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Abstract

There is a need to reduce the negative polluting influence of mineral nitrogen fertiliz-
ers and to develop a more sustainable climate smart agriculture capable of meeting our 
future food security needs. Biological nitrogen fixation can have a role in this if it can 
be applied to the major food crop plants. Certain strains of the obligate nitrogen-fixing 
bacterial endophyte Gluconacetobacter diazotrophicus have the necessary attributes for 
this role. An ‘extra-ordinary endophyte’ this bacterium is one of relatively few that has 
mechanisms to cope with high levels of sucrose, an acidic pH, a wide range of oxygen 
environments, nitrogen fixation, as well as having respiratory chain attributes that make 
it a possible candidate eukaryote proto-mitochondria. Having a small genome relative 
to other endophytes, it is typical of facultative intracellular colonizers, with a life cycle 
that involves horizontal transfer to other high sucrose species via insects and potential 
vertical transfer through seeds. Every method used for demonstrating nitrogen fixation 
in rhizobia have been used to demonstrate nitrogen fixation in G. diazotrophicus both in 

vitro and in planta, and field trials demonstrate yield increases and the potential to reduce 
nitrogen fertilizer use, meeting both food security and climate smart agriculture needs.

Keywords: nitrogen fixation, Gluconacetobacter diazotrophicus, bioenergetic systems, 
cereals, non-nodular symbiosis, facultative colonization, intracellular colonization, 
endophyte, yield impact, food security, climate smart agriculture

1. Introduction

Sugarcane, Saccharum officinarum, is grown in many parts of the world for processing into cane 
sugar. In Brazil, a primary driver for growing sugarcane has been ethanol production for use 
as a sustainable substitute fuel for petrochemicals. For many years, and in deed for decades, 
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Brazilian sugarcane had been produced in the same regions with little use of nitrogen fertiliz-

ers, without any apparent loss in yield [1]. This led to speculation that the crop was benefiting 
from biological nitrogen fixation (BNF). In an experiment using labeled nitrogen, it was dem-

onstrated that the sugarcane variety CB 47-89 derived around 60% of its nitrogen from a bio-

logically fixed source [2]. Subsequent to this, studies confirmed that some varieties of Brazilian 
sugarcane were capable of obtaining 60–80% of their nitrogen requirements from BNF, high-

lighting the possibility that under the right conditions, it might be possible to dispense alto-

gether with nitrogen fertilizers for these varieties [1, 3]. The bacteria thought to be responsible 
for the BNF was a new species, Acetobacter diazotrophicus [4] discovered in 1988 by Vladimir 
Cavalcante and Joanna Döbereiner in Alagoas, Brazil [5]; initially named Saccharobacter nitro-

captans and later renamed Gluconacetobacter diazotrophicus [6].

2. A review of the key aspects of the symbiosis of the endophyte 

Gluconacetobacter diazotrophicus

The nature of the symbiosis of the endophytic nitrogen-fixing bacteria G. diazotrophicus has 

increasingly become a subject of scientific inquiry because of its potential for reducing nitro-

gen fertilizer use in cereals and other major food crops, its extra-ordinary attributes and capa-

bilities relative to other endophytes and nitrogen fixers, its life cycle and its ability to fix 
nitrogen under a range of circumstances.

2.1. Demonstrated impact of G. diazotrophicus

The ability of G. diazotrophicus to fix up to 80% of the sugarcane plants nitrogen requirements 
is significant in agriculture terms, not least if this capability could be transferred to other grass 
and cereal species. The drive to find a means of introducing BNF in non-legumes, particularly 
through the ability to transfer nodulation to non-leguminous cereal crops, had been an impor-

tant focus of research since the 1970s [7]. The primary reason for this was the need to produce 
more climate smart, sustainable systems of agriculture that are less reliant on inorganic nitro-

gen fertilizers produced via the Haber Bosch process.

The 500 million tonnes of ammonia produced each year through this process in order to meet 
the needs for nitrogen fertilizer account for 1% of the world’s energy usage and 3–5% of 
natural gas usage [8]. However, crops use only an estimated 30–50% of the nitrogen fertilizer 
applied to the soil. The remainder is lost, either to the atmosphere as nitrous oxide gas or into 
waterways as nitrate run-off. Nitrogen fertilizer use accounts for around 66% of UK agricul-
tural nitrous oxide emissions contributing to climate change [9], while nitrate run-off con-

taminates drinking water, with 5% of the European population exposed to unsafe levels [10].

Despite the obvious need to find sustainable solutions for future more climate smart agricul-
ture, it is now generally acknowledged that the promise of BNF through rhizobial-based root 
nodulation in non-leguminous plants has not been realized [7]. Unfortunately, it is also not 
currently considered possible in cereals without further years of genetic manipulation [11]. 
Alternative approaches however, based on the findings relating to G. diazotrophicus in Brazil 
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in sugarcane offer some prospect for the development of non-legume crop symbiotic nitrogen 
fixation, not only to increase crop yields but also to potentially reduce nitrogen fertilizer use, 
and this prospect is now beginning to be realized [12].

Apart from fixing atmospheric nitrogen, diazotrophic bacteria such as G. diazotrophicus, can 
affect plant growth directly by the synthesis of phytohormones and vitamins, improved phos-

phate and nutrient uptake and enhanced stress resistance [13]. It has been demonstrated that 
strains of G. diazotrophicus differentially affected growth parameters of sugarcane, with some 
strains improving germination, tiller number and plant height relative to others [14] and there is 

also evidence that G. diazotrophicus improves tolerance to the sugarcane pathogen Xanthomonas 

albilineans as a result of production of bacteriocin; as well as reducing galling caused by root 
knot nematodes (Meloidogyne incognita) in bottle gourds and cotton [15]. G. diazotrophicus has 

also been shown to enhance photosynthetic capability and water use efficiency [16] and in 

sorghum increased chlorophyll and leaf nitrogen [17].

Inoculation of crop plants with G. diazotrophicus has been shown to increase crop yields 
in tomato [18], in sugar beet [19] and increased both the shoot and root dry weight of sor-

ghum [20]. However, more significant yield enhancement has been demonstrated in recent 
independent field trial research utilizing proprietary NFix® technology (Patent Number: 
WO2016/016629) based on G. diazotrophicus of around 1 tonne per hectare in both maize and 
wheat (Figures 1 and 2) at any level of nitrogen fertilizer [12, 21].

These levels of plant yield improvement are somewhat surprising and suggest a close sym-

biotic relationship and multiple plant benefits from the association with G. diazotrophicus. 
Joanna Döbereiner even referred to G diazotrophicus as “this extra-ordinary endophyte” but 
perhaps even Döbereiner would be surprised by the level to which the bacteria she was jointly 
responsible for discovering [5], is truly extra-ordinary.

Figure 1. For spring wheat across sites (2015: UK, 2016: UK, 2017: Germany, US) and N levels, N-fix® inoculated seed 
increased yield by 7% (460 kg/ha) and demonstrated a potential to N-fertilizer savings of up to 61% with no reduction 
in yield [21].
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2.2. G. diazotrophicus: an “extra-ordinary endophyte”

G. diazotrophicus is a Gram-negative, non-spore forming, non-nodule producing, endophytic 
nitrogen-fixing bacterium. This bacterium belongs to the phylum Proteobacteria, the class 
Alpha-Proteobacteria, the order Rhodospirillales, the family Acetobacteraceae (Acetic acid 
bacteria; AAB), within the genus of Gluconacetobacter [22]. Such a phylogeny does not suggest 
anything particularly remarkable about the species—G. diazotrophicus. However, there are a 
number of key attributes that distinguish this bacterium from others and point to the reasons 
why it is able to achieve the types and levels of impact demonstrated in Figures 1 and 2, when 
colonizing crop plants. Among these attributes G. diazotrophicus has the ability to cope with 
high sucrose concentrations, low oxygen and pH levels and the ability to intracellularly colo-

nize and fix nitrogen in a wide range of crop plants [12, 23, 24].

The availability of water is essential for the functioning of living systems and relatively few bac-

teria can survive and reproduce at water activity levels below 0.90 aw [25, 26]. The presence of 
solutes such as, salts or sugars can create an osmotically stressful environment for bacteria and 
relatively few species have mechanisms that allow cell multiplication under extreme conditions 
of <0.70 aw [26, 27]. Plant sap generally has water activity values between 0.99 and 0.96 aw (and 
pH 4.4–8.0); levels that are able to support a phylogenetically diverse groups of micro-organ-

isms, including plant pathogens, plant and insect bacterial and fungal endosymbionts [27].

G. diazotrophicus is one of the relatively few bacteria capable of being cultured at very high 
sucrose concentrations (876 mM sucrose [28]; 30% [29]) and can tolerate a water activity level 
of 0.892 aw [26]. This is perhaps not surprising given its host plant, sugarcane and other high 
sucrose content host plants from which it has been isolated (Table 1), but for G. diazotrophicus to 

tolerate sucrose-induced stress, it has to have the mechanisms with which to cope. In general for 
bacteria, a number of osmotolerant mechanisms exist and most of these exist in G. diazotrophicus, 

Figure 2. Combined data from 10 maize trials (2014: 4 Germany, 1 Belgium, 2015: 3 US, 2016: 2 US) demonstrated an 
overall increase in yield of 8% (830 kg/ha; Figure 2A). Estimation from second order polynomial fit, predicts that N-fix® 
can replace 27% of the nitrogen fertilizer inputs without yield penalty [21].
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but also in bacteria that do not live with such high levels of sucrose. Therefore, additional mecha-

nisms that protect G. diazotrophicus specifically against high sugar concentrations may also act 
in this species [30].

G. diazotrophicus lacks a sucrose transport system and depends on the secretion of a con-

stitutively expressed levansucrase (LsdA), a fructosyltransferase exoenzyme with sucrose 
hydrolytic activity, in order to utilize plant sucrose [31, 32, 33]. Levan is implicated in sucrose 
tolerance in G. diazotrophicus. A levansucrase defective mutant of G. diazotrophicus demon-

strated a significant decreased tolerance to sucrose compared to the wild type [33]. Osmotic 
pressure is regulated in many bacteria by the movement of potassium ions in to and out of 
the cell [34]. In G. diazotrophicus sucrose tolerance is, at least partially, achieved through genes 
encoding for the KupA protein [27]. Interestingly, however, this gene is considered only a 
secondary low affinity potassium transporter for bacteria generally and certainly has not been 
implicated in the regulation of osmotic stress [35]. Hence, this high-affinity potassium trans-

port role of the KupA protein by which G. diazotrophicus regulates osmotic stress in high 
sucrose concentrations, is different from other bacterial species [27]. G. diazotrophicus seems 
to have a larger number of isoforms of enzymatic systems involved in osmotolerance [30].

