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1. Introduction 

We have proposed a new information-theoretic approach to competitive learning [1], [2], [3], 
[4], [5]. The information-theoretic method is a very flexible type of competitive learning, 
compared with conventional competitive learning. However, some problems have been 
pointed out concerning the information-theoretic method, for example, slow convergence. In 
this paper, we propose a new computational method to accelerate a process of information 
maximization. In addition, an information loss is introduced to detect the salient features of 
input patterns. 
Competitive learning is one of the most important techniques in neural networks with many 
problems such as the dead neuron problem [6], [7]. Thus, many methods have been 
proposed to solve those problems, for example, conscience learning [8], frequency-sensitive 
learning [9], rival penalized competitive learning [10], lotto-type competitive learning [11] 
and entropy maximization [12]. We have so far developed information-theoretic competitive 
learning to solve those fundamental problems of competitive learning. In the information-
theoretic learning, no dead neurons can be produced, because entropy of competitive units 
must be maximized. In addition, experimental results have shown that final connection 
weights are relatively independent of initial conditions. 
However, one of the major problems is that it is sometimes slow in increasing information. 
As a problem becomes more complex, heavier computation is needed. Without solving this 
problem, it is impossible for the information-theoretic method to be applied to practical 
problems. To overcome this problem, we propose a new type of computational method to 
accelerate a process of information maximization. In this method, information is supposed 
to be maximized or sufficiently high at the beginning of learning. This supposed maximum 
information forces networks to converge to stable points very rapidly. This supposed 
maximum information is obtained by using the ordinary winner-take-all algorithm. Thus, 
this method is one in which the winter-takeall is combined with a process of information 
maximization. 
We also present a new approach to detect the importance of a given variable, that is, 
information loss. Information loss is difference between information with all variables and 
information without a variable, and is used to represent the importance of a given variable. 
Forced information with information loss can be used to extract main features of input 
patterns. Connection weights can be interpreted as the main characteristics of classified 
groups. On the other hand, information loss is used to extract the features on which input O
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patterns or groups are classified. Thus, forced information and information loss has a 
possibility to show clearly main features of input patterns. 
In Section 2, we present how to compute forced information as well as how to compute 

information loss. In Section 3 and 4, we present experimental results on a simple symmetric 

and Senate problem to show that one epoch is enough to reach stable points. In Section 5, we 

present experimental results on a student survey. In this section, we try to show that 

learning is accelerated more than sixty times faster, and explicit representations can be 

obtained. 

2. Information maximization 

We consider information content stored in competitive unit activation patterns. For this 
purpose, let us define information to be stored in a neural system. Information stored in a 
system is represented by decrease in uncertainty [13]. Uncertainty decrease, that is, 
information I, is defined by 

 
(1) 

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the probability of 
the sth input pattern and the conditional probability of the jth unit, given the sth input 
pattern, respectively. When the conditional probability p(j|s) is independent of the 
occurrence of the sth input pattern, that is, p(j|s) = p(j), mutual information becomes zero. 
 

 

Fig. 1. A single-layered network architecture for information maximization. 

Let us present update rules to maximize information content. As shown in Figure 2, a 

network is composed of input units  and competitive units . We used as the output 

function the inverse of the square of the Euclidean distance between connection weights and 
outputs for facilitating the derivation. Thus, distance is defined by 

 

(2) 
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An output from the jth competitive unit can be computed by 

 
(3) 

where L is the number of input units, and wjk denote connections from the kth input unit to 
the jth competitive unit. The output is increased as connection weights are closer to input 
patterns. 
The conditional probability p(j|s) is computed by 

 

(4) 

where M denotes the number of competitive units. Since input patterns are supposed to be 
uniformly given to networks, the probability of the jth competitive unit is computed by 

 

(5) 

Information I is computed by 

 

(6) 

Differentiating information with respect to input-competitive connections wjk, we have 

 

(7) 

where β is the learning parameter, and 

 
(8) 

3. Maximum information-forced learning 

One of the major shortcomings of information-theoretic competitive learning is that it is 
sometimes very slow in increasing information content to a sufficiently large level. We here 
present how to accelerate learning by supposing that information is already maximized 
before learning. Thus, we have a conditional probability p(j|s) such that the probability is 

set to ε for a winner, and 1 − ε for all the other units. We here suppose that ε ranges between 

zero and unity. For example, supposing that information is almost maximized with two 
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competitive units, and this means that a conditional probability is close to unity, and all the 

other probabilities are close to zero. Thus, we should take the parameter ε as a value close to 

unity, say, 0.9. In this case, all the other cases are set to 0.1. Weights are updated so as to 
maximize usual information content. The conditional probability p(j|s) is computed by 

 

(9) 

where M denotes the number of competitive units. 

 

(10)

At this place, we suppose that information is already close to a maximum value. This means 

that if the jth unit is a winner, the probability of the jth unit should be as large as possible, 

and close to unity, while all the other units’ firing rates should be as small as possible. 

