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1. Introduction

We have proposed a new information-theoretic approach to competitive learning [1], [2], [3],
[4], [5]. The information-theoretic method is a very flexible type of competitive learning,
compared with conventional competitive learning. However, some problems have been
pointed out concerning the information-theoretic method, for example, slow convergence. In
this paper, we propose a new computational method to accelerate a process of information
maximization. In addition, an information loss is introduced to detect the salient features of
input patterns.

Competitive learning is one of the most important techniques in neural networks with many
problems such as the dead neuron problem [6], [7]. Thus, many methods have been
proposed to solve those problems, for example, conscience learning [8], frequency-sensitive
learning [9], rival penalized competitive learning [10], lotto-type competitive learning [11]
and entropy maximization [12]. We have so far developed information-theoretic competitive
learning to solve those fundamental problems of competitive learning. In the information-
theoretic learning, no dead neurons can be produced, because entropy of competitive units
must be maximized. In addition, experimental results have shown that final connection
weights are relatively independent of initial conditions.

However, one of the major problems is that it is sometimes slow in increasing information.
As a problem becomes more complex, heavier computation is needed. Without solving this
problem, it is impossible for the information-theoretic method to be applied to practical
problems. To overcome this problem, we propose a new type of computational method to
accelerate a process of information maximization. In this method, information is supposed
to be maximized or sufficiently high at the beginning of learning. This supposed maximum
information forces networks to converge to stable points very rapidly. This supposed
maximum information is obtained by using the ordinary winner-take-all algorithm. Thus,
this method is one in which the winter-takeall is combined with a process of information
maximization.

We also present a new approach to detect the importance of a given variable, that is,
information loss. Information loss is difference between information with all variables and
information without a variable, and is used to represent the importance of a given variable.
Forced information with information loss can be used to extract main features of input
patterns. Connection weights can be interpreted as the main characteristics of classified
groups. On the other hand, information loss is used to extract the features on which input
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126 Machine Learning

patterns or groups are classified. Thus, forced information and information loss has a
possibility to show clearly main features of input patterns.

In Section 2, we present how to compute forced information as well as how to compute
information loss. In Section 3 and 4, we present experimental results on a simple symmetric
and Senate problem to show that one epoch is enough to reach stable points. In Section 5, we
present experimental results on a student survey. In this section, we try to show that
learning is accelerated more than sixty times faster, and explicit representations can be
obtained.

2. Information maximization

We consider information content stored in competitive unit activation patterns. For this
purpose, let us define information to be stored in a neural system. Information stored in a
system is represented by decrease in uncertainty [13]. Uncertainty decrease, that is,
information I, is defined by

I = =) pi)logp(d)+Y_ > p(s)p(i| s)logp(j|s), )
.

Ws Wy

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the probability of
the sth input pattern and the conditional probability of the jth unit, given the sth input
pattern, respectively. When the conditional probability p(j|s) is independent of the
occurrence of the sth input pattern, that is, p(j | s) = p(j), mutual information becomes zero.

L input units

Fig. 1. A single-layered network architecture for information maximization.

Let us present update rules to maximize information content. As shown in Figure 2, a
network is composed of input units #j, and competitive units vj. We used as the output
function the inverse of the square of the Euclidean distance between connection weights and
outputs for facilitating the derivation. Thus, distance is defined by

4§ =Y (xf —wir)*. @)
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An output from the jth competitive unit can be computed by

vi = e )

where L is the number of input units, and wj denote connections from the kth input unit to
the jth competitive unit. The output is increased as connection weights are closer to input
patterns.
The conditional probability p(j | s) is computed by
v
: J
piils)==r——> 4)

a8
Zm:l U

where M denotes the number of competitive units. Since input patterns are supposed to be
uniformly given to networks, the probability of the jth competitive unit is computed by

