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Abstract

Vertebrate mitochondrial genomes are highly conserved in structure, gene content, and 
function. Most sequenced mitochondrial genomes represent bony fishes, and that of the 
Atlantic cod (Gadus morhua) is the best characterized among the fishes. In addition to 
the well-characterized 37 canonical gene products encoded by vertebrate mitochondrial 
genomes, new classes of gene products representing peptides and noncoding RNAs have 
been discovered. The Atlantic cod encodes at least two peptides (MOTS-c and humanin 
(HN)), two long noncoding RNAs (lncCR-L and lncCR-H), and a number of small RNAs. 
Here, we review recent research in the Atlantic cod focusing on putative mitochondrial-
derived peptides, the mitochondrial transcriptome, and noncoding RNAs.

Keywords: Gadus morhua, long noncoding RNA, mitogenome, mitochondrial-derived 
peptide, mitochondrial transcriptome, mitochondrial small RNA, mtDNA

1. Introduction

The mitochondrial genome (mitogenome) is highly conserved among vertebrates [1]. All spe-

cies investigated to date contain mitogenomes encoding the same 37 canonical gene products, 

organized in a highly similar gene order in most species. Complete mitogenome sequences 

have been determined from almost 5000 vertebrate species, where about 50% is represented 

by the bony fishes [2].

The Atlantic cod (Gadus morhua) is a benthopelagic fish in the Gadidae family, belonging to 
the order of Gadiformes [3, 4]. The 16.7 kb circular mitogenome was one of the first to be 
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Figure 1. The Atlantic cod mitochondrial genome. (A) Circular map presenting gene content and organization. The 

mitochondrial genome harbors 13 protein-coding genes (light blue), 2 rRNA genes (yellow), 22 tRNA genes (red), and 

noncoding regions (gray). CR, control region; H
1
 and H

2
, H-strand promoters; LSP, L-strand promoter; O

H
 and O

L
, origins 

of heavy- and light-strand replication, respectively; HTR, heteroplasmic tandem repeat; T–P spacer, intergenic noncoding 

spacer. tRNA genes are indicated by the standard one-letter symbols for amino acids. All genes are H-strand encoded, 
except Q, A, N, C, Y, S

1
, E, P, and ND6 (L-strand encoded). mtSSU and mtLSU, mitochondrial small- and large-subunit rRNA 

genes; ND1–ND6, NADH dehydrogenase subunit 1–6; COI–COIII, cytochrome c oxidase subunit I–III; Cyt b, cytochrome b; 
ATP6 and ATP8, ATPase subunit 6 and 8. (B) Schematic view of the OxPhos complexes embedded in the inner mitochondrial 

membrane. ATP is generated by oxidative phosphorylation. The mitochondrial genome encodes 13 of the approximately 85 

subunits, belonging to complex I (blue), complex III (orange), complex IV (green), and complex V (yellow).
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completely sequenced from a fish species [5–7]. Atlantic cod possesses the same mitogenome 

organization as most vertebrate species, including that of humans and vertebrate model sys-

tems like mouse, rat, Xenopus, and zebrafish (Figure 1A).

Among the canonical gene products encoded by the Atlantic cod mitogenome, 13 represent 

hydrophobic proteins essential for oxidative phosphorylation (OxPhos), two are ribosomal 

RNAs (rRNAs) of the mitochondrial ribosome, and 22 are transfer RNAs (tRNAs) necessary 

for mitochondrial translation. The OxPhos system consists of five large protein complexes 
embedded in the inner mitochondrial membrane. However, only 13 of the approximately 85 

OxPhos proteins are encoded by the mitogenome (Figure 1B) [8].

Both strands (H- and L-strands) have coding potential (Figure 1A). Most mitochondrial genes 

are encoded by the H-strand and include the small and large subunit rRNAs (mtSSU rRNA 

and mtLSU rRNA), 14 tRNAs, and 12 protein-coding genes. The L-strand, however, encodes 

only eight tRNAs and one protein. The control region (CR), located between the genes of 

tRNAPro and tRNAPhe, is the major noncoding region in the mitogenome and constitutes 

approximately 1000 bp in Atlantic cod [7, 9]. The CR harbors the genetic control elements for 

H-strand replication origin (OriH), the transcription initiation sites for H- and L-strands, as 

well as the displacement loop (D-loop) located between OriH and the termination associated 

sequence (TAS) [7, 9, 10]. Furthermore, a 30-bp spacer located between the genes of tRNAAsp 

and tRNACys contains the origin of L-strand synthesis. OriL appears functionally conserved in 

most vertebrates [11, 12], including the Atlantic cod [5].

