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Abstract

The numerical simulation of fluid flow and heat/mass-transfer phenomena requires the 
numerical solution of the Navier-Stokes and energy-conservation equations coupled 
with the continuity equation. Numerical or false diffusion is the phenomenon of inserting 
errors in the calculations that compromise the accuracy of the computational solution. 
The Taylor series analysis that reveals the truncation/discretization errors of the differen-
tial equations terms should not be termed as false diffusion. Numerical diffusion appears 
in multi-dimensional flows when the differencing scheme fails to account for the true 
direction of the flow. Numerical errors associated with false diffusion are investigated 
via two- and three-dimensional problems. A numerical scheme must satisfy necessary 
criteria for the successful solution of the convection-diffusion formulations. The common 
practice of approximating the diffusion terms via the central-difference approximation 
is satisfactory. Attention is directed to the convection terms since these approximations 
induce false diffusion. The equations of all the conservation equations in this study are 
discretized by the finite volume method.

Keywords: false diffusion, numerical dispersion, computational errors, finite volume 
method

1. Introduction

Numerical diffusion is a significant source of error in numerical solution of conservation 
equations and can be separated into two components namely cross-stream and streamwise 
numerical diffusion. The former occurs when gradients in a convected quantity exist per-
pendicular to the flow and the direction of the flow is oblique to the grid lines, i.e. due to 
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the multi-dimensional nature of the flow. The latter happens when gradients in a convected 
quantity exist parallel to the flow even in one-dimensional situations [1–3].

According to Vahl Davis et al. [4] a theoretical approximation for the false-diffusion term in 
two-dimensional geometries is:

   Γ  
false

   =   
𝜌UΔxΔy sin 2θ

  _________________  
4 (Δy  sin   3  θ + Δx  cos   3  θ) 

    (1)

where  U  is the resultant velocity and  θ  is the angle, which lies between 0 and 90°, made by 
the velocity vector with the x-direction. Expression (1) reveals that there is no false-diffusion 
present for θ = 0 and 90°, and that it is at its maximum at θ = 45°.

The first-order accurate upwind-difference scheme is more stable than the second-order accu-
rate central-difference scheme or higher-order accurate schemes, e.g., QUICK at high grid 
Peclet numbers. Non-linear schemes, e.g., van LEER scheme appear highly stable but they do 
not deal with the flow direction inclination at all [5–8].

One way to overcome diffusion errors is to use an upwind approximation which essentially 
follows the streamlines. This approach, originally derived by Raithby [9], is formally called 
the skew-upwind differencing scheme. The CUPID (Corner UPwInDing) scheme retains 
the general objectives of the Raithby approach but uses an entirely different 2D formulation 
that eliminates the shortcomings of the original scheme. The SUCCA (Skew Upwind Corner 
Convection Algorithm) scheme is based on a simplified formulation of the CUPID scheme 
[10, 11].

In this chapter the performance of various numerical schemes is compared as far as the 
accuracy of the numerical flow prediction is concerned. Various cases of numerical prob-
lems that include one- and two-phase flows, heat and mass transfer, geometry of two and 
three-dimensions, grid of Cartesian and curvilinear coordinate system, straight and inclined 
inflows are investigated and the conclusions are presented. Among the numerical schemes 
that are evaluated is the SUPER (Skew Upwind and cornER algorithm) numerical scheme 
that takes into account the 3D flow orientation and follows all the rules for the successful 
solution of the equations [12].

Numerical dispersion comes about when the convective scheme used is unstable and large 
gradients are present [3]. The use of the upwind or hybrid numerical scheme ensures the 
stability of the calculations but the first-order accuracy makes them prone to streamwise 
numerical diffusion errors. Higher-order schemes involve more neighbour points and reduce 
the streamwise false-diffusion by bringing in a wider influence. These schemes are based on 
one-dimension formulations that do not take into account the flow direction which makes 
them unstable at high grid Peclet numbers [13]. Furthermore numerical schemes that take 
into account the flow direction become unstable at high grid Peclet numbers in regions of 
high convection discontinuities. The phenomenon of the numerical dispersion causes spatial 
oscillations that lead to many numerical errors and non-physical results [1, 2].
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Generally the numerical schemes should follow some basic rules in order to be able to calcu-
late a successful solution:

a. The formulation of the scheme should ensure the flux consistency at the cell faces in adja-
cent control volumes satisfying the conservative property.