High sucrose concentrations occur in a range of environments that may be associated with 
bacterial endosymbionts. In addition to the sap of the host plant other sites of high sucrose 
include floral nectar, plant fruits and fruit juices as well as the guts of sugar-feeding insects and 
the rhizosphere [27]. Studies of bacterial-insect symbiosis have demonstrated that the AAB 

Plant family Host plant References

Amacariaceae Mango [146]

Amaranthaceae Beet root [146, 147]

Apiaceae Carrot [146, 147]

Arecaceae Oil Palm [148]

Brassicaceae Radish [147]

Bromeliaceae Pineapple [149]

Cactaceae Forage cactus [150]

Convolvulaceae Sweet potato [151]

Euphorbiaceae Cassava [146]

Musaceae Banana [94]

Myrtaceae Guava [146]

Poaceae Cereals and grasses [5, 90, 112, 137, 151–155]

Rubiaceae Coffee [94] [156]

Solanaceae Tomato [157]

Theaceae Tea [94]

Table 1. The natural host range of G. diazotrophicus is restricted to 19 plant species representing 15 plant families.
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are capable of establishing symbiotic relationships with insects that rely on a sugar-based diet 
[36]. The AAB form symbiotic associations within the mid-gut of insect species representing 
a diverse range of Orders namely Diptera, Hymenoptera, Hemiptera and Homoptera. This 
insect habitat is characterized by the presence of sucrose or other diet related sugars, low oxy-

gen concentrations and a low pH. Symbiotic associations of species of Gluconacetobacter have 

been found in fruit flies, Drosophila melanogaster; bees, Aphis mellifera and for G. diazotrophicus, 
within the gut of the sugarcane mealybug, Saccharicoccus sacchari [36].

While the insect gut may suit the ability of G. diazotrophicus to tolerate sucrose rich environ-

ments, as an aerobe, the oxygen levels in the guts of many insects may be less suitable, varying 
as they do from aerobic to completely anoxic [37]. However, the presence of Gluconacetobacter 

species within insect guts and of G. diazotrophicus in S. sacchari, would suggest some ability to 
cope with a range of oxygen environments. In a genomic analysis of 14 AAB to assess traits 
associated with insect symbiosis, the presence and distribution of the oxygen-reacting sys-

tems of the electron transport chain (terminal oxidases) were studied [38]. It was found that 
the operons of both cytochrome bo3 (CyoA-D) and bd (CydAB) ubiquinol oxidase, which 
have a high affinity for oxygen, were present in the genomes of all of the AAB studied, includ-

ing G. diazotrophicus. The high oxygen affinity cytochrome bd oxidases are typically expressed 
by enterobacteria, intracellularly colonizing animal cells (e.g. Brucellar suis; [39]), which have 
oxygen concentrations lower than those found in the extracellular environment. Although, 
AAB are typically considered aerobes the capacity to live in low oxygen concentrations con-

ferred through the ubiquinol oxidases enables endosymbionts such as G. diazotrophicus to 

survive in a range of environments, including the micro-oxic environment of the insect gut 
[37]. Phylogenetic comparisons demonstrate that these terminal oxidases were present in the 
common ancestor of AAB, thereby constituting an ancestral character [38]. In addition, the 
presence of reactive oxygen species (ROS) detoxifying genes in G. diazotrophicus, have a high 
similarity to related enzymes from phylogenetically distant symbiontic organisms [40]. This 
could be an indication that nitrogen fixation is an ancient process in G. diazotrophicus and 

was probably acquired before the adaptation to the endophytic lifestyle [30]. An obligate 
symbionts lifestyle necessitates a close metabolic association with its host plant. G. diazotro-

phicus antioxidant catalase genes that act to reduce the toxicity of oxygen during nitrogen 
fixation [40] are related phylogenetically to distant organisms that are normally isolated 
from plant leaves with the ability to promote the growth of various plant seedlings [41, 42]. 
The enzyme pyruvate decarboxylases (PDC) are rare and found in bacteria that are strongly 
plant associated, in which the environment contains ethanol and a low pH [43]. Their rarity 
suggests that the PDCs have a significant and specific metabolic role in these environments. 
PDCs are expressed in plants as part of the pathway of fermentation converting sugars into 
cellular energy under conditions of low pH caused by oxygen stress, when normal aerobic 
energy metabolism is not possible, for example, root water logging [44]. In G. diazotrophi-

cus, PDC expression is regulated and is not constitutively expressed and it is possible that 
the expression of G. diazotrophicus PDC is also pH or oxygen dependent. It is conceivable 
that G. diazotrophicus PDC could perform a role outside the bacterial cell in support of plant 
cell metabolism under oxygen stress and in doing so would further deepen the symbiotic 
relationship between the plant and the bacterium to the point where G. diazotrophicus could 

almost be considered a “plant organelle” [43].
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The study of bioenergetic systems associated with terminal oxidases, and the ability to fix 
nitrogen and function under a wide range of oxygen concentrations has also raised the 
prospect of G. diazotrophicus having been associated in evolutionary time scales with a key 
eukaryote cell organelle—the mitochondria. It has been postulated that proto-mitochondria 
‘bacteria’ were adapted to different levels of environmental oxygen of the anoxic proterozoic 
oceans [45], exploiting also the terminal oxidases of facultatively anaerobic bacteria to obtain 
bioenergy [46].

It is logical to argue that the mitochondrial systems that generate most cellular bioenergy 
must define the minimal bioenergetic capacity of proto-mitochondria. Ubiquinol in the mito-

chondrial respiratory chain produces most bioenergy in eukaryotic cells and shows strong 
similarity with that of aerobic proteobacteria [47, 48]. On this basis the maximum number of 
bioenergetic systems carrying out the oxidation of ubiquinol includes the bc1 complex, cyto-

chrome c, cbb3, aa3, bo and bd as well as nitrogen metabolism since nitrogen compounds can 
function as electron acceptors for the oxidation of dehydrogenases [49, 50].

Analysis of all of the available genomes of the Alpha-proteobacteria and using a model based 
upon the pathways of differential loss of the six bioenergetic systems leading to the reduced 
subset of current mitochondria, concluded that those subsets lacking the cbb3-type oxidases 
probably represents the closest match for the bioenergetic capacity of the distal ancestors of 
mitochondria [49]. Alpha-Proteobacteria lacking the cbb3 type oxidase is typified by methy-

lotrophs and the genus Gluconacetobacter.

2.2.1. G. diazotrophicus in comparison with other bacterial endophytes

Bacterial genomes vary a great deal in size ranging from 0.16 megabases (Mb) in Carsonella 

ruddii [51] to approximately 9.7 Mb in Burkholderia xenovorans [52]. Among the nitrogen-
fixing endophytes the rhizobia are the most well studied, and soybean a key leguminous 
crop. In a systematic comparative genomic analysis of soybean micro-symbionts and other 
rhizobia sampled from a range of ecological zones, it was found that the average genome 
size of Bradyrhizobium strains was 9.8 ± 0.87 Mb which was significantly (P < 0.001) larger 
than that of nine Sinorhizobium genomes—6.6 ± 0.30 Mb [53]. Similarly the genome size of 
48 strains of Sinorhizobium varied between species and strains from 6.2 to 7.8 Mb [54]. The 
key requirement in assessing these differences among the rhizobia has been the need to 
gain an understanding of the types of genome essential for nodulation and nitrogen fix-

ation. In trying to define these core characteristics, the genome size of 14 strains of the 
Rhizobiales ranged between 4.9 Mb, exemplified by Mesorhizobium species, up to 9.1 Mb in 
Bradyrhizobium japonicum [55].

The intracellular environment is the main factor that correlates to genome size in bacteria [56, 57]. 
An analysis of 350 bacterial species genomes comparing the nature of their association with their 
host (early, advanced and extreme stages of adaptation) demonstrated a decreasing genome size 
with increasing levels of host adaptation [56]. Bacteria in an early facultative intracellular stage 
of adaptation tend to have a median genome size ca. 3.1 Mb, advanced obligate intracellular 
stages a median genome size ca 1.3 Mb and an extreme obligate intracellular mutualist, a median 
genome size ca. 0.7 Mb.
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For plant endosymbionts a comparison of genome sizes of nine bacteria (Burkholderia phytofir-

mans PsJN, Azospirillum sp. B510, Klebsiella pneumoniae 342, Methylobacterium populi BJ001, 
Pseudomonas putida W619, Pseudomonas stutzeri A1501, Enterobacter sp. 638, Azoarcus sp. BH72, 
Gluconacetobacter diazotrophicus Pa15) with differing lifestyles exhibited a range in size from 
7.6 to 3.9 Mb (Table 2), with G. diazotrophicus having the smallest genome ([58]; 3.9 Mb [30]). 
The genome size of 3.9 Mb places G. diazotrophicus firmly in the facultative intracellular colo-

nizer category [56]; an intracellular colonization capability that was first demonstrated in 2006 
[24]. Certain strains of G. diazotrophicus are capable under the right conditions to intracellu-

larly colonize a range of crop species and this ability has subsequently been demonstrated for 
a range of other bacteria and host plants [59–63].

Facultative intracellular symbionts are characterized by their adaptive flexibility which is 
reflected in the relatively greater number of mobile genetic elements compared with obligate 
intracellular symbionts [56]. G. diazotrophicus has 4–5 times more mobile elements than other 
endophytes, for example, 109 transposases [30, 58], reflecting a high degree of adaptive flex-

ibility. Such flexibility is needed to overcome constraints that include the ability to attach to 
host cells, entering the cytoplasm, multiplying, exiting and being transmitted to new host 
individuals without being recognized by the host immune system [56].

Genetic diversity and adaptive flexibility is also achieved though bacterial plasmids with 
genes controlling important functions such as nitrogen fixation, sulfur utilization and hydro-

carbon degradation. Nitrogen-fixing genes can be conserved in chromosomal DNA and 
within plasmids [64]. The symbiotic bacterium of genus Rhizobium carry high molecular 
weight plasmids (90–350 Å~ 106) and in R. leguminosarum plasmids have a role in nodule for-

mation, symbiosis as well as carrying nitrogen fixation (nif) genes [65]. Plasmids occur in G. 

diazotrophicus but their number and size varies between strains, with for example G. diazotro-

phicus UAP8070 and UAP5665 each having three plasmids of 93, 22 and 22 kb in size [66], PR2 
has two plasmids one particularly large at 170 kb and a smaller one at 24 kb [66], whereas Pal5 
has two plasmids of 38.8 and 16.6 kb, [30] and strain UAP5541 has no plasmids at all [66–68].

Genes responsible for nitrogen fixation in G. diazotrophicus are located on the chromosome [30, 66]. 
However, plasmid genes will have other key roles and it has been speculated that for G. diazotrophi-

cus they contribute to an improved fitness of the colonized host plant or the insect symbiosis for the 
bacterium [66]. Strain differences in G. diazotrophicus are complex with a mix of highly conserved 
regions and highly variable groups of genes [30]. A considerable number of coding sequences on 
20 genomic islands across a range of 19 strains of G. diazotrophicus encode genes involved in pro-

cesses that could confer intra-specific differences such as, responses to oxidative stress, proteases, 
biosynthesis of antimicrobial agents, amino acid metabolism and secondary metabolites, as well 
a large number of transport systems and transcriptional regulators [30]. Strain differences in G. 

diazotrophicus have been observed for a range of key attributes including expression of cell wall 
degrading enzymes [69], intracellular colonization [24], responses to nitrates [70, 71], siderophore 
production [72], as well as bacterocin production [73].