Hallmarks of Atlantic cod mitogenomes are the noncoding intergenic T–P spacer, and the hetero-

plasmic tandem repeat (HTR) array at the 5′ domain of CR (Figure 1A). The 74-bp Atlantic cod T–P 

spacer [5, 13], located between the tRNAThr and tRNAPro genes, represents an evolutionary pre-

served feature present in all gadiform species [10, 13]. The T–P spacer is variable in sequence and 

size among gadiforms but still harbors two conserved 17-bp sequence motifs forming potential 

hairpin structures at the RNA level [10]. The HTR array consists of a 40-bp sequence motif usually 

present in two to five copies within an individual [5, 14, 15] and thus results in size heterogene-

ity and heteroplasmy of Atlantic cod mitogenomes. Here, we review recent developments in the 

characterization of Atlantic cod mitogenomes with focus on interindividual sequence variation, 

mitochondrial transcriptome, noncoding RNAs, and putative mitochondrial-derived peptides.

2. Sequence variation among Atlantic cod mitochondrial genomes

Complete mitogenome sequences have been obtained from approximately 200 specimens 

representing major ecotypes and geographic locations of Atlantic cod. In one study, based on 
SOLiD deep sequencing, we performed pooled sequencing of 44 specimens from each of the 

migratory northeast arctic cod (NA) and the stationary Norwegian coastal cod (NC) [16]. The 

sequencing represented more than 1100 times mitogenome coverage of each ecotype and 25 

times coverage of each individual. We found a total of 365 SNP loci in the dataset, where 121 

SNPs were shared between the ecotypes. One hundred fifty-one SNPs and ninety-three SNPs 
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were specific to NA and NC cod, respectively. From the dataset we determined the mitochon-

drial substitution rate to be 14 times higher compared to that of the nuclear genome [16, 17].

More recently we analyzed 156 Atlantic cod mitogenomes at the individual level [18], including 

32 specimens previously reported by Carr and Marshall [19]. We found 1034 SNPs in total among 

the sequences, which were not evenly distributed throughout the mitogenome. The ND2 gene 

(Complex I) and the COII gene (Complex IV) were the least and most conserved, respectively, 
among the protein-coding genes. Furthermore, rRNA and tRNA genes showed a significantly 
lower density of overall SNPs per site compared to protein-coding genes. Thus, the Atlantic cod 

mitogenome follows a similar pattern of conservation as seen for other vertebrates like zebrafish 
and human [20–23] and corroborates the observation that mutation rate constrains in vertebrate 

mitogenomes appear linked to the position of genes in relation to OriH and OriH [24, 25].

The noncoding regions of the Atlantic cod mitogenome showed a mosaic pattern of sequence 
conservation. Whereas the OriL and the central domain of CR were almost invariant among 

specimens, the T–P spacer and 5′ domain of CR contain significant sequence variation [7, 10, 

13, 18]. The 74-bp T–P spacer was found to contain 16 variable sites and 26 haplotypes among 

225 specimens assessed, including a 29-bp sequence duplication in three individuals [10]. 

Similarly, the 5′ domain of CR was the most variable region within the mitochondrial genome 
(more than three times that of average substitution rate). The elevated sequence variation was 

due to hot-spot substitution sites, homopolymeric heterogeneity, and the HTR array [18].

3. Mitochondrial-derived peptides

Vertebrate mitogenomes have the potential of encoding several short peptides (mitochon-

drial-derived peptides (MPDs)) [26–28]. The best characterized peptides among the MDPs 

are MOTS-c and humanin (HN). Genes coding for MOTS-c and HN are found as small open 
reading frames within the mitochondrial small subunit (mtSSU) and large subunit (mtLSU) 

ribosomal DNA, respectively [29, 30]. Studies in mammals indicate that MDPs are circulating 

signaling molecules with a number of proposed roles. While HN is involved in cellular stress 

resistance, apoptosis, and metabolism [29, 31–34], MOTS-c apparently represents an MDP 

hormone that regulates metabolic homeostasis and insulin sensitivity [30, 35].