b. Conservation principle should be retained for all the variables and in the whole domain.

c. The scheme should recognize the relationship between the magnitude of the Peclet num-
ber and the directionality of influencing known as transportiveness property.

d. The influence coefficients in the finite volume equations should be always positive.

e. The neighbouring coefficients for the solution control volume of central node P should 
obey the following relation:  ∑  a  

nb
   =  a  

p
   , so as to be consistent with the differential transport 

equation.

f. Satisfying the Scarborough criterion    
∑   |  α  

nb
   |   ≤ 1 ⋅ at ⋅ all ⋅ nodes

  
_________________________

   
  |  a  
P
  '   |   < 1 ⋅ at ⋅ least ⋅ one ⋅ node

    ensures that the resulting matrix 

of coefficients is diagonally dominant which is a sufficient condition for a converged itera-
tive method.

g. Linearizing the source term with a negative slope, so that the incidence of unbounded 
solutions is reduced.

h. The formulation of the scheme should be easy to implement without increasing the com-
putational cost.

The method employed in this study follows the so called “control volume” approach which 
is developed by formulating the governing equations on the basis that mass, heat and 
momentum fluxes are balanced over control volumes. If there are two phases the control 
volume can be regarded as containing a volume fraction of each phase   ( r  i  )   that obeys the fol-
lowing relation:   r  

1
   +  r  

2
   = 1 . Each phase is treated as a continuum in the control volume under 

consideration. The phases share the control volume and they may, as they move within it, 
interpenetrate [14, 15].

1.1. Mathematical modeling

The general form of the differential transport equations in the Cartesian coordinate system is 
described as follows [14, 15]:

    
∂
 __ 

∂ t   ( r  i    ρ  
i
    φ  
i
  )  + div ( r  

i
    ρ  ι    

→  u  
i
     φ  ι   −  r  

i
    Γ  φ,ι   grad  φ  ι  )  =  S  φ,i    (2)

where   φ  
i
    the dependent variable of each phase  i ;   r  

i
   , the volume fraction of each phase, (m3/m3);   

ρ  
i
   , the density of each phase, (kg/m3);   u  

i
   , the velocity vector of each phase, (m/s);   Γ  

φ,i
   , within-

phase diffusion coefficient; and   S  
φ,i

   , within-phase volumetric sources, (kg/m3 s).
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The dependent variables solved for are:

a. Pressure that is shared by the two phases,  P (Pa)

b. Volume fractions of each phase,   r  
i
    (m3/m3)

c. Three components of velocity for each phase,   u  
i
   ,   v  

i
  ,    w  

i
    (m/s)

d. Turbulence kinetic energy and dissipation rate of turbulence for the first phase,  k  and  ε  

(m2/s2)

e. Temperature (K), enthalpy (J/kg)

The phase volume fraction equation is obtained from the continuity equation:

    
∂ ( r  i    ρ  

i
  ) 
 _____ 

∂ t   + div ( r  
i
    ρ  
i
     u 
→
    
i
  )  =  S  φ,i    (3)

where   r  
i
    = phase volume fraction, (m3/m3);   ρ  

i
    = phase density, (kg/m3);    u 

→
    
i
    = phase velocity vector, 

(m/s); and   S  
φ,i

    = net rate of mass entering phase i from phase j, (kg/m3 s), if there is phase change.

The discretized by the finite volume method form of all the conservation equations is solved 
by the SIMPLEST and IPSA algorithms embodied in the Computational Fluid Dynamics 
(CFD) code PHOENICS [16].

2. Numerical problems

2.1. Inclined flow of a scalar quantity

The physical problem presented in this section describes the transport of a scalar quantity 
(C1) in a two-dimensional geometry. The flow of C1 is inclined to the grid lines (θ = 45°) 
and the natural diffusion is assumed equal to zero. This physical problem is considered as a 
benchmark for comparing the performance of various numerical schemes.