 

 
 

Fig. 2. A single-layered network architecture for information maximization. 
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This forced information is a method to include the winner-take-all algorithm inside 
information maximization. As already mentioned, the winner-take-all is a realization of 
forced information maximization, because information is supposed to be maximized. 

4. Information loss 

We now define information when a neuron is damaged by some reasons. In this case, 
distance without the mth unit is defined by 

 
(11)

where summation is over all input units except the mth unit. The output without the mth 
unit is defined by 

 
(12)

The normalized output is computed by 

 

(13)

Now, let us define mutual information without the mth input unit by 

 

(14)

where pm and pm(j|s) denote a probability and a conditional probability, given the sth input 
pattern. Information loss is defined by difference between original mutual information with 
full units and connections and mutual information without a unit. Thus, we have 
information loss 

 (15)

For each competitive unit, we compute conditional mutual information for each competitive 
unit. 
For this, we transform mutual information as follows. 

 

(16)

Conditional mutual information for each competitive unit is defined by 

 

(17)
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Thus, conditional information loss is defined by 

 (18)

We have the following relation: 

 

(19)

5. Experiment No.1: symmetric data 

In this experiment, we try to show that symmetric data can easily be classified by forced 
information. Figure 3 shows a network architecture where six input patterns are given into 
input units. These input patterns can naturally be classified into two classes. Figure 4 shows 
 

 

Fig. 3. A network architecture for the artificial data. 

 

Table 1: U.S. congressmen by their voting attitude on 19 environmental bills. The first 8 
congressmen are Republicans, while the latter 7 (from 9 to 15) congressmen are Democrats. 
In the table, 1, 0 and 0.5 represent yes, no and undecided, respectively. 
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Fig. 4. Information, forced information, probabilities and information losses for the artificial 
data. 
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information, forced information, probabilities and information losses for the symmetric 

data. When the constant ε is set to 0.8, information reaches a stable point with eight epochs. 

When the constant is increased to 0.95, just one epoch is enough to reach that point. 
However, when information is further increased to 0.99, information reaches easily a stable 
point, but obtained probabilities show rather ambiguous patterns. Compared with forced 
information, information-theoretic learning needs more than 20 epochs and as many as 30 
epochs are needed by competitive learning. We could obtain almost same probabilities 

p(j|s) except ε = 0.99. For the information loss, the first and the sixth input patterns show 

large information loss, that is, important. This represents quite well symmetric input 
patterns. 

6. Experiment No.2: senate problem 

Table 1 shows the data of U.S. congressmen by their voting attitude on 19 environmental 
bills ??. The first 8 congressmen are Republicans, while the latter 7 (from 9 to 15) 
congressmen are Democrats. In the table, 1, 0 and 0.5 represent yes, no and undecided. 
Figure 5 shows information, forced information and information loss for the senate problem. 

When the constant ε is set to 0.8, information reaches a stable point with eight epochs. When 

the constant is increased to 0.95, just one epoch is enough to reach that point. However, 
when information is further increased to 0.99, obtained probabilities show rather ambiguous 
patterns. Compared with forced information, information-theoretic learning needs more 
than 25 epochs and as many as 15 epochs are needed by competitive learning. In addition, in 
almost all cases, the information loss shows the same pattern. The tenth, eleventh and 
twelfth input unit take large losses, meaning that these units play very important roles in 
learning. By examining Table 1, we can see that these units surely divide input patterns into 
two classes. Thus, the information captures the features in input patterns quite well. 

7. Experiment 3: student survey 

7.1 Two groups analysis 
In the third experiment, we report an experimental result on a student survey. We did 
student survey about what subjects they are interested in. The number of students was 580, 
and the number of variables (questionnaires) was 58. Figure 6 shows a network architecture 
with two competitive units. The number of input units is 58 units, corresponding to 58 items 
such as computer, internet and so on. The students must respond to these items with four 
scales. 
In the previous information-theoretic model, when the number of competitive units is large, 
it is sometimes impossible to attain the appropriate level of information. Figure 7 shows 
information as a function of the number of epochs. By using simple information 
maximization, we need as many as 500 epochs to be stabilized. On the other hand, by forced 
information, we need just eight epochs to finish learning. Almost same representations 
could be obtained. Thus, we can say that forced information maximization can accelerate 
learning almost seven times faster than the ordinary information maximization. 
Figure 8 shows connection weights for two groups analysis. The first group represents a 
group with a higher interest in the items. The numbers of students in these groups are 256 
and 324.  
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Fig. 5. Information, forced information, probabilities and information loss for the senate 
problem. 
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Fig. 6. Network architecture for a student analysis. 

 
Fig. 7. Information and forced information as a function of the number of epochs by 
information-theoretic and forced-information method. 