The presence and expression of nitrogen-fixing nif genes, are key to the ability of G. diazotro-

phicus to fix nitrogen. In 2000, a major and unique 30.5-kb cluster of nif and associated genes 
of G. diazotrophicus, was sequenced and analyzed [30, 74]. This cluster represented the largest 
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Endophyte functions Range Gd value Implications

Motility and 
Chemotaxis

Type IV pilli & flagella

Methyl accepting 
proteins

Che-protein response 
regulators

- or +

9–88

12–73

+

9

12

MCP, a transmembrane sensor protein permits G. diazotrophicus 

to detect concentrations of molecules while Che proteins enable 
orientation and movement.

Plant polymer

Degradation (PPD)

Glycoside hydrolases 
(GH)

% putatively PPD

26–68

23–63

35

23

GHs facilitate plant entry, sugar metabolism, bacterial cell 
wall metabolism, and host-microbe interaction [158]. G. 

diazotrophicus has specific cell wall degrading enzymes [69].

Detoxification

Antioxidative enzymes

Efflux pumps

8–21

209–681

12

209

Endophyte survival requires the ability to detoxify or manage 
movement of xenobiotics using efflux pumps. G. diazotrophicus 

has poor survival in the rhizosphere [89, 92, 93].

Fe uptake

Ton-B dependent 
receptors

6–22 22 Biologically available Fe is limited in plants and endophytes. 
Uptake of ferric siderophore complexes is achieved via TonB-
dependent receptors [159]. Endophytes with large numbers 
of these receptors may compete with plants or fungi for iron 
acquisition.

Degradation

Dioxygenases

0–16 0 G. diazotrophicus is at the extreme low end of the ability to 
degrade complex plant metabolites.

Transporters

Total number

No./Mbp genome

No. transporter types

Porin

ABC transporters

Putrescine

510–1196

105–183

95–126

3–53

142–477

- or +

510

131

95

7

142

-

G. diazotrophicus has a relatively high number of transporter 
genes enabling transport of nutrients and excretion of toxins. 
Low numbers of the ABC family of transporters, porin genes 
and the lack of putrescine transporters perhaps suggests poor 
rhizosphere competence.

Secretion systems

Type I & IV

Type II, III, Va, Vb, VI

- or +

- or +

+

-

G. diazotrophicus in common with many other endophytes has 
available key secretion systems

Signaling

Two component 
systems

Bacterial IQ

ECF Sigma factors

87–272

65–142

2–17

87

96

3

Complexity of signaling systems correlates with the genome 
size, phylogeny, ecology and metabolic activities of the bacteria 
[160]. Bacteria living in diverse habitats encode more ECF sigma 
factors than in stable niches [161].

Table 2. Compiled from the survey and analysis of nine endophytes: Burkholderia phytofirmans PsJN, Azospirillum 

sp. B510, Klebsiella pneumoniae 342, Methylobacterium populi BJ001, Pseudomonas putida W619, Pseudomonas stuzeri 

A1501, Enterobacter sp. 638, Azoarcus sp. BH72, Gluconacetobacter diazotrophicus Pa15, with particular reference to 
G. Diazotrophicus (Gd) [58].
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single grouping of genes required for nitrogenase structure and function, found in any diazo-

troph at that time [74]. Interestingly, the overall arrangement of genes was similar to the nif-fix 
cluster in Azospirillum brasilense, while the individual gene products most closely resembled 
those in species of Rhizobiaceaeor, proteobacteria comprising multiple subgroups that can 
both enhance or hinder plant development [75]. The individual G. diazotrophicus gene products 

are generally similar to those found in other groups of proteobacteria, with 17 gene products 
being most like those in members of the Rhizobiaceae and 9 gene products being most closely 
related to Rhodobacter capsulatus proteins. NifU and NifS were most similar to the gene prod-

ucts of Azotobacter species [74].

2.3. Life cycle of G. diazotrophicus

As a Gram-negative bacteria, G. diazotrophicus has no spore or resting stage; it reproduces 

asexually through binary fission. G. diazotrophicus is also an obligate endophyte [23], which 
means it is a bacterium requiring internal as opposed to external plant tissues to complete 
its life cycle. G. diazotrophicus primarily inhabits intercellular apoplastic spaces, the xylem 
and the xylem parenchyma [76, 77]. However, studies using β-glucuronidase (GUS)-labeled 
G. diazotrophicus, demonstrate that this bacterium is also capable of intracellular coloniza-

tion within membrane-bound vesicles in its host plant [24]. Some strains of G. diazotrophicus 

have this intracellular colonization capability in common with a number of other bacteria, 
for example a phylotype related to G. diazotrophicus in Pinus flexilis (limber pine) and Picea 

engelmannii (Engelmann spruce) [62] and Methylobacterium extorquens in Pinus sylvestris [78].

The symbiosome is the unifying feature of all endosymbiosis [79]. The symbiosome is created 
by the engulfment of the microorganism by a plant-derived membrane in a manner that resem-

bles phagocytosis in animal cells [80]. In legume symbiosomes, bacteriods are enclosed within 
such a plant-derived membrane. The challenge for any other nitrogen-fixing endosymbiont 
is first to establish intracellularity within living plant cells and within symbiosome-like struc-

tures. All carbon and nitrogen sources and oxygen must cross the symbiosome and bacteriod 
membranes making them crucial to the establishment and maintenance of symbiosis [81].

The UAP5541 strain of G. diazotrophicus is known to constitutively produce three hydrolytic 
enzymes such as endoglucanase, endopolymethylgalacturonase and endoxyloglucanase that 
facilitate bacterial penetration of plant cell walls [69]. After cell wall penetration, when G. diazo-

trophicus is present at the surface of the plasma membrane, uptake into vesicles may be triggered 
by sucrose-induced endocytosis [82]. G. diazotrophicus is known to produce large amounts of 
IAA. At low concentrations, IAA can function as a reciprocal signaling molecule in bacterial-
plant interactions [83]. Once intracellular, the enzymes enable G. diazotrophicus to colonize cell 
walls, intercellular spaces and to be transmitted cytoplasmically to daughter cells in actively 
dividing plant cells thereby spreading systemically throughout the roots and shoots [84]. The 
plant will not be passive in this process of colonization by the endophyte; plants have evolved 
molecular mechanisms to deal with challenges imposed by colonizing bacteria [85]. In sugarcane 
a number of genes have been found to be differentially expressed in the presence of bacteria [86]. 
The shr5 gene was differentially expressed after inoculation of sugarcane with G. diazotrophicus 

and other nitrogen-fixing bacteria [87]. This gene encodes a protein involved in plant signal 
transduction during establishment of plant-endophyte interactions. Down regulation of shr5 
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was evident when the plants were colonized by G. diazotrophicus. This suggests that the initial 
steps of endophytic colonization are actively monitored and possibly enhanced or diminished 
by the plant [88].

Obligate endophytes such as G. diazotrophicus are thought to spread from plant generation to 
plant generation via seeds, vegetative propagation, dead plant material and possibly by insect 
sap feeders [89].

2.3.1. Horizontal transmission of G. diazotrophicus

G. diazotrophicus is a non-invasive, obligate, endophytic species [90]. Hence, its ability to sur-

vive outside its plant hosts is likely to be poor and its infection capability will be low [91]. 
There is certainly little evidence of its survival in soil [89, 92, 93]. In host range studies, G. 

diazotrophicus has only been isolated from the rhizosphere of plants in two cases, in banana 
[94] and rice [95] (Table 1). Studies involving immunocapture and PCR have failed to find G. 

diazotrophicus in soil collected between rows of sugarcane plants grown in the field (Santos 
et al., unpublished data; source [93]). When PCR was used, fragments of the same size as those 
from G. diazotrophicus genomic DNA were detected in soil samples from sugarcane fields, 
however, the bacterium could not be re-isolated from micro-propagated sugarcane plants 
used as a trapping host [92]. G. diazotrophicus has been isolated from arbuscular mycorhizal 
fungi (AMF) associated with sweet potato and sweet sorghum [96] and sorghum [17] but sur-

vival of G. diazotrophicus in soil appears to be limited. Populations of G. diazotrophicus residing 

in plant debris could, following release into the soil, potentially gain entry into a new host 
plant through the roots, tips and cells of the root cap and meristem, at areas of lateral root 
emergence and through root hairs [77, 97, 98]. This process would be facilitated by the release 
from the bacteria of their hydrolytic enzymes in the presence of root exudates containing suit-
able sugars. Within the stems of host plants, specifically sugarcane, the bacterium is capable of 
entering at breaks caused by the separation of plantlets into individuals [77].

The ability of G. diazotrophicus to survive in the soil long enough to multiply and find a 
potential host plant is probably limited given its lack of putrescine transporters, because of 
restricted carbon availability (as sucrose/glucose), and competition from free-living soil bac-

teria. Hence, the G. diazotrophicus must have a means of horizontal transmission that does not 
rely solely on soil-mediated transfer.

Surveys have indicated that the G. diazotrophicus, although present at all sites, in all parts of the 
sugarcane plant and in all trash samples examined, it was not present in samples taken from 
associated forage grasses, cereals or weed species within the sugarcane fields [99]. G. diazotro-

phicus has only been found to occur naturally in a total of 19 plant species, mainly crops, across 
15 plant families including, Poaceae, Convolvulaceae, Rubiaceae and Bromeliaceae (Table 1). 
Given the bacterium thrives in an intercellular environment rich in sucrose which it uses as a 
carbon source the number of candidate host species for natural colonization is low. However, 
despite difficulties in achieving colonization [100], G. diazotrophicus has been intentionally 
inoculated into cotton, calabash (Lagenaria siceraria) [15], maize [101] sugarcane, wheat, rice, 
oilseed rape, tomato, white clover [24, 102], sugar beet, common beans [103] Arabidopsis [24] 

and sorghum [104].
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Another potential means of horizontal transmission is through the uptake and distribution 
via plant feeding insects. The symbiotic association of AAB with insects has been reviewed 
[36] and the genus of Gluconacetobacter has been identified in the guts of fruit flies (G. ‘mune-

hiro’ [105] and G. europaeus [106]) and honeybees (Gluconacetobacter sequences [107] and 

Gluconacetobacter clone sequences [108]), while in sugarcane G. diazotrophicus has been iso-

lated from the gut of the pink sugarcane mealybug (Saccharicoccus sacchari) [70, 109–111] a 

plant sap-sucking insect. This would suggest that horizontal transmission of G. diazotrophicus 

is possible through sap-sucking insect vectors, such as the pink sugarcane mealybug.