The boundary conditions applied to the grid are the following:

Air enters the domain from the west side with stable mass flow rate   (ρ ⋅ u)    kg /  m   2  s , uniform 
values of the two components of velocity   ( u  

1
   =  v  

1
   = 1 m / s)   and uniform value of the convected 

quantity (C1)   (1 ⋅ kg /  m   3 )  .

Air enters the domain also from the south side with stable mass flow rate   (ρ ⋅ u)    kg /  m   2  s , uni-
form values of the two components of velocity   ( u  

1
   =  v  

1
   = 1 m / s)   and uniform value of the con-

vected quantity (C1)   (1 ⋅ kg /  m   3 )  .

At the two outlets (north and east side) of the domain the air is supposed to exhaust at an 
environment of fixed uniform pressure.

The dimensions of the domain are 1 × 1 m. The numerical results presented are based on the 
independent grid of 33 × 33 cells. For the discretization of the convected term in the transport 
equation of the scalar quantity C1 the numerical schemes: (a) UPWIND, (b) van LEER, (c) 
SUCCA, (d) SUPER are applied [6, 8, 11, 12].
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In Figure 1 the velocity vector distribution predicted by the SUPER numerical scheme is 
presented.

In Figure 2 the vertical (concentration) distribution of the scalar quantity C1 in the middle of 
the domain is presented.

The vertical distribution of the scalar quantity C1 that is transferred by air with inclined direction 
is predicted more abrupt by the numerical schemes (SUCCA, SUPER) that take into account the 

Figure 1. Air velocity vector distribution predicted by the SUPER scheme.

Figure 2. Vertical distribution of the scalar quantity C1 in the middle of the domain applying the numerical schemes: (a) 
UPWIND, (b) van LEER, (c) SUCCA, (d) SUPER.
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flow direction than the conventional numerical scheme (UPWIND) and the non-linear numeri-
cal scheme (van LEER). It is concluded that the numerical diffusion errors are minimized when 
the discretization schemes (SUCCA, SUPER) are applied to predict the transport of the scalar 
quantity C1 when the air-flow direction appears the major inclination angle 45° to the grid 
lines. The performance of the van LEER numerical scheme is also satisfactory in predicting the 
scalar concentration distribution. The conventional UPWIND numerical scheme that does not 
take into account the phenomenon of false-diffusion presents the poorest accuracy.

2.2. Tubular flow of a scalar quantity and heat conduction in the radial direction

A physical problem used in this study for assessing the numerical schemes is the numerical 
prediction of the energy transfer in a triple tube heat exchanger [17]. The heat exchanger has 
a three-dimensional curvilinear geometry similar to a circular cylinder. Three fluids are being 
considered to flow inside the domain that is separated by solid. Chilled water (10°C) flows in 
the inner tube, hot water (70°C) flows in the inner annulus and normal tap water (18°C) flows 
in the outer annulus. The three fluids follow a co-current flow. The numerical model is first 
validated and then used to compare the performance of various numerical schemes.

The boundary conditions applied for solving the above physical problem are the following:

Water with uniform properties (temperature, density, thermal capacity, kinematic viscosity) 
enters the three different inlets of the heat exchanger. The heat exchanger is separated to three 
components that are filled with water of different properties and the solid parts that prevent 
the water vertical flow. Heat is exchanged between the fluids through conduction. The solid 
is steel at 27°C of uniform properties (density, viscosity, specific heat, thermal conductivity, 
thermal expansion coefficient, compressibility). At the three outlets of the heat exchanger the 
boundary condition of zero mass flow is applied.

Figure 3. Local temperature variation of the co-current three fluid streams along the length of the heat exchanger.
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In Figure 3 the numerical prediction of the temperature distribution along the heat exchanger 
is validated against experimental data. The average% relative error of the numerical predic-
tion does not exceed the value of 20%.

In Figure 4 the numerical results of the enthalpy distribution at the lateral plane in the mid-
dle of the heat exchanger applying three different numerical schemes (HYBRID, van LEER, 
SUPER) [6, 8, 12] is presented.