The Atlantic cod open reading frames encoding MOTS-c and HN were identified at the exact 
same locations as in human, within the domain 3’M and domain IV of the mtLSU rRNA and 
mtSSU rRNA, respectively (Figure 2A and B). Comparative analysis revealed MOTS-c and 

HN to be invariant among Atlantic cod specimens [18] and well conserved between Atlantic 

cod and human (Figure 2C). Here, 8 of 16 amino acid residues in MOTS-c and 13 of 21 amino 

acid residues of HN were shared. Furthermore, when comparing gadiform species represent-

ing seven diverse families, we noted 10 of 16 and 15 of 21 amino acid residues to be shared 

in MOTS-c and HN, respectively (Figure 2C). The conserved features seen between gadiform 

species and human suggest related MDP functions.
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Figure 2. Putative mitochondrial-derived peptides in Atlantic cod. (A) Secondary structure diagram of the Atlantic cod 

mtSSU rRNA domain 3’M coding for the putative MOTS-c peptide (red letters). (B) Secondary structure diagram of the 
Atlantic cod mtLSU rRNA domain IV coding for the putative HN peptide (red letters). (C) Alignment of MDP (MOTS-c 
and HN) sequences from seven gadiform species representing different families (gm, Gadus morhua, Gadidae, HG514359; 
Ll, Lota lota, Lotidae, AP004412; mm, Merluccius merluccius, Merlucciidae, FR751402; Ec, Enchelyopus cimbrius, Phycidae, 

AJ315624 and FJ215015; tm, Trachyrincus murragi, Macrouridae, AP008990; Bn, Bregmaceros nectabanus, Bregmacerotidae, 

AP004409; Pj, Physiculus japonicus, Moridae, AP004409) and human (Hs, Homo sapiens, NC_012920). Stars above and 

below the alignment represent conserved residues among gadiforms and between gadiforms and human, respectively.
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4. Mitochondrial transcriptome

Vertebrate mitochondrial transcriptomes have mainly been studied in human cells and tis-

sues [36, 37]. Mature mitochondrial RNAs are generated from three polycistronic transcripts 

initiated within CR from two H-strand promoters (HSP
1
 and HSP

2
) and a single L-strand 

promoter (LSP) (Figure 3A) [36, 38–40]. The HSP
1
-specific transcript is highly abundant and 

generates mtSSU rRNA, mtLSU rRNA, as well as tRNAVal and tRNAPhe [41, 42]. HSP
1
-specific 

tRNAs have recently been proposed to perform a second role as a mitochondrial rRNA, sub-

stituting the lacking 5S rRNA in vertebrate mitochondrial ribosomes [43, 44]. While tRNAVal 

appears associated with the mitochondrial ribosomes in human and rat, tRNAPhe has been 

identified in porcine and bovine [45].

Ten H-strand-specific mRNAs are posttranscriptionally processed from the HSP
2
 transcript, 

together with 13 tRNAs and the two rRNAs (Figure 3A) [46]. Most HSP
2
 mRNAs are monocis-

tronic, but two of the mRNAs are bicistronic (ND4/4 L mRNA and ATPase8/6 mRNA). Finally, 

the L-strand-specific transcript gives rise to the ND6 mRNA and eight tRNAs (Figure 3A).

4.1. Atlantic cod mitochondrial mRNAs

Similar to that of human cells, 11 mature mRNAs were readily expressed from the Atlantic 

cod mitogenome [47]. There are, however, some minor differences in mitochondrial mRNA 
maturation and modification between human and Atlantic cod. Mapping of the 5′ ends in 
mitochondrial mRNAs by pyrosequencing revealed that 10 of the 11 mRNAs contain no, 

or very short (1–2 nt), 5′ untranslated regions (UTRs) [47]. The only exception is the 5’ UTR 

of the COII mRNA, which contained a short hairpin structure. In Atlantic cod and all other 
Gadidae species, this hairpin structure is capped by a GAAA tetra-loop (Figure 3B) [47]. 

GAAA tetra-loops are known to frequently participate in long-range RNA:RNA tertiary 
interactions [48].

Most Atlantic cod mRNAs lack 3’ UTRs, but the COI mRNA has a 3’ UTR of 76 nt corre-

sponding to the complete mirror sequence of tRNASer(UCN) (Figure 3B) [47]. A very similar 3’ 

UTR (72 nt) has been reported in the human COI mRNA [49], indicating a conserved role 

in vertebrates. The 3’ UTR of the ND5 mRNA is highly variable in length in vertebrates but 

is lacking completely in Atlantic cod [40, 47]. However, the closely related Gadidae species 
Pollachius virens (Saithe) contains an ND5 mRNA 3’ UTR of 16 nucleotides [47]. In humans, 
mitochondrial mRNAs contain short polyA tails of 40–50 adenosines at their 3′ ends [40, 

45]. PolyA tails were identified in all mRNAs, except for ND6 mRNA [40], and seven UAA 

termination codons were created in the human mitochondria by polyA posttranscriptional 
editing [50]. Similarly, all mitochondrial mRNAs (except the ND6 mRNA) were found to be 

polyadenylated in Atlantic cod, and six UAA termination codons were generated by polyA 

addition [47].