The insects might become colonized during sap-feeding and then re-inoculate the bacteria to stems of other 
plants. It has been suggested that G. diazotrophicus is imbibed from sugarcane by S. sacchari and the 
population within the insect is a subset of the sugarcane population [70]. Alternatively, G. diazotrophicus 
may be an autochthonous microbiota of mealybugs associated with sugarcane [109]. An investigation of 
the frequency of strains of G. diazotrophicus isolated from cane internodes and sugarcane mealybugs in 
Cuba indicated a higher frequency of isolation from the plant than from the insects [110]. This would sug-
gest that the primary host of G. diazotrophicus is the plant rather than the insect: the latter acting only as a 
transmission vector. It may also imply that the insects do not provide the optimal conditions for multipli-
cation or survival of the G. diazotrophicus [110]. If the strains differ due to whether they are isolated from 
the plant or the insect host, the function of the insect as a transmission vector [109] would be unlikely. 
Given that G. diazotrophicus was recovered from mealybugs in 1 out of 20 insect colonies associated with 
plants from 11 varieties growing in 4 localities; if G. diazotrophicus were an autochthonous microbiota of 
mealy bug then the recovery of G. diazotrophicus from the insect would be more frequent [110].

Successful transmission of bacterial endophytes by insects depends on host and cultivar pref-
erences of the vector and on the vector inoculation efficiency and how rapidly the insect can 
effectively transmit the bacterium to another host plant. From the limited information avail-
able, the vector inoculation efficiency is at best 5%, which would imply a low chance of suc-

cessful insect transmission. This low figure is supported by the natural plant host range of G. 

diazotrophicus (see Table 1), which is restricted to 19 plant species. In addition, the important 
role of the host and cultivar preferences is supported by surveys in sugarcane that have indi-
cated that the G. diazotrophicus, although present at all sites, in all parts of the sugarcane plant 
examined, the bacteria was not present other plant species within the sugarcane fields [99].

Horizontal transmission of G. diazotrophicus has most likely occurred through vegetative 
propagation of crops (particularly sugarcane) with interspecies transmission potentially 
having occurred via vesicular-arbuscular-mycorrhizal fungi [17, 112], or more likely, sap-
feeding insects. G. diazotrophicus has been isolated from Saccharicoccus sacchari, the sugarcane 
mealybug [70, 109]—which has a host range including many species of grasses (including 
sorghum, rice and miscanthus as well as sugarcane) and pineapple (CABI Invasive Species 
Compendium; http//www.cabi.org), which through horizontal transmission, could explain 
the presence of G. diazotrophicus in these plant species (Table 1.).

2.3.2. Vertical transmission

Plant endophytes may be vertically transmitted through plant seeds either endophytically 
or epiphytically. Bacteria have been isolated from the seed of a diverse range of plant spe-

cies [112]. Genomic adaptation of bacterial endophytes for a symbiotic life cycle may include 
strategies for vertical transmission via the seed at the expense of competitiveness and ability 
to survive in most environments outside the plant. The rich diversity of bacteria in the seed 
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of Miscanthus indicated the bacteria are not only able to avoid plant defenses, but poten-
tially have a more active role, acting primarily during germination and seedling establish-
ment [113]. G. diazotrophicus has not been isolated from the seeds of its host sugarcane [66]. 
However, the intracellular capability of some strains of G. diazotrophicus means they have 
the potential for vertical transmission through intracellular colonization of the seed [24]. 
Certainly, the ability of G. diazotrophicus to fix nitrogen and produce plant growth hormones 
may aid initial seedling establishment and growth but there is little recorded evidence to date 
of vertical transmission for G. diazotrophicus. Vertical transmission has been demonstrated in 
seeds of OSR at ca. 15% and seed treated and field grown Barley of 1–3%, but the presence of 
G. diazotrophicus in S1 wheat seed from colonized plants, either in the laboratory or under field 
conditions, has not been possible (unpublished data Azotic Technologies Ltd.).

2.3.3. Nitrogen fixation in G. diazotrophicus

Although most often associated with rhizobial symbiosis in the root nodules of legumes, BNF 
occurs in species of more than 100 genera distributed among several of the major phyloge-
netic divisions of prokaryotes [114, 115]. The principles are the same, whichever bacteria and 
wherever it may be located in the plant. BNF is simply a process by which atmospheric dini-
trogen (N

2
) is reduced into two molecules of ammonia (NH

3
) by the enzyme nitrogenase with 

8H+, 8e− and 16 Mg ATP [116]. The process in G. diazotrophicus is catalyzed by nitrogenase 
which is a molybdenum-dependent system that consists of two proteins, dinitrogenase reduc-
tase (Fe protein containing the ATP-binding sites) and dinitrogenase (MoFe protein contain-
ing the substrate binding sites) [117–119]. Both of these proteins are irreversibly inactivated 
by oxygen but with dinitrogenase reductase being the more sensitive of the two. However, 
because nitrogen fixation is a very energy demanding process, it requires oxygen for aerobic 
respiration for ATP synthesis. This creates what is known as the “O

2
 Paradox” [120] whereby 

nitrogen-fixing bacteria need to respire to generate the energy for nitrogen fixation, while 
minimizing O

2
 to enable the nitrogenase to function.

Rhizobia manage the O
2
 paradox by creating a micro-aerobic environment within a root nod-

ule (providing a barrier to O
2
 diffusion) that involves a specific O

2
-delivering leghemoglobin 

combined with a highly efficient respiratory pathway. The large energy demands for fixing 
nitrogen are generated through respiration utilizing the extremely high O

2
 affinity cyt cbb3 

terminal oxidases [88, 121]. Interestingly, G. diazotrophicus lacks the cytochrome cbb3 that 
allows respiration at very low levels of oxygen [122] in rhizobia, and does not fix nitrogen 
within nodules or have the benefit O

2
 delivery by leghemoglobin. However, in G. diazotro-

phicus a number of other factors appear to be involved in providing the necessary protection; 
sucrose, the colony structure and the extrapolysaccharide levan, detoxification of reactive 
oxygen species as well as control of oxygen through its respiratory pathway.

Firstly, sucrose: G. diazotrophicus has no sucrose transport system and in high sucrose concen-
tration environments of around 10% the sucrose has a positive effect on nitrogenase activity 
protecting nitrogenase against inhibition by oxygen [123]. Secondly, the fructo-oligosaccharide 
levan; this enables an unusual feature of G. diazotrophicus, namely its ability to fix nitrogen in col-
onies grown on both semi-solid and solid media [124–126]. This is achieved because of the levan 
mucilage in culture, is capable of limiting oxygen diffusion. It does this to the extent of enabling 
G. diazotrophicus to fix nitrogen even when the pO

2
 is not much lower than tropospheric levels [127].
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In addition, the levan also increases tolerance to reactive oxygen species (ROS) that may be 
increased under conditions of high respiration rates causing oxidative stress [40, 128, 129]. 
There is some evidence for a nitrogenase protection mechanism in fluctuating levels of oxy-

gen [126], possibly involving a putative FeSII Shethna protein, which forms a complex with 
the nitrogenase during sudden increases in oxygen pressure. This process renders the enzyme 
temporarily inactive but protected from oxygen damage, similar to the situation in the spe-

cies, Azotobacter vinelandii [130]. However, it has been suggested that other FeSII proteins, 
rather than Shethna proteins represent more appropriate candidates for this role [30, 131].

One of the remarkable features of G. diazotrophicus is its respiratory system whereby its extremely 
high respiratory rates are among the highest ever reported for aerobic bacteria [132, 133] under-

pinning G. diazotrophicus’s candidature in evolutionary terms, as a potential proto-mitochondrion 
[49]. Glucose provides the principle energy source to meet the high-energy demand associated 
with the conversion of dinitrogen by nitrogenase [134, 135] via the pyrroloquinoline quinone-
linked glucose dehydrogenase in the periplasmic membrane.

G. diazotrophicus is able to change its electron transport chain composition during nitrogen fix-

ation. In well-aerated cultures, cytochrome a1 and cytochrome bb are expressed as the main 
terminal oxidase, whereas when nitrogen fixation is repressed, cytochrome a1 diminishes 
dramatically concomitantly with the appearance of cytochrome bd [132]. Oxidase activities 
are also much higher in membrane preparations obtained from cultures under nitrogen-fixing 
conditions than in those from cultures under non-nitrogen-fixing conditions.

The combination of the sucrose environment in natural host plants (Table 1), the barrier 
formed by the extrapolysaccharide levan and the enhanced tolerance this provides to ROS, 
the very high respiration rates and the ability of G. diazotrophicus to change its electron trans-

port pathway during nitrogen fixation plus the extra energy provided by the pyrroloquinoline 
quinone-linked glucose dehydrogenase, provides all of the conditions necessary for effective 
nitrogen fixation in this bacterium.

The methodology for determining nitrogen fixation by endophytic bacteria is now well estab-

lished and every method used to determine nitrogen fixation in rhizobia root nodules has 
been used to demonstrate nitrogen fixation in crop plants by G. diazotrophicus [12]. These 
techniques include chlorophyll levels and leaf percentage nitrogen [17], nitrogenase activity 
measured through an acetylene reduction assay (ARA) [136, 137], nif gene mutant studies 
[138], labeled nitrogen 15 N2 studies [137–138], enhanced photosynthetic rates [16] and plant 

growth and yield benefits [12, 19, 139, 140].

There are two key characteristics of G. diazotrophicus with regard to its nitrogen-fixing capabil-
ity: (i) its ability to excrete almost half of the fixed nitrogen as ammonium which is potentially 
available to plants [141, 142] and (ii) its lack of a nitrate reductase protein which suggests 
that the ability of G. diazotrophicus to fix nitrogen is independent of the amount of nitrate 
in its environment [124]. With regard to the latter, laboratory studies have indicated that 
nitrogenase activity was not inhibited or repressed by nitrates [141] and was only partially 
inhibited by ammonia [23, 141, 143]—which is consistent with the possibility of having a 
feedback mechanism for ammonium—the form in which nitrogen may be excreted by the 
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bacterium [93, 141], but not nitrate for which there may be no nitrogen reductase feedback 
mechanism. Studies with different sugarcane varieties comparing ammonia versus nitrate 
sources of nitrogen have demonstrated their effects (using both ARA and bacterial counts) to 
be plant variety dependent, but with ammonia having a greater negative impact on nitrogen 
fixation than nitrate, and the reverse true of counts of colonized bacteria [144, 145]. Growth 
of G. diazotrophicus in culture was not affected by nitrate but was reduced in sugarcane plants 
treated in the field with high levels of nitrate fertilizers [68]. Figures 1 and 2 clearly demon-

strate that the G. diazotrophicus treated maize and wheat crops generated higher yields rela-

tive to the controls, irrespective of levels of nitrogen fertilizer applied.

3. Conclusions

G. diazotrophicus is an extra-ordinary nitrogen-fixing endophyte; a bacterium with impor-

tant ancestral attributes, the significance and value of which are increasingly becoming 
apparent as research to facilitate its use in climate smart agriculture is undertaken. Typical 
of a facultative intracellular symbiont, G. diazotrophicus retains genetic flexibility through 
its genome and plasmids and can respire under a wide range of oxygen concentrations 
suitable for both an intracellular plant and insect habitat. With a respiratory system that 
enables extremely high respiratory rates, as well as large groups of genes associated with 
nitrogenase structure and function and a range of mechanisms that protect the nitroge-

nase from oxygen, the bacterium combines these factors to ensure symbiotic nitrogen fixa-

tion in planta. A highly adaptive obligate endophyte, with different strains demonstrating 
a range of attributes, including both inter- and intracellular colonization capability,  
G. diazotrophicus has the potential to reduce nitrogen fertilizer use while maintaining crop 
yields.