Comparing the performance of the numerical schemes in predicting the transfer of the scalar 
quantity H1 it is concluded that the numerical prediction is equally satisfactory for the three 
discretization schemes.

Figure 4. Enthalpy distribution at the lateral plane of the heat exchanger applying: (a) the HYBRID, (b) the van Leer, (c) 
the SUPER numerical scheme.
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2.3. Airflow in a backward facing step

A physical problem appropriate for assessing the accuracy of various numerical schemes is 
the prediction of the airflow velocity vectors distribution in a backward facing step.

The separation of the airflow, the recirculation zone formed forward the step and the reat-
tachment length are the main characteristics of the flow in this geometry. The numerical solu-
tion of the airflow field in a backward facing step is of major concern due to the difficulty in 
accurate prediction of these complex phenomena. The flow field may become more complex 
in the presence of particles.

In this study the two-dimensional backward facing step of Benavides and Wachem [18] is 

investigated.

In Figures 5 and 6 the velocity flow field is presented applying various numerical schemes 
(UPWIND, HYBRID, van LEER, SUPER) [6, 8, 12] and validated against experimental data [18].

Figure 5. Velocity flow field applying various numerical schemes (upwind, hybrid, van Leer, super).

Figure 6. Vertical velocity distribution applying various numerical schemes (UPWIND, HYBRID, van LEER, SUPER) 
and comparison with the experimental data.
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According to the numerical results that agree well with the experimental data the performance 
of the numerical schemes (UPWIND, HYBRID, van LEER, SUPER) is equally satisfactory. The 
same conclusion is derived for the case of air-particles flow in a backward facing step.

2.4. Inclined air-particles flow

A physical problem that has been used for assessing the performance of various numeri-
cal schemes is the dispersed air-particles flow in a model room geometry (Figure 7) [19]. A 
two-phase Euler-Euler mathematical model is applied to calculate the oblique inflow in the 
interior of the internal space. The accuracy of the four numerical schemes: (a) the conventional 
first-order UPWIND numerical scheme, (b) the second-order HYBRID scheme, (c) the non-
linear van LEER and (d) the flow-oriented SUPER scheme [6, 8, 12] are compared in the case 
of inclined inflow (θ = 45°).

2.4.1. Boundary conditions

At the inlet the mass flow rate of each phase is multiplied by its volume fraction. The dis-
persed turbulent air-particles flow enters the room with uniform velocity (0.225 m/s) in an 
inclined direction. Turbulence is modeled by the RNG k-ε model [20]. Particles are assumed 
to be transported and dispersed due to turbulence of the carrier fluid (air).

The turbulence kinetic energy of the air-phase that is applied at the inlet is defined as [13, 21]   

k  
in
   =   

3
 
__
 
2
     ( U  

avg
    T  

i
  )    2   where   U  

avg
   . The mean air inlet velocity and   T  

i
    the turbulence intensity,  considered 

as 6%. The dissipation rate is given by  ε =   C  
μ
     3/4     k   3/2 

 
___

 
ℓ
   , where  ℓ  the turbulence length scale is taken as  

ℓ  = 0.07   d  
h
    (  d  

h
    hydraulic diameter of the duct) and   C  

μ
    = 0.0845 an empirical constant of the turbulence model. The 

mathematical model uses the logarithmic “wall functions” near the solid surfaces.

At the outlet both air phases are supposed to exhaust at an environment of fixed uniform pres-
sure. At the walls the no-slip and no-penetration condition is applied for both phases.

2.4.2. Results

Figure 8a–c present the vertical   w  
1
    velocity distribution at the longitudinal plane of the domain 

at distance 0.2, 0.4, 0.6 m from the supply inlet.

Figure 7. Geometry of the model room.
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As far as the accuracy of the four numerical schemes in the case of inclined inflow (θ = 45°) is 
concerned the higher-order and non-linear schemes (hybrid and van Leer numerical scheme) 
present a similar performance with the first-order upwind numerical scheme and a different 
performance than the flow-oriented scheme (SUPER scheme). The vertical w

1
 velocity distri-

bution predicted by the SUPER scheme presents a more abrupt and accurate profile due to the 
successful minimizing of the false-diffusion errors.