S
, N -
Pi) = 3 ;pu | 5). 5)
Information I is computed by
M 1 S M
I = = p(i)logp(i) + 35D > plils)logn(i|s)- ©)

j=1 s=1 j=1

Differentiating information with respect to input-competitive connections wj, we have

s M
Awj, = —ﬁz (lag p(7) — Z p(m | s)log p(m)) Q7

s=1 m=1

s M @)
—i—_ﬁz (10;-1,‘ p(j|s)— Z p(m | s)logp(m | f-:)) Q3
a=1 m=1
where f is the learning parameter, and
& 1 . 8 8
Qjx = =p(i | 8)vj () — wyk)- (8)

S

3. Maximum information-forced learning

One of the major shortcomings of information-theoretic competitive learning is that it is
sometimes very slow in increasing information content to a sufficiently large level. We here
present how to accelerate learning by supposing that information is already maximized
before learning. Thus, we have a conditional probability p(j|s) such that the probability is
set to e for a winner, and 1 — € for all the other units. We here suppose that e ranges between

zero and unity. For example, supposing that information is almost maximized with two
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competitive units, and this means that a conditional probability is close to unity, and all the
other probabilities are close to zero. Thus, we should take the parameter € as a value close to

unity, say, 0.9. In this case, all the other cases are set to 0.1. Weights are updated so as to
maximize usual information content. The conditional probability p(j | s) is computed by

y3
() i

p(i | ) = 5 ©)

Z m=1 U,

where M denotes the number of competitive units.

) € for a winner
pUls) =9 | . (10)
M—1

otherwise

At this place, we suppose that information is already close to a maximum value. This means
that if the jth unit is a winner, the probability of the jth unit should be as large as possible,
and close to unity, while all the other units’ firing rates should be as small as possible.

Deleted unit

(¢) No information loss

L input units
(a) Initial state

(b) Final state

(d) Large information loss

Fig. 2. A single-layered network architecture for information maximization.
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Forced Information for Information-Theoretic Competitive Learning 129

This forced information is a method to include the winner-take-all algorithm inside
information maximization. As already mentioned, the winner-take-all is a realization of
forced information maximization, because information is supposed to be maximized.

4. Information loss

We now define information when a neuron is damaged by some reasons. In this case,
distance without the mth unit is defined by

= Y (@5 — wi)?, (11)
fesm

where summation is over all input units except the mth unit. The output without the mth
unit is defined by

?"‘jm - d» ' (12)

jre

The normalized output is computed by

’8
P | s) = ——. (13)

5

1=1 Yim

Now, let us define mutual information without the mth input unit by

M S M
=D ") logp™ () + Y ) p(s)p™ (i | 5)logp™ (j | 5). (14)

i=1 s=1 j=1

where p,, and p.u(j | s) denote a probability and a conditional probability, given the sth input
pattern. Information loss is defined by difference between original mutual information with
full units and connections and mutual information without a unit. Thus, we have
information loss

ILm =1- Im_. (15)

For each competitive unit, we compute conditional mutual information for each competitive
unit.
For this, we transform mutual information as follows.

I—ZZP (s)p(j | s)log ;(J;)- (16)

s=1 j=1

Conditional mutual information for each competitive unit is defined by

I—Zp p(j | s)lo E,’(—"?)) (17)

s=1
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Thus, conditional information loss is defined by

Iij. — Ij - Ijm. (18)
We have the following relation:
M
Ly = Z ILjm (19)
i=1

5. Experiment No.1: symmetric data

In this experiment, we try to show that symmetric data can easily be classified by forced
information. Figure 3 shows a network architecture where six input patterns are given into
input units. These input patterns can naturally be classified into two classes. Figure 4 shows

000111 O
N
000011 raxm\“‘\
(O > Two
L e T
000001 T X compelitive
six input patters . ,{72t’%“: units
Iy = e S
100000 O~ 7/~
///-:‘"??J://
A
110000 07 /
/i

111000 O

Fig. 3. A network architecture for the artificial data.
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Table 1: U.S. congressmen by their voting attitude on 19 environmental bills. The first 8
congressmen are Republicans, while the latter 7 (from 9 to 15) congressmen are Democrats.
In the table, 1, 0 and 0.5 represent yes, no and undecided, respectively.
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information, forced information, probabilities and information losses for the symmetric
data. When the constant ¢ is set to 0.8, information reaches a stable point with eight epochs.

