore, the partial derivatives of the flux-linkage are

∂Ψ

∂i
¼

Ψmax

c1 þ c2z
exp �

i

c1 þ c2z

� �

(11)

∂Ψ

∂z
¼ �

Ψmax � c2 � i

c1 þ c2zð Þ2
exp �

i

c1 þ c2z

� �

(12)

The approach presented in this section is reproduced from [17].

Type Solenoid valve

Stroke length 10 [mm]

Operating voltage 24 [V] d.c.

Maximum current 0.6 [A]

Resistance 40 [Ω]

Inductance 0.35–1.1 [H]

Number of turns 2240

Table 1. The solenoid parameters.
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If we approximate the exponential term by Taylor series, we have

exp �
i

c1 þ c2z

� �

≈ 1�
i

c1 þ c2z
þ

i2

2 c1 þ c2zð Þ2
(13)

Thus, the magnetic force—based on the analytical model—can be expressed as

Fm ≈
Ψmax � c2 � i

2

c1 þ c2zð Þ2
1

2
�

i

3 c1 þ c2zð Þ
þ

i2

8 c1 þ c2zð Þ2

" #

(14)

The model set above is validated against the measured static (flux and force) characteristics. The

“dots” in Figure 4 represent the measured data, and the solid lines represent the calculated

model using the above model set, with Ψmax ¼ 0:45 Wb½ �, c1 ¼ 0:4 A½ �, and c2 ¼ 0:375 � 103 A=m½ �.

The above parameters are derived using nonlinear least squares, fitting the measured data

(obtained using the current decay test and force measurements) with the analytical model.

Next, let us introduce the following notations, which help us to rewrite the model in a

convenient form: χi ¼ ∂Ψ=∂i, χz ¼ ∂Ψ=∂z, and χf ¼ Fm=i.

Since the magnetic force Fm depends on the square of the current i2, when the current is zero

i ¼ 0 and then χf ¼ 0, there is no division by zero in the model.

Thus, the voltage and motion equations are written as

di

dt
¼ �

R

χi

� i�
χz

χi

� vþ
1

χi

vin (15)

dz

dt
¼ v (16)

dv

dt
¼ �

χf

m
� i�

k

m
� zþ

1

m
FS 0ð Þ (17)

Figure 4. Flux and force characteristics.
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Finally, using a piecewise approximation, the system can be written in state-space form as

_x ¼ A i; zð Þ � xþ B i; zð Þ � u

y ¼ C � x
(18)

where x ¼ i z v½ �T is the state-space vector, u ¼ vin FS 0ð Þ½ �T is the input vector, y is the output

vector, the A i; zð Þ and B i; zð Þ are current and position dependent matrices and C ¼ 1 1 0½ � if the

armature current and position are sensed. We remark, that in practice sensing the armature

speed and/or positions with sensor(s) might be expensive solution. Therefore, often only the

armature current can be sensed in a cost-effective manner.

The terms A i; zð Þ can be written as

A i; zð Þ ¼

�R=χi 0 �χz=χi

0 0 1

�χf =m �k=m 0

2

6

4

3

7

5
(19)

where

�
χz

χi

¼
c2 � i

c1 þ c2z
(20)

The term B i; zð Þ can be written as

B i; zð Þ ¼

1=χi 0

0 0

0 1=m

2

6

4

3

7

5
(21)

where

1

χi

≈
2 c1 þ c2zð Þ2 þ 2i c1 þ c2zð Þ þ i2

2 �Ψmax � c1 þ c2zð Þ
(22)

or a coarser approximation will be

1

χi

≈
c1 þ c2zþ i

Ψmax
(23)

Last but not least, the armature movement is subject to the following constraints:

v tð Þ ¼
0 if z ≥ zmax and Fs � Fm ≥ 0

0 if z ≤ 0 and Fs � Fm ≤ 0

�

(24)

as well as zmin ≤ z tð Þ ≤ zmax, where zmin and zmax are the minimum and maximum displacements

of the armature.
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2.2. Linearized mathematical model

From control engineering viewpoint—in case of some applications (e.g., magnetic levitation)—

the piecewise linearized model might be too sophisticated. Therefore, in this section a linear-

ized mathematical model around an operating point is derived [1, 18].