4.2. Atlantic cod mitochondrial structural RNAs

The 22 mitochondrial tRNAs were found to be highly conserved in Atlantic cod, both in struc-

ture and sequence [5, 18], and some tRNAs (tRNAIle, tRNASer(UCN), tRNASer(AGY), and tRNACys) 
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were invariant in the 200 specimens investigated. SOLiD deep sequencing confirmed a non-
template CCA addition at the 3′ ends of tRNAs (our unpublished results). Thus, mitochondrial 
tRNA processing and probably modification are highly similar in human and Atlantic cod [47].

Figure 3. The mitochondrial transcriptome in Atlantic cod. (A) Schematic map of mitochondrial ribosomal RNA, 

messenger RNA, and long noncoding RNA generated from HSP
1
, HSP

2
, and LSP transcripts. mtSSU rRNA and mtLSU 

rRNA, mitochondrial small- and large-subunit ribosomal RNA (yellow boxes); ND1, ND2, ND3, ND4L/ND4, ND5, 

and ND6, NADH dehydrogenase subunit mRNAs; COI, COII, and COIII, cytochrome c oxidase subunit mRNAs; A8/
A6, ATPase subunit bicistronic mRNA; Cyt B, cytochrome b mRNA (all mRNAs indicated by blue boxes); lncCR-H and 

lncCR-L, long noncoding RNAs (orange boxes). (B) 3′ untranslated region (UTR) and 5’ UTR in COI and COII mRNAs, 
respectively. Translation initiation codons (GUG and AUG) and termination codons (UAA) are indicated by green and 
red circles, respectively. The 3’ UTR of COI mRNA contains a mirror tRNASer motif, and the 5’ UTR of COII mRNA 
contains a GAAA tetra-loop hairpin motif.
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The annotated mtSSU rRNA and mtLSU rRNA genes in Atlantic cod are 952 and 1664 bp, respec-

tively [7]. The corresponding rRNAs are highly conserved within the species [18] and well con-

served between different fish species [7, 51]. The 5′ and 3′ ends of Atlantic cod mitochondrial 
rRNAs have been precisely mapped using different approaches. Primer extension and pyrose-

quencing confirmed the 5′ ends to correspond to the annotated features based on comparative 
sequence alignments [47, 51]. The 3′ ends were mapped by pyrosequencing and by RNA ligation 
sequencing [51]. Interestingly, non-template adenosines were added at both rRNAs. Whereas the 
3′ end of mtSSU rRNA was found to be homogenous and mono-adenylated, the corresponding 
end of mtLSU rRNA was heterogeneous and oligo-adenylated [51]. The observed mtLSU rRNA 

heterogeneity is consistent with the notion that mitochondrial rRNAs are transcribed and pro-

cessed from two different precursor RNAs, the HSP
1
 and HSP

2
 primary transcripts (Figure 3A).

5. Mitochondrial noncoding RNAs

In addition to the canonical mitochondrial genes and the newly proposed MDPs, vertebrate 
mitogenomes encode several noncoding RNAs [36]. The first discovered mitochondrial long 
noncoding RNA (lncRNA) was the human L-strand-specific 7S RNA (lncCR-L) [52, 53].

At least eight vertebrate mitochondrial lncRNAs have now been proposed and characterized 

[54]. Two lncRNAs correspond to the H-strand and L-strand of CR (lncCR-H and lncCR-L)  

[10, 18, 47, 52, 55, 56], one is an antisense chimer to partial regions of the CytB and COI 
mRNAs (LIPCAR) [57–59], three are mRNA antisense RNAs (lncND5, lncND6, and lncCytB) 

[60], and two are chimeric RNAs that involve sense and antisense mtLSUrRNAs (SncmtRNA 

and ASncmtRNA) [61–63]. So far, LIPCAR, rRNA chimers, and lncCR-H have been associated 
with human diseases [56, 57, 61, 63–66]. There are apparently a large number of small non-

coding RNAs (mitosRNAs) generated from vertebrate mitochondrial transcripts [36, 67–69]. 

None of these mitosRNAs have been assigned to a specific function funded on experimental 
evidence. However, in a recent study by Riggs and Podrabsky [70], mitosRNAs were associ-

ated to a hypoxia stress response in killifish embryos.