When the constant is increased to 0.95, just one epoch is enough to reach that point.
However, when information is further increased to 0.99, information reaches easily a stable
point, but obtained probabilities show rather ambiguous patterns. Compared with forced
information, information-theoretic learning needs more than 20 epochs and as many as 30
epochs are needed by competitive learning. We could obtain almost same probabilities

p(j|s) except e = 0.99. For the information loss, the first and the sixth input patterns show

large information loss, that is, important. This represents quite well symmetric input
patterns.

6. Experiment No.2: senate problem

Table 1 shows the data of U.S. congressmen by their voting attitude on 19 environmental
bills ??. The first 8 congressmen are Republicans, while the latter 7 (from 9 to 15)
congressmen are Democrats. In the table, 1, 0 and 0.5 represent yes, no and undecided.
Figure 5 shows information, forced information and information loss for the senate problem.

When the constant ¢ is set to 0.8, information reaches a stable point with eight epochs. When

the constant is increased to 0.95, just one epoch is enough to reach that point. However,
when information is further increased to 0.99, obtained probabilities show rather ambiguous
patterns. Compared with forced information, information-theoretic learning needs more
than 25 epochs and as many as 15 epochs are needed by competitive learning. In addition, in
almost all cases, the information loss shows the same pattern. The tenth, eleventh and
twelfth input unit take large losses, meaning that these units play very important roles in
learning. By examining Table 1, we can see that these units surely divide input patterns into
two classes. Thus, the information captures the features in input patterns quite well.

7. Experiment 3: student survey

7.1 Two groups analysis

In the third experiment, we report an experimental result on a student survey. We did
student survey about what subjects they are interested in. The number of students was 580,
and the number of variables (questionnaires) was 58. Figure 6 shows a network architecture
with two competitive units. The number of input units is 58 units, corresponding to 58 items
such as computer, internet and so on. The students must respond to these items with four
scales.

In the previous information-theoretic model, when the number of competitive units is large,
it is sometimes impossible to attain the appropriate level of information. Figure 7 shows
information as a function of the number of epochs. By using simple information
maximization, we need as many as 500 epochs to be stabilized. On the other hand, by forced
information, we need just eight epochs to finish learning. Almost same representations
could be obtained. Thus, we can say that forced information maximization can accelerate
learning almost seven times faster than the ordinary information maximization.

Figure 8 shows connection weights for two groups analysis. The first group represents a
group with a higher interest in the items. The numbers of students in these groups are 256
and 324.
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This means that the method can classify 580 students by the magnitude of connection
weights. Because connection weights try to imitate input patterns directly, we can see that
two competitive units show students with high interest and low interest in the items in the
questionnaire.

Table 2 represents the ranking of items for a group with a high interest in the items. As can
be seen in the table, students respond highly to internet and computer, because we did this
survey for the classes of information technology. Except these items, the majority is related
to the so-called entertainment such as music, travel, movie. In addition, these students have
some interest in human relations as well as qualification. On the other hand, these students
have little interest in traditional and academic sciences such as physics and mathematics.
Table 3 represents the ranking of items for a group with a low interest in the items. Except
the difference of the strength, this group is similar to the first group. That is, students in this
gropup respond highly to internet and computer, and they have keen interest in entertainment.
On the other hand, these students have little interest in traditional and academic sciences
such as physics and mathematics. Table 4 shows the information loss for the two groups. As
can be seen in the table, two groups are separated by items such as multimedia, business.
Especially, many terms concerning business appear in the table. This means that two groups
are separated mainly based upon business. The most important thing to differentiate two
groups is whether students have some interest in buisiness or multimedia. Let us see what the
information loss represents in actual cases. Figure 9 shows the information loss (a) and
difference between two connection weights (b). As can be seen in the figure, two figures are
quite similar to each other. Only difference is the magnitude of two measures. Table 5 shows
the ranking of items by difference between two connection weights. As can be seen in the
table, the items in the list is quite similar to those in information loss. This means that the
information loss in this case is based upon difference between two connection weights.