Let us approximate the magnetic force as

Fm ≈γ
i2

c1 þ c2zð Þ2
(25)

where γ is a constant.

The equation of motion can be written as

M z; €z; ið Þ ¼ m€z � Fs þ γ
i2

c1 þ c2zð Þ2
¼ 0 (26)

The equation above can be linearized around an operating point p0 ¼ z0; €z0; i0ð Þ as follows:

M z; €z; ið Þ ¼ M z0; €z0; i0ð Þ þ
∂M

∂z
p0

z� z0ð Þ þ
∂M

∂€z

�

�

�

�

�

�

�

�

p0

€z � €z0ð Þ þ
∂M

∂i

�

�

�

�

p0

i� i0ð Þ (27)

which can be further written as

M z; €z; ið Þ ¼ �
2γi20

c1 þ c2z0ð Þ3
z� z0ð Þ þm €z � €z0ð Þ þ

2γi0

c1 þ c2z0ð Þ2
i� i0ð Þ ¼ 0 (28)

If we denote with Δz ¼ z� z0 and Δi ¼ i� i0, we obtain

�
2γi20

c1 þ c2z0ð Þ3
ΔzþmΔ€z þ

2γi0

c1 þ c2z0ð Þ2
Δi ¼ 0 (29)

If we divide the equation with the moving mass m and apply the Laplace transform, we obtain

s2 � a2
� 	

Δz sð Þ þ kΔi sð Þ ¼ 0 (30)

Δz sð Þ

Δi sð Þ
¼ �

k

s2 � a2
¼ �

k

s� að Þ sþ að Þ
(31)

where k and a are varying with the equilibrium point i0; z0ð Þ:

k ¼
2γi0

m c1 þ c2z0ð Þ2
(32)
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a2 ¼
2γi20

m c1 þ c2z0ð Þ3
(33)

It means that a family of transfer functions are obtained and the system can be viewed as a

linear parameter-varying (LPV) system.

The variation of k and a values with the equilibrium position z0 is shown in Figure 5 and can be

well approximated by quadratic functions.

3. System identification

3.1. Clustering-based system identification

In the previous section, we have seen that using the current decay test and the nonlinear least

squares method, the parameters of the mathematical model can be identified.

However, the current decay test is time-consuming, since measurements shall be performed

for each grid point defined by armature current and position i; zð Þ. Thus, the obvious question

might arise: is there a faster solution to identify the parameters?

During the system identification process, we will note the system’s input and output at time t

by u tð Þ and y tð Þ, respectively [19].

For single-input single-output linear systems, we can write

y tð Þ ¼ φT tð Þθ (34)

where θ is the parameter vector (unknown) and the φ is the recorded (known) input-output

data vector:

Figure 5. Plant gain and pole variation with the equilibrium position.
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θ ¼ ½a1…an b0…bm�
T

φ tð Þ ¼ ½�y t� 1ð Þ…� y t� nð Þ u tð Þ…u t�mð Þ�T
(35)

To emphasize that the calculation of the y tð Þ is from the past data, we will write

by tð Þ ¼ φT tð Þθ (36)

Now, suppose for a given system that we do not know the values of the parameters in θ, but

we have recorded inputs and outputs over the time interval. If the input signal is persistently

exciting—condition described in details in [19, 20]—then the solution can easily be computed

by modern software tools.

In this section a clustering-based identification method, proposed by Ferrari-Trecate et al.