Acknowledgements

I would like to thank Professor Ted Cocking for his insights, inspiration, tenacity and apprecia-

tion of the potential of Gluconacetobacter diazotrophicus for sustainable agriculture, to the R&D 
teams of Azotic Technologies and Koppert Biological Systems for their commitment to the 
development of our understanding of G. diazotrophicus and to our collaborators, particularly 
the University of Nottingham for their commitment and support.

Conflict of interest

The author declares a role in the development of the proprietary NFix® formulation cited 
above in this publication and its commercial utilization but no other competing or conflict of 
interests exist.

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 15



Author details

David Dent

Address all correspondence to: david@azotictechnologies.com

Azotic Technologies Ltd, BioCity Nottingham, Nottingham, UK

References

[1] Boddey RM, Urquiaga S, Reis V, Döbereiner J. Biological nitrogen fixation associated 
with sugarcane. Plant and Soil. 1991;137:111. DOI: 10.1007/BF0218744

[2] Lima E, Boddey RM, Döbereiner J. Quantification of biological nitrogen fixation associ-
ated with sugar cane using a 15N aided nitrogen balance. Soil Biology and Biochemistry. 
1987;19:165-170. DOI: 10.1264/jsme2.ME11275

[3] Urquiaga S, Cruz KHS, Boddey RM. Contribution of nitrogen fixation to sugarcane: 
Nitrogen-15 and nitrogen balance estimates. Soil Science Society of America Journal. 
1992;56:105-114. DOI: 10.2136/sssaj1992.03615995005600010017x

[4] Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, 
Dobereiner J, De Ley J. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid 
bacterium associated with sugarcane. International Journal of Systematic Bacteriology 
1989;48;361-364. DOI: 10.1099/00207713-39-3-361

[5] Cavalcante VA, Döbereiner J. A new acid-tolerant nitrogen-fixing bacterium associated 
with sugarcane. Plant and Soil. 1988;108:23-31. DOI: 10.1007/BF02370096

[6] Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the par-
tial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter 
to generic level. Bioscience, Biotechnology, and Biochemistry. 1997;61:1244-1251. DOI: 
10.1271/bbb.61.1244

[7] Simmonds J. Community matters: a history of biological nitrogen fixation and nodula-
tion research 1965-1995. Ph.D. Thesis Rensselaer Polytechnic Institute. Troy, New York: 
UMI Number 3299478; 2008

[8] Smith BE. Nitrogenase reveals its inner secrets. Science. 2002;297(5587):1654-1655. DOI: 
10.1126/science.1076659

[9] The CCC Meeting Carbon Budgets: Closing the policy gap 2017 Report to Parliament. 
Committee on Climate Change June 2017. Committee on Climate Change Copyright 
2017 https://www.theccc.org.uk/publications [Accessed: 2017-11-22]

[10] van Grinsven H, Ward MH, Benjamin N, de Kok TMCM. Does the evidence about health 
risks associated with nitrate ingestion warrant an increase of the nitrate standard for 
drinking water? Environmental Health. 2006;5:5-26. DOI: 10.1186/1476-069X-5-26

Symbiosis16



[11] Rogers C, Oldroyd GED. Synthetic biology approaches to engineering the nitrogen sym-

biosis in cereals. Journal of Experimental Botany. 2014;65(8):1939-1946. DOI: 10.1093/jxb/
eru098

[12] Dent DR, Cocking EC. Establishing symbiotic nitrogen fixation in cereals and other non-
legume crops: The greener nitrogen revolution. Agriculture & Food Security. 2017;6:7. 
DOI: 10.1186/s40066-016-0084-2

[13] Dobbelaerea S, Vanderleydena J, Okonab Y. Plant growth-promoting effects of diazo-
trophs in the rhizosphere. CRC Critical Reviews in Plant Sciences. 2003;22(2):107-149. 
DOI: 10.1080/713610853

[14] Suman A, Gaur A, Shrivastava AK, Yadav RL. Improving sugarcane growth and nutri-
ent uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regulation. 
2005;47:155-162. DOI: 10.1007/s10725-005-2847-9

[15] Bansal RK, Dahiya RS, Narula N, Jain RK. Management of Meloidogyne incognita in 
cotton using strains of the bacterium Gluconacetobacter diazotrophicus. Nematologia 
Mediterranea. 2005;33:101-105

[16] Rangel de Souza ALS, De Souza SA, De Oliveira MVV, Ferraz TM, Figueiredo 
FAMMA. Endophytic colonisation of Arabidopsis thaliana by Gluconacetobacter diazotro-

phicus and its effect on plant growth promotion, plant physiology and activation of plant 
defense. Plant and Soil 2015;399(1):257-270. DOI: 10.1007/s1110

[17] Meenakshisundaram M, Santhaguru K. Studies on association of arbuscular mycorrhi-
zal fungi with Gluconacetobacter diazotrophicus and its effect on improvement of sor-
ghum bicolor. International Journal of Current Science. 2011;1(2):23-30

[18] Luna MF, Aprea J, Crespo JM, Boiardi JL. Colonization and yield promotion of tomato 
by Gluconacetobacter diazotrophicus. Applied Soil Ecology. 2012;61:225-229. DOI: 
10.1016/j.apsoil.2011.09.002

[19] Abudureheman A. Improving sugar beet productivity by inoculation with Glucona-
cetobacter spp. [MSc Thesis]. Halifax, Nova Scotia: Saint Mary’s University; 2012

[20] Luna MF, Galar ML, Aprea J, Molinari ML, Boiardi JL. Colonization of sorghum and 
wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnology Letters. 
2010;32(8):1071-1076. DOI: 10.1007/s10529-010-0256-2

[21] Carvalho P, Narraidoo N, Gosman N, Cocking EC, Dent D. Gluconacetobacter diazotro-
phicus: delivering a more sustainable Wheat and Maize yield. Poster at the ICNF Granada 
September 2017. Available from http//www.azotictechnologies.com. [Accessed: 2017-12-21]

[22] Kersters K, Lisdiyanti P, Komagata K, Swings J. The family acetobacteraceae: The genera ace-
tobacter, acidomonas, asaia, gluconacetobacter, gluconobacter, and kozakia. In: Dworkin M, 
Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes. New York: 
Springer; 2006. pp. 163-200. DOI: 10.1007/0-387-30745-1_9

[23] Eskin N, Vessey K, Tian L. Research progress and perspectives of nitrogen fixing bac-
terium, Gluconacetobacter diazotrophicus, in monocot plants. International Journal of 
Agronomy. 2014:1-13. DOI: 10.1155/2014/208383

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 17



[24] Cocking EC, Stone PJ, Davey MR. Intracellular colonization of roots of Arabidopsis 
and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cellular & Developmental 
Biology. Plant. 2006;42(1):74-82. DOI: 10.1079/IVP2005716

[25] Brown AD. Microbial water stress. Bacteriological Reviews. 1976;40:803-846

[26] Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, 
Grant IR, Houghton JDR, Quinn JP, Timson TJ, Patil SV, Singhal RS, Antón J, Dijksterhuis J,  
Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis 
KN, McGenity TJ, Hallsworth JE. Is there a common water-activity limit for the three 
domains of life? The ISME Journal. 2015;9:1333-1351. DOI: 0.1038/ismej.2014.219

[27] Lievens B, Hallsworth JE, Belgacem ZB, Pozo MI, Stevenson A, Willems KA, Jacquemyn 
H. Microbiology of sugar-rich environments: Diversity, ecology, and system constraints. 
Environmental Microbiology. 2014; e-pub ahead of print 3 September 2014. DOI: 
10.1111/1462-2920.12570

[28] de Oliveira M, Intorne A, Vespoli L, Andrade L, Pereira L, Rangel P , de Souza Filho, GA.  
Essential role of K+ uptake permease (Kup) for resistance to sucrose-induced stress in 
Gluconacetobacter diazotrophicus PAl 5. Environmental Microbiology Reports 2017;9(2):85-90. 
DOI:10.1111/1758-2229.12503

[29] Reis V, Döbereiner J. Effect of high sugar concentration on nitrogenase activity of Aceto-
bacter diazotrophicus. Archives of Microbiology. 1998;171(1):13-18. DOI: 10.1007/s00203 

0050672

[30] Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, 
Araujo J, Oliveira A, Franca L, Magalhaes V, Alqueres S, Cardoso A, Almeida W, Loureiro 
MM, Nogueira E, Cidade D, Oliveira D, Simao T, Macedo J, Valadao A, Dreschsel M, 
Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, et al: Complete 
genome sequence of thesugarcane nitrogen-fixing endophyte Gluconacetobacter diazo-

trophicus Pal5. BMC Genomics 2009;10:450. DOI:

[31] Alvarez B, Martínez-Drets G. Metabolic characterization of Acetobacter diazotrophicus. 
Canadian Journal of Microbiology. 1995;41(10):918-924. DOI: 10.1139/m95-126

[32] Hernandez L, Arrieta J, Menendez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-
Glatron MF, Chambert R. Isolation and enzymic properties of levansucrase secreted 
by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. The 
Biochemical Journal. 1995;309(1):113-118. DOI: 10.1042/bj3090113

[33] Velázquez-Hernández ML, Baizabal-Aguirre VM, Cruz-Vázquez F, Mayra J, Contreras T, 
Fuentes-Ramírez LE, Bravo-Patiño A, Cajero-Juárez M, Chávez-Moctezuma MP, Valdez-
Alarcón JJ. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to 
NaCl, sucrose and desiccation, and in biofilm formation. Archives of Microbiology. 
2011;193(2):137-149. DOI: 10.1007/s00203-010-0651-z

[34] Epstein W. The roles and regulation of potassium in bacteria. Progress in Nucleic Acid 
Research and Molecular Biology. 2003;75:293-320. DOI: 10.1016/S0079-6603(03)75008-9

[35] Roeßler M, Müller V. Osmoadaptation in bacteria and archaea: Common principles and 
differences. Environmental Microbiology. 2001;3:743-754. DOI: 10.1046/j.1462-2920.2001. 
00252.x

Symbiosis18



[36] Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli 
M, Cherif A, Bandi C, Daffonchio D. Acetic acid bacteria, newly emerging symbionts of 
insects. Applied and Environmental Microbiology. 2010;76(21):6963-6970. DOI: 10.1128/
AEM.01336-1

[37] Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of 
the symbiotic mid-gut microbiota in European firebugs Pyrrhocoris apterus. Molecular 
Ecology. 2012;21(24):6134-6151. DOI: 10.1111/mec.12027