2.5. Heat and mass transfer

A physical problem that has been used to evaluate the performance of the numerical accu-
racy is the water-vapor condensation of humid air in the three dimensional geometry of a 
real-scale indoor space. A two-phase flow Euler-Euler mathematical model has been devel-
oped, wherein the humid air and water droplets are being treated as separate phases. The two 
phases exchange momentum and energy and, as the temperature drops below the dew point 
of humid air, mass transfer and phase change of water vapor to liquid takes place. The flow 
of humid air inside the room is buoyancy driven in the temperature range of 290–303 K. The 
properties of humid air (enthalpy, relative humidity, concentration of water vapor, saturation 
vapor pressure) vary with the temperature [22]. The dimensions of the domain are: width (X) 
× height (Y) × length (Z) = 4.0 × 4.0 × 8.0 m.

2.5.1. Boundary and initially conditions

The interior of the domain is filled with humid air of 303 K and no liquid phase. The tempera-
ture on the surface of the walls is 303 K and on the surface of the cold bottom is 290 K. The 
density of humid air is 1.16 kg/m3 and the water droplets have a constant density (996 kg/m3) 

and specific heat (4190.0  J / kg ⋅ K ) at the dew point temperature. The initial pressure inside the 

Figure 8. Vertical w
1
 velocity distribution at the longitudinal plane of the domain and (a) 0.2 m from the inlet; (b) 0.4 m 

from the inlet; and (c) 0.6 m from the inlet
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domain is equal to the atmospheric pressure. The initial relative humidity condition tested is 
90%. The overall water vapor mass of humid air at the initial temperature 303 K is taken from 
the psychrometric chart [23].

2.5.2. Results

In Figure 9 the vertical temperature distribution in the middle of the domain at the height 
(0–4 m) is presented.

The temperature of humid air near the floor is below the dew point (301.2 K) and water phase 
humidity covers the whole surface. The hot air close to the floor that comes into contact with 
the cold surface, reduces its temperature and flows down due to the gravity. The remained 
hot air flows up to the roof.

In Figure 10 the vertical temperature distribution in the region close to the floor calculated by 
three different numerical schemes (HYBRID, van LEER, SUPER) [6, 8, 12] is presented.

Temperature profile in the region of major gradient near the floor surface is predicted more 
abrupt by the SUPER scheme.

In Figure 11 the vertical absolute humidity ratio (kg H2O/kg of dry air) predicted by the three 
different numerical schemes (HYBRID, van LEER, SUPER) is presented at time 360 s.

Heat convection is accompanied by mass transfer and phase change of humid air. The larger 
gradient of temperature profile predicted by the SUPER scheme [10] leads to the formation 
of larger amount of water phase. Comparing the performance of the discretization schemes a 
more accurate solution of the condensation procedure is observed when applying the SUPER 
scheme.

Figure 9. Vertical temperature distribution at time 360 s for initial humidity condition 90%.
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3. Conclusions

Numerical diffusion is the main source of errors in computational calculations. In this study 
the performance of various numerical schemes is evaluated in order to find the limitations of 
the convection formulations. The first-order UPWIND scheme presents more stability and 
overcomes the streamwise diffusion but such the higher-order schemes do not deal at all with 
the cross-stream diffusion. The second-order hybrid numerical schemes take into account the 
influence of more neighboring points but appears unstable at high Peclet numbers. The non-
linear van LEER numerical scheme is highly stable and reduces satisfactory the false diffusion 

Figure 11. Vertical absolute humidity ratio (kg H
2
O/kg of dry air) distribution at time 360 s for initial humidity condition 

90% applying the van LEER, the HYBRID, the SUPER numerical schemes at height 0–0.2 m.

Figure 10. Vertical temperature distribution at time 360 s for initial humidity condition 90% in the middle of the domain 
at the height (0–0.2 m) calculated by three different numerical schemes.
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errors. The flow oriented SUPER scheme overcomes the phenomenon of the numerical diffu-
sion in most of the cases investigated without increasing the computational cost.
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