No. No.(Figure) Strength Item

1 4 3.639 Internet

2 25 3.630  Music

3 11 3.393  Computer

4 57 3.389  Travel

5 23 3.381  Movie

6 24 3.314  Visual media

7 12 3.269  Sport

8 56 3.236  Comic

9 45 3.229  Human relations
10 37 3.217  Qualification
49 14 2.347  Trading
50 46 2.327  Mathematics
5l 35 2.299  Archeology
52 51 2.193  Statistics
53 52 2.083  Physics
54 26 2.078  Chemistry
55 49 2.015 Earth science
56 42 2.009  Craftwork
57 48 1.966  Shipping
58 50 1.918 Railroad

Table 2. Ranking of items for a group of students who responded to items with a low level
of interest.
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No. No.(Figure) Strength Item
1 4 2.959 Internet
2 25 2.874  Music
3 12 2.717  Sport
4 23 2.687 Movie
5 56 2.599  Comic
6 11 2.580 Computer
7 10 2.519  Game
8 57 2.486  Travel
9 8 2.423  Entertainment
10 22 2.422  Eating and drinking
49 18 1.561  Marketing
50 26 1.552  Chemistry
51 29 1.549 Management sciences
52 21 1.539  Exchange
53 51 1.468  Statistics
54 42 1.440  Craftwork
55 H2 1.421  Physics
56 49 1.421  Earth science
57 48 1.331  Shipping
58 50 1.321  Railroad

Table 3. Ranking of items for a group of students who responded to items with a low level

of interest.

No. No.(Figure) Strength Item
1 20 1.125  Multimedia
2 15 0.649  Buisiness
3 9 0.594  Creator
4 24 0.524  Visual Media
5 18 0.516  Marketing
6 40 0.501  Photograph
T 29 0.464 Business management
8 34 0.444  Publicity
9 30 0.420 Economics
10 5 0.410 Internet business
49 8 -0.581  Entertainment
50 46 -0.687 Mathematics
51 48 -0.690  Shipping
52 42 -0.695  Craftwork
53 35 -0.698  Archeology
54 2 -0.714  Animation
55 50 -0.732  Railroad
56 12 -0.802  Sport
57 10 -0.818 Game
58 26 -0.880  Chemistry

Table 4. Ranking of information loss for two groups analysis (x10-3).
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No. No.(Figure) Strength Item

1 20 1.100 Multimedia
2 9 1.065  Creator
3 13 1.040  Marketing
4 31 1.020  Arts
D 29 1.014  Business management
6 43 1.014  Information sciences
7 15 1.001  DBusiness
8 D 0.991 Internet business
9 30 0.977  Economics
10 40 0.971  Photograph
49 48 0.636  Shipping
50 46 0.634 Mathematics
51 35 0.618  Archeology
52 2 0.598  Animation
53 50 0.597  Railroad
54 49 0.595 Earth science
55 10 0.575 Game
56 42 0.569  Craftwork
a7 12 0.552  Sport
n8 26 0.526  Chemistry

Table 5. Difference between two groups of students.