[38] Chouaia B, Gaiarsa S, Crotti E, Comandatore F, Esposti M, Ricci I, Alma A, Favia G, 
Bandi C, Daffonchio D. Acetic acid bacteria genomes reveal functional traits for adap-

tation to life in insect guts. Genome Biology and Evolution. 2014;6(4):912-920. DOI: 
10.1093/gbe/evu062

[39] Loisel-Meyer S, Maria Pilar M, Bagües J, Kóhler S, Liautard J-P, Jubier-Maurin V. Differential 
use of the two high-oxygen-affinity terminal oxidases of Brucella suis for in vitro and intram-

acrophagic multiplication. Infection and Immunity. 2005;73(11):7768-7771. DOI: 10.1128/ 
IAI.73.11.7768-7771.2005

[40] Alquéres S, Oliveira JH, Nogueira E, Guedes H, Oliveira P, Câmara F, Baldani I, Martins 
O. Antioxidant pathways are up-regulated during biological nitrogen fixation to pre-

vent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus. Archives of 
Microbiology. 2010;192:835-841. DOI: 10.1007/s00203-010-0609-1

[41] Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W. Molecular interac-

tion between Methylobacterium extorquens and seedlings: Growth promotion, metha-

nol consumption, and localization of the methanol emission site. Journal of Experimental 
Botany. 2006;57(15):4025-4032. DOI: 10.1093/jxb/erl173

[42] Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-
Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, Van Overbeek L, Brar 
D, Van Elsas JD, Reinhold-Hurek B. Functional characteristics of an endophyte commu-

nity colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe 
Interactions. 2012;25:28-36. DOI: 10.1094/MPMI-08-11-0204

[43] van Zyl LJ, Schubert W-D, Tuffin MI, Cowan DA. Structure and functional character-

ization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus. BMC Structural 
Biology. 2014;14:21. DOI: 10.1186/s12900-014-0021-1

[44] Mithran M, Paparelli E, Novi G, Perata P, Loreti E. Analysis of the role of the pyruvate 
decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant 
Biology. 2013;16:28-34. DOI: 10.1111/plb.12005

[45] Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. Anoxygenic photosynthesis modu-

lated Proterozoic oxygen and sustained Earth’s middle age. Proceedings of the National 
Academy of Sciences of the United States of America. 2009;106:16925-16929. DOI: 10.1073/ 
pnas.0909248106

[46] Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould B, Re-Young Yu, 
van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaero-

bic energy metabolism in eukaryotes. Microbiology and Molecular Biology Reviews 
2012;76: 444-495. DOI: 10.1128/MMBR.05024-11

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 19



[47] Sicheritz-Pontén T, Kurland CG, Andersson SG. A phylogenetic analysis of the cyto-

chrome b and cytochrome c oxidase I genes supports an origin of mitochondria from 
within the Rickettsiaceae. Biochimica et Biophysica Acta. 1988;1365:545-551. DOI: 10.1016/ 
S0005-2728(98)00099-1

[48] Emelyanov VV. Evolutionary relationship of Rickettsiae and mitochondria. FEBS Letters. 
2001;501:11-18. DOI: 10.1016/S0014-5793(01)02618-7

[49] Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PM-J, Daffonchio D, 
Bandi C. Evolution of mitochondria reconstructed from the energy metabolism of living 
bacteria. PLoS One. 2014;9(5):1-22. DOI: 10.1371/journal.pone.0096566

[50] Esposti M. Bioenergetic evolution in Proteobacteria and mitochondria. Genome Biology 
and Evolution. 2014;6(12):3238-3251. DOI: 10.1093/gbe/evu257

[51] Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M. The 
160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 2006;314:267. 
DOI: 10.1126/science.1134196

[52] Casjens S. The diverse and dynamic structure of bacterial genomes. Annual Review of 
Genetics. 1998;32:339-377. DOI: 10.1146/annurev.genet.32.1.339

[53] Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR,  
Chen WX. Comparative genomics of rhizobia nodulating soybean suggests extensive 
recruitment of lineage-specific genes in adaptations. PNAS. 2012;109(22):8629-8634. 
DOI: 10.1073/pnas.1120436109

[54] Sugawara M, Epstein B, Badgley B, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, 
Mudge J, Bharti AK, Farmer AW, May GD, Woodward JE, Médigue C, Vallenet D, Lajus 
A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ. Comparative genomics 
of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospe-

cies. Genome Biology. 2013;14(2):R17. DOI: 10.1186/gb-2013-14-2-r17

[55] Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M. The 
genetics of symbiotic nitrogen fixation: Comparative genomics of 14 rhizobia strains by 
resolution of protein clusters. Genes. 2012;3(1):138-166. DOI: 10.3390/genes3010138

[56] Toft C, Andersen GE. Evolutionary microbial genomics: Insights to bacterial host adap-

tation. Nature Reviews. Genetics. 2010;11:465-465. DOI: 10.1038/nrg2798

[57] Merhej V, Royer-Carenzi M, Pontarotti P, Raoul D. Massive comparative genomic analy-

sis reveals convergent evolution of specialized bacteria. Biology Direct. 2009;4:13. DOI: 
10.1186/1745-6150-4-13

[58] Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, 
Sessitsch A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a 
wide spectrum of endophytic lifestyles based on interaction strategies with host plants. 
Frontiers in Plant Science. 2013;4(120):1-15. DOI: 10.3389%2Ffpls.2013.00120

[59] de Almeida CV, Andreote FD, Yara R, Tanaka FAO, Azevedo JL, de Almeida M. Bacterio-
somes in axenic plants: Endophytes as stable endosymbionts. Journal of Microbiology 
and Biotechnology 2009;25:1757-1764. DOI: 10.1007/s11274-009-0073-8

Symbiosis20



[60] Thomas P, Reddy MK. Microscopic elucidation of abundant endophytic bacteria colo-

nizing the cell wall-plasma membrane perispace in the shoot-tip tissue of banana. AoB 
PLANTS. 2013;5:1-12. DOI: 10.1093/aobpla/plt011

[61] White JK, Torres, MF, Johnson H, Irizarry I, Chen Q, Zhang N, et al. Intracellular colo-

nization and oxidative lysis of bacteria in vascular plant seedling tissues. ResearchGate. 
https://www.researchgate.net/publication/247778278. 2013. [Accessed 2016-04-22]

[62] Carrel AA, Frank AC. Pinus flexilis and Picea engelmannii share a simple and consis-

tent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in 
Microbiology. 2014;5(333):1-11. DOI: 10.3389%2Ffmicb.2014.00333

[63] Thomas P, Sekhar AC. Live cell imaging reveals extensive intracellular cytoplasmic colo-

nisation of banana by normally non-cultivable endophytic bacteria. AoB Plants. 2014;6:1-
12. DOI: 10.1093/aobpla/ plu002

[64] Banu H, Prasad KP. Role of plasmids in biology. Journal of Aquaculture Research and 
Development. 2017;8(1):1-8. DOI: 104172/2155-9546.1000466

[65] Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon FC. Evidence for nitrogen 
fixation (nif) genes on indigenous rhizobium plasmids. Nature. 1979;282:533-535. DOI: 
10.1038/282533a0

[66] Caballero-Mellado J, Martínez-Romero E. Limited genetic diversity in the endo-

phytic sugarcane bacterium Acetobacter diazotrophicus. Applied and Environmental 
Microbiology. 1994;60:1532-1537

[67] Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca Ocampo IR, Caballero-Mellado 
J. Acetobacter diazotrophicus an indoleacetic acid producing bacterium isolated from 
sugarcane cultivars of Mexico. Plant and Soil. 1993;154:145-150. DOI: 10.1007/BF00012519

[68] Fuentes-Ramíırez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E. Colonization 
of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS 
Microbiology Ecology. 1999;29(2):117-128. DOI: 10.1111/j.1574-6941.1999.tb00603.x

[69] Adriano-Anayal M, Salvador-Figueroa M, Ocampo JA, García-Romera I. Plant cell-
wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbiosis. 2005; 
40:151-156

[70] Caballero-Mellado J, Fuentes-Ramírez LE, Reis VM, Martínez-Romero E. Genetic struc-

ture of Acetobacter diazotrophicus populations and identification of a new genetically dis-

tant group. Applied and Environmental Microbiology. 1995;61:3008-3013

[71] Munoz-Rojas J, Cabellaro MJ. The dynamics of Gluconacetobacter diazotrophicus in sugar-

cane cultivars and its effect on plant growth. Microbial Ecology. 2003;46(4):454-464. DOI: 
10.1007/s00248-003-0110-3

[72] Logeshwaran P, Thangaraju M, Rajasundari K. Hydroxamate siderophores of endo-

phytic bacteria Gluconacetobacter diazotrophicus isolated from sugarcane roots. Australian 
Journal of Basic and Applied Sciences. 2009;3(4):3564-3567

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 21



[73] Muñoz-Rojas J, Fuentes-Ramírez LE, Caballero-Mellado J. Antagonism among Glucona-

cetobacter diazotrophicus strains in culture media and in endophytic association. FEMS 
Microbiology Ecology. 2005;54(1):57-66. DOI: 10.1016/j.femsec.2005.02.011

[74] Lee S, Reth A, Meletzus D, Sevilla M, Kennedy C. Characterization of a major cluster 
of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. 
Journal of Bacteriology. 2000;182:7088-7091. DOI: 10.1128/JB.182.24.7088-7091.2000

[75] Spaink HP, Kondorosi A, Hooykaas PJJ, editors. The Rhizobiaceae: Molecular 
Biology of Model Plant-Associated Bacteria. Dordrecht: Springer; 2012. p. 566. ISBN 
978-94-011-5060-6

[76] Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodés R. A nitro-

gen-fixing endophyte of sugarcane stems. A new role for the apoplast. Plant Physiology. 
1994;105(4):1139-1147. DOI: 10.1104/pp.105.4.1139

[77] Koskimäki JJ, Pirttilä AM, Ihantola EL, Outi Halonen A, Frank C. The intracellular scots 
pine shoot Symbiont Methylobacterium extorquens DSM13060 aggregates around the host 
nucleus and encodes eukaryote-like proteins. MBio. 2015;6(2). DOI: 10.1128/mBio.00039-15

[78] Parniske M. Intracellular accommodation of microbes by plants: A common develop-

mental program for symbiosis and disease? Current Opinion in Plant Biology. 2000;3: 
320-328. DOI: 10.1016/S1369-5266(00)00088-1

[79] Brewin NJ. Tissue and cell invasion by rhizobium: The structure and development of infec-

tion threads and symbiosomes. In: Spaink HP, Kondorosi A, Hooykaas PJJ, editors. The 
Rhizobiaceae. Dordrecht: Springer; 1998. pp. 417-429. DOI: 10.1007/978-94-011-5060-6_22

[80] White J, Prell J, James EK, Poole P. Nutrient sharing between symbionts. Plant Physiology. 
2007;144(2):604-614. DOI: 10.1104/pp.107.097741

[81] Etxeberria E, Baroja-Fernandez E, Muñoz F, Pozueta-Romero J. Sucrose-inducible 
endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell 
Physiology. 2005;46:474-481. DOI: 10.1093/pcp/pci044