(2003) is used (see [21, 22]), where the plant is assumed to be described by piecewise linear

models having s sub-models, such as

y tð Þ ¼

φT tð Þθ1 þ w tð Þ, if φT tð Þ∈C1

⋮

φT tð Þθs þ w tð Þ, if φT tð Þ∈C1

8
><

>:
(37)

where w tð Þ is white noise, θi i ¼ 1,…, s are the parameter vectors, φ tð Þ is a regression vector,

and n is the order of the piecewise ARX (PWARX) model.

It is assumed that the order of each sub-model is the same, and u(t) and y(t) are the input and

output, respectively.

Furthermore, it is assumed that Cs
i¼1 are polytopic and they satisfy the well-posed condition:

∪
s
i¼1Ci ¼ C, Ci ∩ Cj ¼ ∅, and ∀i 6¼ j.

An important phase of the system identification experiment is input signal design. In case of

nonlinear systems, a multilevel random signal is often used [23, 24], and a bi-level pseudoran-

dom binary signal (PRBS) is not suitable for nonlinear systems.

The generation of the multilevel random signal—using shift registers—is done according to

[25]. Figure 6 shows a five-level random signal with maximal length, using four-shift registers

with coefficients a1 ¼ 1, a2 ¼ �1, a3 ¼ 1, a4 ¼ �2 [25].

This input signal is applied—when the armature is fixed—in order to identify the dynamic

inductance denoted by χi and the electrical resistance R. The output signal—armature current

—when the multilevel random signal is applied is shown in Figure 6.

Next, the voltage equation is written in discrete form at the time moment t ¼ t kð Þ:

i kð Þ ¼
TS

χi þ RTS
vin kð Þ þ

χi

χi þ RTS
i k� 1ð Þ (38)

where TS is the sampling time.
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The equation above defines the regression space (see also references [21, 22]) having in this

case two axis, defined by i k� 1ð Þ and vin kð Þ. The data collected during the system identification

experiment is shown in the regression space in Figure 7.

The regression space is clustered in five different regions for i ¼ 0:1,…; 0:5 A½ �, and the param-

eters are identified for each case using the least squares method. In each defined cluster, we

assume that χi is constant, and basically we use a piecewise linear approximation of χi.

The system identification experiments are repeated around different positions, when the

armature is fixed; thus, the function bχi ¼ bχi i; zð Þ can be estimated.

Now, using the nonlinear least squares, we can minimize the J objective function:

Figure 6. Multilevel random input and corresponding output signal.

Figure 7. Regression space—Clustering-based identification.
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J ¼ min χi i; zð Þ � bχi i; zð Þð Þ
2

(39)

and we can find out the estimated parameters of the model bΨmax ¼ 0:437 Wb½ �, bc1 ¼ 0:37 A½ �,

and bc2 ¼ 0:36 � 103 A=m½ �. Values, which are in good accordance with the values, are found via

the current decay test.

Having the χi ¼ χi i; zð Þ function identified, the parameters of the model set, namely, Ψmax, c1,

and c2, are found.

This identification is repeated only around different positions z, when the armature is fixed

and thus is much faster than identifying Ψ ¼ Ψ i; zð Þ around different current and position

values using the current decay test.

3.2. Identification under closed-loop

In practice, it might be the case that the system is open-loop unstable; thus, system identifica-

tion experiments have to be performed under closed-loop (for more details see [26, 27]).

Closed-loop identification is a very challenging task. Due to the presence of feedback loop, the

input signal might not be persistently exciting. In the aim to achieve a persistent excitation of

the system, it is recommended in [19] to switch between different simple controller structures.

First, the system shall be stabilized under feedback around an equilibrium position, as shown

in Figure 8; details about the controller design K sð Þ are described in the next section.