5.1. Atlantic cod mitochondrial long noncoding RNAs

Two lncRNAs (lncCR-H and lncCR-L) have been identified and investigated in Atlantic cod mito-

chondria (Figure 4) [10, 18, 47]. Both lncRNAs were found to be polyadenylated but transcribed 

from opposite strands within the CR [10]. We showed that the Atlantic cod lncCR-L has a muta-

tion rate and an expression level corresponding to that of Complex I mRNAs [10, 18, 47]. The 

lncCR-L apparently corresponds to the 7S RNA in human mitochondria [52], and recently we 

showed that lncCR-L is differentially expressed in a human cancer-matched cell line pair [56].

The lncCR-H was found to be highly variable in sequence and structure, both between and 

within Atlantic cod specimens [10, 18]. A schematic overview of the lncCR-H RNA is pre-

sented in Figure 4. Here, the noncoding T–P spacer is present at the 5′ end and includes  
two potential RNA hairpin structures. The T–P spacer domain is followed by a mirror 

tRNAPro, before entering the HTR array motifs. The HTR copy numbers vary between 2 (80 bp)  
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and more than 8 (>320 bp) [5, 14, 15, 18], rendering lncCR-H highly variable in size. 

Finally, lncCR-H terminates in a short polyA tail at TAS. Thus, lncCR-H has apparently 

no fixed length in Atlantic cod mitochondria and varies in size between approximately 300 
and 500 nt. Interestingly, the TAS motif consists of a perfect palindromic sequence motif 
(TTTATACATATGTATAAA). We found lncCR-L to terminate with a polyA tail at the same 
site as lncCR-H but on the opposite strand [10].

5.2. Atlantic cod mitochondrial small RNAs

The Atlantic cod mitogenomes express a number of small RNAs, revealed by SOLiD small 

RNA sequencing experiments (our unpublished results). Here, the majority of mitosRNA was 

identified as mitochondrial tRNA-derived fragments (tRFs; see [69, 70]). Interestingly, most 
Atlantic cod mitochondrial tRFs correspond to H-strand tRNAs, and some tRFs were differ-

entially expressed during early developmental stages (our unpublished results). Many of the 

same tRF species detected in Atlantic cod have recently been noted in rainbow trout egg cells 

[69] and in killifish embryos [70], suggesting a conserved feature at least among some bony 

fishes.

The SOLiD experiments also detected several abundant small RNAs mapping to the 

mitochondrial CR [17]. We found three small RNA candidates generated from lncCR-L,  

suggesting this lncRNA to be a precursor for mitosRNA (Figure 4). Similarly, two mitosRNA 

were generated from lncCR-H, one corresponded to a pyrimidine-rich motif and the other to 

tRF-1 derived from tRNAThr (Figure 4). What functions these small RNAs may serve in the  

Figure 4. Schematic view of CR and corresponding noncoding RNAs in Atlantic cod. tRNA genes (tRNAThr, tRNAPro, 

tRNAPhe), T–P spacer, HTR (heteroplasmic tandem repeat array), TAS (termination associated sequence), and CSB2 

(conserved sequence box 2) are indicated. The H-strand-specific lncCR-H is located at the 5′ domain of CR and is the 
precursor of two enriched small RNAs (above CR map). The L-strand-specific lncCR-L is located at the central domain 
of CR and is the precursor of three enriched small RNAs (below CR map).
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mitochondria are not currently known, but we speculate that regulatory roles related to tran-

scription elongation, mtDNA replication, or ribosome functions are likely.

6. Concluding remarks

The mitochondrial gene content and organization are highly conserved between Atlantic 

cod and human and strongly support a common functional platform. Similarly, the mito-

chondrial transcripts generating canonical mRNAs and structural RNAs are surprisingly 

similar. What about the newly proposed MDPs and noncoding RNAs? Are there any lin-

age-specific differences? Research is still in its infancy, but recent findings suggest conser-

vations between fish and mammals. More experimental studies in Atlantic cod and model 
systems like zebrafish are highly encouraged, including investigations of the fascinating 
mitochondrial swinger RNAs [24, 71, 72]. Mitochondrial-derived noncoding RNAs need to 

be profiled and further investigated in adult tissue types during normal and stress condi-
tions, as well as at various developmental stages. A first step could be to study the intra-

cellular location by in situ RNA hybridization and then ask if the noncoding RNAs are 

confined to the mitochondrial compartment or exported to the cytoplasm or other cellular 
compartments. Our studies in Atlantic cod indicate that at least two of the mitochondrial 

lncRNAs may serve as precursors for small RNAs. We conclude that vertebrate mitoge-

nomes encode a significant number of gene products in addition to the 37 canonical OxPhos 
proteins, rRNAs, and tRNAs.
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