[82] Lambrecht M, Okon Y, Broek AV, Vanderleyden J. Indole-3-acetic acid: A reciprocal sig-

nalling molecule in bacteria-plant interactions. Trends in Microbiology. 2000;8(7):298-300. 
DOI: 10.1016/S0966-842X(00)01732-7

[83] Cocking EC. The challenge of establishing symbiotic nitrogen fixation in cereals. 
Chapter 3. In: Emerich DW, Krishnan HB, editors. Nitrogen Fixation in Crop Production. 
Agronomy Monograph 52. Madison, USA: American Society of Agronomy, Crop Science 
Society of America, Soil Science Society of America; 2009. pp. 35-64

[84] Hardoim PR. Bacterial endophytes of rice - their diversity, characteristics and perspec-

tives. PhD Thesis 2011. University of Groningen. p. 219

[85] Rocha F, Papini-Terzi F, Nishiyama M, Venico R, Vincetini R, Duarte R, de Rosa Jr 
VE, Vinagre F, Barsalobres C, Medeiros AH, Rodrigues FA, Ulian EC, Zingaretti SM, 
Galbiatti JA, Almeida RS, Figueira AVO, Hemerly AS, Silva-Filho MC, Menossi M, Souz 

Symbiosis22



GM. Signal transduction-related responses to phytohormones and environmental chal-
lenges in sugarcane. BMC Genomics 2007;8(71):1-22. DOI: 10.1186/1471-2164-8-71

[86] Vinagre F, Vargas C, Schwarz K, Cavalcante J, Noquiera EM, Baldani JI, Ferreira CG, 
Hemerly AS. SHR5: A novel plant receptor kinase involved in plant-N2-fixing endophytic 
bacteria association. Journal of Experimental Botany. 2006;57:559-569. DOI: 10.1093/ 
jxb/erj041

[87] Vargas C, Pádua VLM, Nogueira EM, Vinagre F, Masuda HP, Silva FR, Baldani JI, Ferreira 
PCG, Hemerly AS. Signaling pathways mediating the association between sugarcane 
and endophytic diazotrophic bacteria: A genomic approach. Symbiosis. 2003;35:159-180

[88] James WK, Olivares FL. Infection and colonization of sugar cane and other graminaceous 
plants by endophytic diazotrophs. Critical Reviews in Plant Sciences. 1998;17(1):77-119

[89] Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM. Ecological occurrence 
of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: Their 
possible role in plant growth promotion. Microbial Ecology. 2008;55(1):130-140. DOI: 
10.1007/s00248-007-9258-6

[90] Pedraza RO. Recent advances in nitrogen-fixing acetic acid bacteria. International 
Journal of Food Microbiology. 2008;125:25-35. DOI: 10.1016/j.ijfoodmicro.2007.11.079

[91] Arcanjo SS, Santos ST, Teixeira KRS, Baldani JI. Occurrence and dissemination of endo-

phytic diazotrophic bacteria in sugarcane fields. In: Pedrosa FO, Hungria M, Yates G, 
Newton WE, editors. Nitrogen Fixation: From Molecules to Crop Productivity. Current 
Plant Sciences and Biotechnology in Agriculture 38 Dordrecht, Kluwer. 2000. p. 605

[92] Baladani IJ, Baldani LV. History on the biological nitrogen fixation research in gramina-

ceous plants: Special emphasis on the Brazilian experience. Anais da Academia Brasileira 
de Ciências. 2005;77:549-579. DOI: 10.1590/S0001-37652005000300014

[93] Matiru V, Thomson J. Can Acetobacter diazotrophicus be used as a growth promoter for 
coffee, tea, and banana plants? Dakora FD, editor. In: Proceedings of the 8th Congress of 
the African Association of Biological Nitrogen Fixation. South Africa: University of Cape 
Town; 1998. pp. 129-130

[94] Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Ui Gum 
K, Park K, Son CY, Sa T, Caballero-Mellado J. Natural association of Gluconacetobacter 

diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic and 
Applied Microbiology. 2005;28(3):277-286. DOI: 10.1016/j.syapm.2005.01.006

[95] Paula MA, Reis VM, Döbereiner J. Interactions of Glomus clarum with Acetobacter diazo-

trophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and 
sweet sorghum (Sorghum vulgare). Biology and Fertility of Soils. 1991;11:111-115. DOI: 
10.1007/BF00336374

[96] Luna MF, Galar ML, Aprea J, Molinari ML, Bioardi JL. Colonisation of sorghum and 
wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnology Letters. 
2010;32:1071-1076. DOI: 10.1007/s10529-010-0256-2

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 23



[97] Rouws LFM, Meneses CHSG, Guedes HV, Vidal MS, Baldani JI, Schwab S. Monitoring 
the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium 
Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Letters in 
Applied Microbiology. 2010;51(3):325-330. DOI: 10.1111/j.1472-765X.2010.02899.x

[98] Reis VM, Olivares FL, Dobereiner J. Improved methodology for isolation of Acetobacter 

diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology 
and Biotechnology. 1994;10(4):401-405. DOI: /10.1007/BF00144460

[99] Walsh KB, Brown SM, Harrison DK. Can an N2-fixing Gluconacetobacter diazotrophicus 

association with sugarcane be achieved? Australian Journal of Agricultural Research. 
2006;57:235-241. DOI: org/10.1071/AR04156

[100] Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW. Enhanced maize produc-

tivity by inoculation with diazotrophic bacteria. Australian Journal of Plant Physiology. 
2001;28(9):829-836. DOI: 10.1071/PP01045

[101] Cocking EC, Stone PJ, Davey MR. Symbiosome-like intracellular colonization of cereals 
and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitro-

gen fertilizers. Science in China. Series C, Life Sciences. 2005;48:888-896. DOI: 10.1007/
BF03187127

[102] Trujillo-López A, Camargo-Zendejas O, Salgado-Garciglia R, Cano- Camacho H, 
Baizabal-Aguirre VM, Ochoa-Zarzosa A, López-Meza JE, Valdez-Alarcón JJ. Association 
of Gluconacetobacter diazotrophicus with roots of common bean (Phaseolus vulgaris) seed-

lings is promoted in vitro by UV light. Canadian Journal of Botany. 2006;84:321-327. 
DOI: 10.1139/b05-169

[103] Bastian F, Rapparini F, Baraldi R, Piccoli P, Bottini R. Inoculation with Acetobacter diazo-

trophicus increases glucose and fructose content in shoots of Sorghum bicolor. Symbiosis. 
1999;27:147-156

[104] Corby-Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DEL.  
Geographical distribution and diversity of bacteria associated with natural popula-

tions of Drosophila melanogaster. Applied and Environmental Microbiology. 2007;73(11): 
3470-3479. DOI: 10.1128/AEM.02120-06

[105] Cox C, Gilmore M. Native microbial colonization of Drosophila melanogaster and its 
use as a model of enterococcus faecalis pathogenesis. Infection and Immunity. 2007;75: 
1565-1576. DOI: 10.1128/IAI.01496-06

[106] Jeyaprakash A, Hoy MA, Allsopp MH. Bacterial diversity in worker adults of Apis mellifera 
capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA 
sequences. Journal of Invertebrate Pathology. 2003;84:96-103. DOI: 10.1016/j.jip.2003.08.007

[107] Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in 
honeybee intestines and their response to two insecticidal proteins. FEMS Microbiology 
Ecology. 2007;59:600-610. DOI: 10.1111/j.1574-6941.2006.00249.x

[108] Ashbolt NJ, Inkerman PA. Acetic acid bacterial biota of the pink sugar cane Mealybug, 
Saccharococcus sacchari, and its environs. Applied and Environmental Microbiology. 
1990;56(3):707-712

Symbiosis24



[109] Ortega-Rodés P, Ortega E, Kleiner D, Loiret FG, Rosa Rodés R, Caballero-Mellado J. Low 
recovery frequency of Gluconacetobacter diazotrophicus from plants and associated mealybugs 
in Cuban sugarcane fields. Symbiosis. 2011;54:131-138. DOI: 10.1007/s13199-011-0133-3

[110] Franke-Whittle IH, O'Shea MG, Leonard GJ, Sly LI. Design, development and use 
of molecular primers and probes for the detection of Gluconacetobacter species in 
the pink sugarcane mealybug. Microbial Ecology. 2005;50(1):128-139. DOI: 10.1007/
s00248-004-0138-z

[111] Loganathan P, Sunitha R, Prida AK, Nair S. Isolation and characterization of geneti-
cally two distant group of Acetobacter diazotrophicus from new host plant (Eleusine  
coracona L.). The Journal of Applied Bacteriology. 1999;86:1053-1058. DOI: 10.1046/j.1365- 
2672.1999.00804.x

[112] Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: Genera, 
vertical transmission and interaction with plants. Environmental Microbiology Reports. 
2015;7(1):40-50. DOI: 10.1111/1758-2229.12181

[113] Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K. Endophytic bacte-

ria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, 
plant evolution and breeding. GCB Bioenergy. 2016;9:57-77. DOI: 10.1111/gcbb.12364

[114] Young JPW. Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, 
Burris RH, Evans HJ, editors. Biological Nitrogen Fixation. New York, N.Y: Chapman 
& Hall; 1992. pp. 43-86

[115] Ohyama T, Momose A, Ohtake N, Sueyoshi K, Sato T, Nakanishi Y, Asis Jr CA, 
Ruamsungsri S, Ando S. Nitrogen Fixation in Sugarcane. Advances in Biology and 
Ecology of Nitrogen Fixation, Chapter 3 p 49-70. http://www.intechopen.com/books/
advances-in-biology-andecology-of-nitrogen-fixation. DOI: 10.5772/56993

[116] Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC. Structure of ADP AlF4-
-stabilized nitrogenase complex and its implications for signal transduction. Nature. 
1997;387:370-376. DOI: 10.1038/387370a0

[117] Rees DC, Howard JB. Nitrogenase: Standing at the crossroads. Current Opinion in 
Chemical Biology. 2000;4(5):559-566. DOI: 10.1016/S1367-5931(00)00132-0

[118] Fisher K, Newton WE. Nitrogenase proteins from Gluconacetobacter diazotrophicus, a 
sugarcane-colonizing bacterium. Acta Biochim Biophys. 2005;1750(2):154-165. DOI: 
10.1016/j.bbapap.2005.04.010

[119] Marchal K, Vanderleyden J. The “oxygen paradox” of dinitrogen-fixing bacteria. Biology 
and Fertility of Soils. 2000;30:363-373. DOI: 10.1007/s003740050017

[120] Preisig O, Anthamatten D, Hennecke H. Pre genes for a microaerobically induced oxi-
dase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosym-

biosis. PNAS. 1993;90(8):3309-3313. DOI: 10.1073/pnas.90.8.3309

[121] Preisig O, Zufferey R, Hennecke H. The Bradyrhizobium japonicum fixGHIS genes are 
required for the formation of the high-affinity cbb3-type cytochrome oxidase. Archives 
of Microbiology. 1996;165:297. DOI: 10.1007/s002030050330