Under closed loop, the reference input (armature position) is disturbed by a persistently

exciting input signal (i.e., pseudorandom binary signal)—as shown in Figure 9, and three

linear transfer functions are identified, which are defined as

Figure 8. Closed-loop system identification.
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T sð Þ ¼
Y sð Þ

R sð Þ
¼

P sð ÞK sð Þ

1þ P sð ÞK sð Þ
(40)

H sð Þ ¼
U sð Þ

E sð Þ
¼

K sð Þ

1þ P sð ÞK sð Þ
(41)

P sð Þ ¼
Y sð Þ

U sð Þ
¼

T sð Þ

H sð Þ 1� T sð Þð Þ
(42)

where we used the well-known identity S sð Þ þ T sð Þ ¼ 1:

S sð Þ ¼
E sð Þ

R sð Þ
¼ 1� T sð Þ (43)

The procedure can be repeated around different equilibrium positions; thus, a family of

transfer functions can be obtained.

4. Control of electromagnetic actuators

Let us start with the easier case: the moving armature is controlled around an equilibrium

position—magnetic bearings and magnetically levitated high-speed trains are typical applica-

tions.

The linearized mathematical model, around an equilibrium position, can be written as

P sð Þ ¼
Δz sð Þ

Δi sð Þ
¼ �

k

s� að Þ sþ að Þ
(44)

where k and a are strictly positive values, varying with the equilibrium point i0; z0ð Þ.

Figure 9. Input and output signal used to identify T sð Þ.
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In this section, we are looking for a linear controller, which can stabilize the plant and can

fulfill performance and robustness requirements [18].

4.1. PD controller

A very simple PD controller, which can stabilize the plant, is

K sð Þ ¼ �kD sþ að Þ (45)

The closed-loop transfer function shows that

T sð Þ ¼
kkD

sþ kkD � a
(46)

The system is stable if kkD > a; however, the steady-state error might be significant, since the

controller gain kD cannot be made arbitrarily large.

4.2. PI controller

The next option is to consider a PI controller such as

K sð Þ ¼ �kPI
sþ a

s
(47)

In this case, the closed-loop transfer function becomes

T sð Þ ¼
kkPI

s2 � asþ kkPI
(48)

Since a is a positive value, we observe that the PI controller cannot stabilize the plant P sð Þ.

4.3. PID controller

Let us consider a PID controller—having a single tuning parameter KPID—in the form

K sð Þ ¼ �kPID
sþ að Þ2

s
(49)

The block diagram of the control system is shown in Figure 10.

The closed-loop transfer function is

T sð Þ ¼
kkPID sþ að Þ

s2 þ kkPID � að Þsþ kkPIDa
(50)

The closed-loop transfer function has a zero at s ¼ �a, which might affect the system response

(large overshoot), which can be canceled with a prefilter KPRE sð Þ ¼ a= sþ að Þ.
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Then, the closed-loop transfer function becomes

T sð Þ ¼ kkPIDa

s2 þ kkPID � að Þsþ kkPIDa
(51)

Next, based on performance and robustness specifications, we would like to find a suitable

value for the controller gain KPID. Usually, performance specifications are given in terms of

settling time Tset and percent of overshoot P:O:

For a second-order system

T sð Þ ¼ ω
2
n

s2 þ 2τωnsþ ω
2
n

(52)

where ωn is the natural frequency and the τ is the damping factor; we have Tset ≈ 4= τωnð Þ and
P:O: ¼ 100 � e�τπ=

ffiffiffiffiffiffi

1�τ

p
.

Since we have only one tuning parameter KPID, the performance specifications are given only

in terms of settling time Tset ¼ 1:25 s½ �. Therefore, the PID controller gain can be calculated as

kkPID � a ¼ 2τωn ≈

8

Tset

(53)

Thus, we obtain

kPID ¼ 8þ aTset

kTset

(54)

Next, the stability and robustness in a classical framework can be assessed. We calculate the

gain and phase margins, obtaining Gm ¼ 0:47 m=A½ � and Pm ¼ 37 deg½ � for the equilibrium

position z0 ¼ 3 � 10�3
m½ �.

4.4. Gain-scheduled controller

We have seen that the actuator can be stabilized around, and equilibrium point and perfor-

mance and robustness can be guaranteed.