7.2 Three groups analysis

We increase the number of competitive units from two to three units as shown in Figure 10.
Figure 11 shows connection weights for three groups. The third group detected at this time
shows the lowest values of connection weights. The numbers of the first, the second and the
third groups are 216, 341 and 23. Thus, the third group represents only a fraction of the data.
Table 6 shows connection weights for students with strong interest in the items. Similar to a
case with two groups, we can see that students have much interest in entertainment. Table 7
shows connection weights with moderate interest in the items. In the list, qualification and
human relations disappear, and all the items expcet computer and internet are related to
entertainment. Table 8 shows connection weights for the third group with low interest in the
items. Though the scores are much lower than the other groups, this group also shows keen
interest in entertainment. Table 9 shows conditional information losses for the first
competitive unit. Table 10 shows information losses for the second competitive unit. Both
tables show the same patterns of items in which business-related terms such as economics,
stock show high values of information losses. Table 11shows a table of items for the third
competitive units. Though the strength of information losses is small, more practical items
such as cooking are detected.

7.3 Results by the principal component analysis

Figure 12 shows the contribution rates of principal components. As can be seen in the figure,
the first principal component play a very important role in this case. Thus, we interpret the
first principal component. Table 12 shows the ranking of items for the first principal
component.
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Fig. 11. Connection weights for three group analysis.
No. No.(Figure) Strength Item
1 25 3.694  Music
2 4 3.663  Internet
3 11 3.481 Computer
4 57 3.478 Travel
5 23 3.390  Movie
6 24 3.379  Visual media
7 12 3.352  Sport
8 56 3.334  Comic
9 45 3.311 Human relations
10 37 3.309  Qualification
49 17 2.520  Volentier
50 46 2.427  Mathematics
51 35 2.391  Archeology
52 51 2.335  Statistics
53 52 2.261 Physics
54 26 2.216  Chemistry
55 49 2.122  Earth science
56 48 2.059  Shipping
57 42 2.037  Craftwork
58 50 2.019 Railroad

Table 6. Connection weights for students with strong interest in those items.
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No. No.(Figure) Strength Item
1 4 3.224  Internet
2 25 3.200  Music
3 23 3.012  Movie
4 12 2.956  Sport
5 57 2.856  Travel
6 11 2.843 Computer
7 56 2.834 Comic
8 58 2.727  Cooking
9 22 2.713 Eating and drinking
10 8 2.710  Entertainment
49 30 1.789  Economics
50 21 1.781  Exchange
5l 29 1.717  Business management
52 26 1.687  Chemistry
53 51 1.674  Statistics
54 42 1.661  Craftwork
Hh 49 1.607  Earth science
56 52 1.566  Physics
57 48 1.533  Shipping
58 50 1.501  Railroad

Table 7. Connection weights for students with moderate interest in those items.

No. No.(Figure) Strength Item
1 4 2.071  Internet
2 11 1.760  Computer
3 10 1.705  Game
4 2 1.648  Animation
5 56 1.377  Comic
6 23 1.314  Movie
7 12 1.286  Sport
8 5 1.267  Internet
9 22 1.250 Eating and drinking
10 8 1.219  Entertainment
49 14 0.770  Trading
50 41 0.769  Sociology
51 57 0.762 Travel
52 53 0.762 Literature
53 55 0.762 Law
54 49 0.754 Earth science
55 35 0.743  Archeology
56 33 0.741  Language
57 38 0.741  Bicycle
58 34 0.718  Publicity