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 25



[122] Reis VM, Döbereiner J. Effect of high sugar concentration on nitrogenase activity of 
Acetobacter diazotrophicus. Archives of Microbiology. 1998;17:13-18. DOI: /10.1007/
s002030050672

[123] Cavalcante VA, Döbereiner J. A new acid-tolerant nitrogen-fixing bacterium associated 
with sugar cane. Plant and Soil. 1998;108:23-31. DOI: /10.1007/BF02370096

[124] Dong Z, Heydrich M, Bernard K, McCully ME. Further evidence that the N2-fixing 
endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter 

diazotrophicus. Applied and Environmental Microbiology. 1995;61:1843-1846

[125] Pan B, Vessey JK. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus 

on solid media to changes in atmospheric partial O
2
 pressure. Applied and Environmental 

Microbiology. 2001;67:4694-4700. DOI: 10.1128/AEM.67.10.4694-4700.2001

[126] Dong Z, Zelmer CD, Canny MJ, McCully ME, Luit B, Pan B, Faustino RS, Pierce GN, 
Vessey JK. Evidence for protection of nitrogenase from O

2
 by colony structure in the 

aerobic diazotroph Gluconacetobacter diazotrophicus. Microbiologica. 2002;148:2293-2298. 
DOI: 10.1099/00221287-148-8-2293

[127] Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General 
properties and effects of hyperbaric oxygen. The Biochemical Journal. 1973;134:707-716. 
DOI: 10.1042/bj1340707

[128] Idogawa N, Amamoto R, Murata K, Kawai S. Phosphate enhances Levan production 
in the endophytic bacterium Gluconacetobacter diazotrophicus. Bioengineered. 2014;5(3): 
173-179. DOI: 10.4161/bioe.28792

[129] Ureta A, Nordlund S. Evidence for conformational protection of nitrogenase against 
oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein. Journal of 
Bacteriology. 2002;148:5805-5809. DOI: 0.1128/JB.184.20.5805-5809.2002

[130] Lery LMS, Coelho A, von Kruger WMA, Goncalves MSM, Santos MF, Valente RH, Santos 
EO, Rocha SLG, Perales J, Domont GB, Teixeira KRS, Bisch PM. Protein expression pro-

file of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-pro-

moting bacterium. Proteomics 2008;8:1631-1644. DOI: 10.1002/pmic.200700912

[131] Flores-Encarnación M, Contreras-Zentella M, Soto-Urzúa L, Aguilar GR, Baca BE, 
Escamilla JE. The respiratory system and diazotrophic activity of Acetobacter diazotro-

phicus PAL5. Journal of Bacteriology. 1999;181:6987-6995

[132] González B, Martínez S, Chávez JL, Lee S, Castro NA, Domínguez MA, Gómez S, 
Contreras ML, Kennedy C, Escamilla JE. The respiratory system of Gluconacetobacter 

diazotrophicus PAL5 evidence for a cyanide-sensitive cytochrome bb and cyanide-resis-

tant cytochrome Ba quinol oxidases. Biochimica et Biophysica Acta. 2006;1757:1614-
1622. DOI: 10.1016/j.bbabio.2006.06.013

[133] Hommes RWJ, van Hell B, Postma PW, Neijssel OM, Tempest DW. The functional sig-

nificance of glucose dehydrogenase in Klebsiella aerogenes. Archives of Microbiology 
1985;143:163-168. DOI:

Symbiosis26



[134] Galar ML, Boiardi JL. Evidence for a membrane-bound pyrroloquiniline quinone-
linked glucose dehydrogenase in Acetobacter diazotrophicus. Applied Microbiology and 
Biotechnology. 1995;43:713-716. DOI: 10.1007/BF00164778

[135] Eskin N. Colonization of Zea mays by the nitrogen fixing bacterium Gluconacetobacter 
diazotrophicus 2012. Electronic thesis and Dissertation Repository. 562.http://ir.lib.
uwo.ca/etd/562

[136] Momose A, Hiyama T, Nishimura K, Ishizaki N, Ishikawa S, Yamamoto M, Hung NVP, 
Ohtake N, Sueyoshi K, Ohyama T. Characteristics of nitrogen fixation and nitrogen 
release from diazotrophic endophytes isolated from sugarcane (Saccharum officinarum 

L.) stem. Bulletin Faculty Agriculture Niigata University. 2013;66(1):1-9

[137] Sevilla M, Burris RH, Gunapala N, Kennedy C. Comparison of benefit to sugarcane 
plant growth and 15N2 incorporation following inoculation of sterile plants with 
Acetobacter diazotrophicus wild-type and Nif- mutant strains. Molecular Plant-Microbe 
Interactions. 2001;14:358-366. DOI: 10.1094/MPMI.2001.14.3.358

[138] Adriano-Anayal M, Salvador-Figueroa M, Ocampo JA, García-Romera I. Hydrolytic 
enzyme activities in maize and sorghum roots inoculated with Gluconacetobacter diazo-

trophicus and Glomus intraradices. Soil Biology and Biochemistry. 2006;38:879-886. DOI: 
10.1016/j.soilbio.2005.08.004

[139] Luna MF, Aprea J, Crespo JM, Boiard JS. Colonisation and yield promotion of tomato by 
Gluconacetobacter diazotrophicus. Applied Soil Ecology. 2012;61:225-229. DOI: 10.1016/j.
apsoil.2011.09.002

[140] Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Döbereiner J. Physiology 
and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiology Letters. 
1991;77(1):67-72

[141] Cojho EH, Reis VM, Schenberg ACG, Döbereiner J. Interactions of Acetobacter diazo-

trophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiology 
Letters. 1993;106:341-346

[142] Teixerra KRS, Stephan MP, Döbereiner J. Physiological studies of Sacarobacter nitro-

captans, a new acid tolerant N2-fixing bacterium. In: International Symposium on 
Nitrogen Fixation with Non-legumes 4, Rio de Janeiro, RJ, Brazil. 1987. p. 149

[143] Medeiros FA, Polidoro JC, Reis VM. Nitrogen source effect on Gluconacetobacter diazo-

trophicus colonization of sugarcane (Saccharum spp.). Plant and Soil. 2006;279(1-2):141-
152. DOI: 10.1007/s11104-005-0551-1

[144] Vessey JK, Pan B. Living a grounded life: Growth and nitrogenase activity of Glucona-

cetobacter diazotrophicus on solid media in response to culture conditions. Symbiosis. 
2003;35(1-3):181-197

[145] Rocafull YR, Badia MJ, Garciea MO, Álvarez BD, SÁnchez JR. Isolation and charactisa-

tion of Gucoancetobacter diazotrophicus strains. Cultivos Tropicales. 2016;37(1):34-39

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 27



[146] Madhaiyan M, Saravanan VS, Bhakiya SSJD, Lee HS, Thenmozhi R, Hari K, Sa TM.  
Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of 
western Ghats, India. Microbiological Research. 2004;159:233-243. DOI: 10.1016/j.
micres.2004.04.001

[147] Azlin CO, Amir HG, Chan LK. Isolation and characterization of diazotrophic rhizobac-

teria from oil palm roots. Malaysian Journal of Microbiology. 2005;1:32-36

[148] Tapia-Hernandez A, Bustillo-Cristales MR, Jimenez-Salgado T, Caballero-Mellado J, 
Fuentes-Ramirez LE. Natural endophytic occurrence of Acetobacter diazotrophicus in 

pineapple plants. Microbail Ecology. 2000;39:49-55. DOI: 10.1007/s002489900190

[149] De Lyra MCCP, Santos DC, Mondragon-Jacobo C, da Silva CMLRB, Mergulhão ACES, 
Martínez-Romero E. Isolation and molecular characterization of endophytic bacteria 
associated with the culture of forage cactus (Opuntia spp.). Journal of Applied Biology 
& Biotechnology. 2013;1(1):11-16

[150] Döbereiner J, Reis VM. Endophytic diazotrophs in sugar cane, cereals and tuber plants. 
In: Palacios R, Mora J, Newton WE, editors. New Horizons in Nitrogen Fixation. 
Dordrecht: Springer Netherlands; 1993. pp. 671-676

[151] Ahmed HF, Badawy FH, Mahmoud SM, El-Dosouky MM. Characterization of 
Gluconacetobacter diazotrophicus isolated from sugarcane (Saccharum officinarum) culti-
vated in upper Egypt. Search Results. 2017;47(6-2):569-582

[152] Hassan E, OEl-Meihy RM. Studying the antagonistic activity of some Gluconacetobacter 
isolates and their colonizing ability of roots in vitro. Annals of Agricultural Science, 
Moshtohor. 2015;53(2):263-273

[153] Grisham MP, White PM Jr, Esh AM, El-Kholi M. Biological nitrogen fixation in Louisiana 
sugarcane. Journal of the American Society of Sugar Cane Technologists. 2011;31:165

[154] Olamaei M. Isolation, identification of Gluconacetobacter diazotrophicus and determina-

tion of its rate of biological nitrogen fixation. Iranian Journal of Agricultural Sciences. 
2006;37(5):943-949

[155] Jimenez-Salgado T, Fuentez-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza 
MA, Martinez-Romero E, Caballero-Mellado J. Coffea arabica, a new host plant for 
Acetobacter diazotrophicus and isolation of other nitrogen-fixing acetobacteria. Applied 
and Environmental Microbiology. 1997;63:3676-3683

[156] Restrepo GM, SÁnchez Ó, Marulanda SM, Galeano NF, Taborda G. Evaluation of plant-
growth promoting properties of Gluconacetobacter diazotrophicus and Gluconacetobacter 

sacchari isolated from sugarcane and tomato in west central region of Colombia. African 
Journal of Biotechnology. 2017;16(30):1619-1629. DOI: 10.5897/AJB2017.16016

[157] Faure D. The family 3-glycosidehydrolases: From house-keeping functions to host 
microbe interactions. Applied and Environmental Microbiology. 2002;68:1485-1490. DOI: 
10.1128/AEM.68.4.1485-1490

Symbiosis28



[158] Miethke M, Marahiel MA. Siderophore based iron acquisition and pathogen con-
trol. Microbiology and Molecular Biology Reviews. 2007;71:413-451. DOI: 10.1128/
MMBR.00012-07

[159] Galperin MY. A census of membrane-bound and intracellular signal transduction pro-
teins in bacteria: Bacterial, IQ, extroverts and introverts. BMC Microbiology. 2005;5:35. 
DOI: 10.1186/1471-2180-5-35

[160] Cases I, de Lorenzo V. 2005 promoters in the environment transcriptional regulation 
in its natural context. Nature Reviews. Microbiology 2005;3:105-118. DOI: 10.1038/
nrmicro1084

[161] Gourion B, Sulser S, Frunzke J, Francez-Charlot A, Stiefel P, Pessl G, Vorholt JA, Fischer 
H-M. The PhyR-sigma (EcfG) signaling cascade is involved in stress response and sym-

biotic efficiency in Bradyrhizobium japonicum. Molecular Microbiology. 2009;73:291-305. 
DOI: 10.1111/j.1365-2958.2009.06769.x

Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus 29