Figure 10. The block diagram of the control system.

Actuators100



However, we observed that the plant parameters k and a are varying with the operating point

i0; z0ð Þ; thus, for good performance and robustness, the controller should take into account that

the plant parameters are varying.

A survey of linear parameter-varying control applications can be found in [28], and control

applications validated by experiments are presented in [27, 29] for actuators and for medical X-

ray systems in [30]. High-accuracy mathematical modeling and a linear parameter-varying

observer for fault detection and fault isolation are presented in [17].

We can design a linear parameter-varying controller having the form

K s; z0ð Þ ¼ kPID z0ð Þ
sþ a z0ð Þð Þ2

s
(55)

where both the controller gain and controller zero are dependent on the equilibrium position.

Finally, stability and robustness (quadratic stability) of such a control system can be analyzed

using modern software tools, and details are described in [27].

If a simpler approach is preferred, a gain-scheduled controller might be a good choice, which is

easier to implement in real time, and its stability and robustness are easier to analyze.

Since perfect cancelation of the varying plant pole at s ¼ �a with a fixed controller zero is not

possible, we choose to place the controller fixed zero left to the varying poles, such as

z ¼ �amax. Then, the gain-scheduled controller can be written as

K s; z0ð Þ ¼ kPID z0ð Þ
sþ amaxð Þ2

s
(56)

where the only one tuning parameter is controller gain KPID z0ð Þ, defined as

kPID z0ð Þ ¼
8þ a z0ð ÞTset

k z0ð ÞTset

(57)

where the variation of the values k ¼ k z0ð Þ and a ¼ a z0ð Þ were shown already in Figure 5.

Next, the gain and phase margins are calculated for different equilibrium positions z0 and

shown in Figure 11. We can observe that—due to the gain-scheduled controller—the gain and

phase margins do not change significantly with the equilibrium position, and such a robust-

ness is difficult to achieve with a single controller, having fixed parameters.

The system response using the gain-scheduled controller is investigated, considering the

following two cases:

• The moving armature is controlled around an equilibrium position, and the set point

(reference position) is changed Δz0 ¼ 1 mm½ � (see Figure 12, left plot). The control system

—including the prefilter—exhibits approximately P:O: ≈ 25% overshoot and settling time

Tset ¼ 1:5 s½ �.
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• The moving armature is controlled between the two extreme positions, armature open

and armature close, Δz0 ¼ 10 mm½ � (see Figure 12, right plot). In this case the main goal is

to achieve so-called soft landing of the moving armature to reduce wear and noise.

It is important to highlight that controller design is made based on the linearized plant, but

validation of the controller in simulations or during hardware-in-the-loop (HIL) experiments

shall be done using the nonlinear plant model.

During our control design investigations, we considered that the armature position can be

measured. In practice, there are applications, where the armature position cannot be measured

in a cost-effective way.

Therefore, we remark that controlling the moving armature without measuring the armature

position (e.g., measuring only the current) remains a challenging research topic, which exceeds

the goals and the limits of this chapter.

Figure 11. Gain and phase margin variation with z0.

Figure 12. System response with the gain-scheduled controller.
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5. Conclusions

This chapter dealt with mathematical modeling, system identification, and control of electro-

magnetic actuators. Actuators are often used in industrial applications such as magnetic

levitation, electromagnetic bearings, as well as in fuel injectors in the automotive industry.

After a detailed mathematical model was presented, two different parameter identification

techniques were described. The first one is based on the classical current decay test, and the

second one is a clustering-based system identification approach. Since the actuator is open-

loop unstable, the main steps of system identification of the actuators under closed-loop

control were presented.

Finally, very simple and easy-to-apply control strategies were discussed, when the armature is

controlled around a fixed equilibrium position (PID controller) as well as when the armature is

controlled between two extreme positions, armature open and armature closed (gain-

scheduled PID controller).
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