Table 8. Connection weights for students with low interest in those items.
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No. No.(Figure) Strength Item
1 29 0.559 Business management
2 30 0.541 Economics
3 15 0.538 Business
4 20 0.510  Multimedia
5 27 0.445 Stock
i 18 0.400 Marketing
7 21 0.377  Exchange
8 9 0.334  Creator
9 43 0.320 Information sciences
10 47 0.314  Politics
49 56 -0.333  Comic
50 35 -0.353  Archeology
51 26 -0.355  Chemistry
52 4 -0.362  Internet business
53 42 -0.397  Craftwork
54 2 -0.422  Animation
515] 8 -0.428  Entertainment
56 10 -0.429  Game
57 12 -0.435  Sport
58 23 -0.446  Movie
Table 9. Information loss No.1(x10-3).
No. No.(Figure) Strength Item
1 30 0.335  Economics
2 15 0.317 Business
3 20 0.271  Multimedia
4 29 0.270  Business management
5 27 0.266  Stock
§ 21 0.228  Exchange
7 18 0.227  Marketing
8 47 0.213 Politics
9 43 0.186 Information sciences
10 9 0.162 Creator
49 48 -0.226  Shipping
50 23 -0.229  Movie
51 50 -0.241  Railroad
52 26 -0.258  Chemistry
53 12 -0.271  Sport
54 42 -0.272  Craftwork
5h 8 -0.289  Entertainment
56 10 -0.329  Game
57 2 -0.336  Animation
58 4 -0.392  Internet

Table 10. Information loss No.2(x10-3).
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No. No.(Figure) Strength Item
1 a7 0.384  Travel
2 45 0.258 Human relations
3 34 0.249  Publicity
4 58 0.235  Cooking
3] 33 0.211 Language
6 25 0.192  Music
7 44 0.176  Psychology
8 37 0.175  Qualification
9 40 0.175  Photograph
10 20 0.161  Multimedia
49 52 -0.218  Physics
50 3 -0.223  Ilustrator
51 56 -0.234  Comic
52 26 -0.243  Chemistry
53 42 -0.268  Craftwork
54 29 -0.382  Business management
09 11 -0.447  Computer
56 4 -0.466  Internet business
57 10 -0.493 Game
58 2 -0.569  Animation

Table 11. Information loss No.3(x10-3).

Contribution rate

! ML 0 oo e e L
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EIU

30

40 50 60

Principal component

Fig. 12. Contribution rates for 58 variables.

The ranking seems to be quite similar to that obtained by the information loss. This means that
the principal component seems to represent the main features by which different groups can
be separated. On the other hand, connection weights by forced information represent the
absolute magnitude of students” interest in the subjects. In forced-information maximization,
we can see information loss as well as connection weights. The connection weights represent
the absolute value of the importance. On the other hand, the information loss represents
difference between several groups. This is a kind of relative importance of variables, because
the importance of a variable in one group is measured in a relation to the other group.
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No. No.(Figure) Strength Item
1 20 0.1589  Multimedia

2 30 0.1539  Economics
3 15 0.1537 Business
4 29 0.1536  Business management
5 27 0.1514  Stock
G 18 0.1512  Marketing
7 34 0.1492  Publicity
o] 47 0.1492  Politics
9 31 0.1482  Arts
10 33 0.1477  Language
49 52 0.1150  Physics
50 8 0.1115 Entertainment
51 49 0.1094  Tlustrator
52 48 0.1085  Shipping
03 10 0.1070 Game
54 4 0.1049  Internet
55 42 0.1028  Craftwork
514} 50 0.0986  Railroad
57 26 0.0981  Chemistry
o8 2 0.0922  Animation

Table 12. The first principal component.

8. Conclusion

In this paper, we have proposed a new computational method to accelerate a process of
information maximization. Information-theoretic competitive learning has been introduced
to solve the fundamental problems of conventional competitive learning such as the dead
neuron problem, dependency on initial conditions and so on. Though information theoretic
competitive learning has demonstrated much better performance in solving these problems,
we have observed that sometimes learning is very slow, especially when problems become
very complex. To overcome this slow convergence, we have introduced forced information
maximization. In this method, information is supposed to be maximized before learning. By
using the WTA algorithm, we have introduced forced information in information-theoretic
competitive learning. We have applied the method to several problems. In all problems, we
have seen that learning is much accelerated, and for the student survey case, networks
converge more than seventy times faster. Though we need to explore the exact mechanism
of forced information maximization, the computational method proposed in this paper
enables information theoretic learning to be applied to more large-scale problems.
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