 
Fig. 8. Connection weights for two groups analysis. 
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This means that the method can classify 580 students by the magnitude of connection 
weights. Because connection weights try to imitate input patterns directly, we can see that 
two competitive units show students with high interest and low interest in the items in the 
questionnaire. 
Table 2 represents the ranking of items for a group with a high interest in the items. As can 
be seen in the table, students respond highly to internet and computer, because we did this 
survey for the classes of information technology. Except these items, the majority is related 
to the so-called entertainment such as music, travel, movie. In addition, these students have 
some interest in human relations as well as qualification. On the other hand, these students 
have little interest in traditional and academic sciences such as physics and mathematics. 
Table 3 represents the ranking of items for a group with a low interest in the items. Except 
the difference of the strength, this group is similar to the first group. That is, students in this 
gropup respond highly to internet and computer, and they have keen interest in entertainment. 
On the other hand, these students have little interest in traditional and academic sciences 
such as physics and mathematics. Table 4 shows the information loss for the two groups. As 
can be seen in the table, two groups are separated by items such as multimedia, business. 
Especially, many terms concerning business appear in the table. This means that two groups 
are separated mainly based upon business. The most important thing to differentiate two 
groups is whether students have some interest in buisiness or multimedia. Let us see what the 
information loss represents in actual cases. Figure 9 shows the information loss (a) and 
difference between two connection weights (b). As can be seen in the figure, two figures are 
quite similar to each other. Only difference is the magnitude of two measures. Table 5 shows 
the ranking of items by difference between two connection weights. As can be seen in the 
table, the items in the list is quite similar to those in information loss. This means that the 
information loss in this case is based upon difference between two connection weights. 
 

 
Table 2. Ranking of items for a group of students who responded to items with a low level 
of interest. 
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Table 3. Ranking of items for a group of students who responded to items with a low level 
of interest. 
 

 
 

Table 4. Ranking of information loss for two groups analysis (×10−3). 
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(a) Information loss 

 
(b) Difference between two connection weights 

Fig. 9. Information loss (a) and difference between two connection weights (w2k −w1k) (b). 
 

 

Fig. 10. Network architecture for three groups analysis. 
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Table 5. Difference between two groups of students. 

7.2 Three groups analysis 
We increase the number of competitive units from two to three units as shown in Figure 10. 
Figure 11 shows connection weights for three groups. The third group detected at this time 
shows the lowest values of connection weights. The numbers of the first, the second and the 
third groups are 216, 341 and 23. Thus, the third group represents only a fraction of the data. 
Table 6 shows connection weights for students with strong interest in the items. Similar to a 
case with two groups, we can see that students have much interest in entertainment. Table 7 
shows connection weights with moderate interest in the items. In the list, qualification and 
human relations disappear, and all the items expcet computer and internet are related to 
entertainment. Table 8 shows connection weights for the third group with low interest in the 
items. Though the scores are much lower than the other groups, this group also shows keen 
interest in entertainment. Table 9 shows conditional information losses for the first 
competitive unit. Table 10 shows information losses for the second competitive unit. Both 
tables show the same patterns of items in which business-related terms such as economics, 
stock show high values of information losses. Table 11shows a table of items for the third 
competitive units. Though the strength of information losses is small, more practical items 
such as cooking are detected. 

7.3 Results by the principal component analysis 
Figure 12 shows the contribution rates of principal components. As can be seen in the figure, 

the first principal component play a very important role in this case. Thus, we interpret the 

first principal component. Table 12 shows the ranking of items for the first principal 

component. 
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Fig. 11. Connection weights for three group analysis. 
 

 

Table 6. Connection weights for students with strong interest in those items. 
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Table 7. Connection weights for students with moderate interest in those items. 

 

 
 

Table 8. Connection weights for students with low interest in those items. 
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Table 9. Information loss No.1(×10−3). 

 

 
 

Table 10. Information loss No.2(×10−3). 
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Table 11. Information loss No.3(×10−3). 

 

Fig. 12. Contribution rates for 58 variables. 

The ranking seems to be quite similar to that obtained by the information loss. This means that 
the principal component seems to represent the main features by which different groups can 
be separated. On the other hand, connection weights by forced information represent the 
absolute magnitude of students’ interest in the subjects. In forced-information maximization, 
we can see information loss as well as connection weights. The connection weights represent 
the absolute value of the importance. On the other hand, the information loss represents 
difference between several groups. This is a kind of relative importance of variables, because 
the importance of a variable in one group is measured in a relation to the other group. 
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Table 12. The first principal component. 

8. Conclusion 

In this paper, we have proposed a new computational method to accelerate a process of 
information maximization. Information-theoretic competitive learning has been introduced 
to solve the fundamental problems of conventional competitive learning such as the dead 
neuron problem, dependency on initial conditions and so on. Though information theoretic 
competitive learning has demonstrated much better performance in solving these problems, 
we have observed that sometimes learning is very slow, especially when problems become 
very complex. To overcome this slow convergence, we have introduced forced information 
maximization. In this method, information is supposed to be maximized before learning. By 
using the WTA algorithm, we have introduced forced information in information-theoretic 
competitive learning. We have applied the method to several problems. In all problems, we 
have seen that learning is much accelerated, and for the student survey case, networks 
converge more than seventy times faster. Though we need to explore the exact mechanism 
of forced information maximization, the computational method proposed in this paper 
enables information theoretic learning to be applied to more large-scale problems. 
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