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1. Introduction 

This chapter details similarity discriminant analysis (SDA), a new framework for similarity-
based classification. The two defining characteristics of the SDA classifica- tion framework 
are similarity-based and generative. The classifiers in this framework are similarity-based, 
because they classify based on the pairwise similarities of data samples, and they are 
generative, because they build class-dependent probability models of the similarities 
between samples. Similarity-based classifiers already exist; classifiers based on generative 
models already exist. SDA is a new framework for classification comprising classifiers that 
are both similarity-based and generative. 
Within the general SDA framework, this chapter describes several families of classifiers: the 
SDA classifier, the local SDA classifier, and the mixture SDA classifier. The SDA classifier is at 
the foundation of SDA. It classifies based on the class-conditional generative models of the 
similarity of the samples to representative class prototypes, or centroids. The SDA 
framework is introduced, developed, and discussed with the aid of this centroid-based SDA 
classifier. Then, the centroid-based SDA classifier is generalized beyond class centroids to 
arbitrary class-descriptive statistics. Other possible statistics are described, illustrating the 
power and generality of the SDA framework. 
The local SDA classifier is a local version of the SDA classifier. It builds similarity-based 
class-conditional generative models within a neighborhood of a test sample to be classified. 
The local class models are endowed with low bias and retain the powerful quality of 
interpretability associated with generative probability models. Local SDA is a consistent 
classifier, in the sense that its error rate converges to the Bayes error rate, which is the best 
possible error rate attainable by a classifier. 
The mixture SDA classifier draws from the well-established metric learning mixture model 
research. It generalizes the single-centroid SDA classifier to a mixture of single-centroid 
SDA components. The mixture SDA classifier can be trained with an expectation-
maximization (EM) algorithm which parallels the standard EM approach for the well-
known Gaussian mixture models. 
The problem of classifying samples based only on their pairwise similarities may be divided 
into two sub-problems: measuring the similarity between samples and classifying the 
samples based on their pairwise similarities. It is beyond the scope of this chapter to discuss 
exhaustively and in detail various ways to measure similarity and various similarity-based O
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classifiers. The reader is referred to the references for more details; here, only a brief 
summary of relevant techniques is provided 

1.1 Measuring similarity 
Judging similarity between samples characterized by many disparate data types poses 
challenges of data representation and quantitative comparison. For example, modern 
databases store information from disparate data sources in different formats: multimedia 
databases store audio, video and text data; proteomics databases store information on 
proteins, genetic sequences, and related annotations; internet traffic databases store mouse 
click histories, user profiles, and marketing rules; homeland security databases may store 
data on individuals and organizations, annotations from intelligence reports, and maritime 
shipping records. These database objects, or samples, are described by both numerical and 
non-numerical data. For example, a security database might store cell phone records in 
textual form and voice parameters for speaker recognition in numerical form. Representing 
all these different data types with continuous-valued numbers in a geometric feature space 
is not appropriate. Thus, current metric space classifiers which rely on metric similarity 
functions may not be applicable. 
Furthermore, in some applications, only the pairwise similarities may be observed, and the 
underlying features may be inaccessible. For example, one of the datasets discussed in this 
chapter consists of human-judged similarities between pairs of sonar echoes. For this 
dataset, the putative perceptual features from which the human similarity ratings are 
generated are unknown - indeed eliciting the features remains an ongoing research problem 
(Philips et al., 2006) - but the similarity ratings are nonetheless successfully used for 
classification. In many applications, the similarity relationship between samples may lack 
the metric properties usually associated with distance (minimality, symmetry, triangle 
inequality); thus, using a metric function to express the pairwise similarities is suboptimal. 
Similarities are more general than distances and require more general functions than metrics 
(Tversky, 1977). Several researchers have addressed the problem of measuring similarity by 
rpoposing several simialrity measures. Psychologists, leacd by Tversky, have proposed 
models of similarity that take into account context and the non-metric way in which humans 
judge the similarity between complex objects (Tversky, 1977; Tversky & Gati, 1978; Gati & 
Tversky, 1984; Sattath & Tversky, 1987). The value difference metric (VDM) was originally 
designed with the goal of improving nearest-neighbor classification (Stanfill & Waltz, 1986) 
of text documents, and subsequent improvements extended it to classification of objects 
characterized by both textual and numerical features (Wilson & Martinez, 1997; Cost & 
Salzberg, 1993). Lin proposed an information-theoretic similarity (Lin, 1998) for document 
retrieval; (Cazzanti & Gupta, 2006) proposed the residual entropy similarity measure by 
extending Tversky's psychological similarity models with information-theoretic notions, and 
showed that it strongly takes into account the context in which the similarity is being 
evaluated. More comprehensive reviews of similarity measures appear in (Santini & Jain, 
1999) and (Everitt & Rabe-Hesketh, 1997). 

1.2 Similarity-based classifiers 
Similarity-based classifiers are defined as those classifiers that require only a pairwise 
similarity - a description of the samples themselves is not needed. Similarity-based 
classifiers classify test samples given a labeled set of training samples, the pairwise 
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similarity values of the training samples, and the similarity of the test sample to the training 
samples. If the description of the samples in terms of feature vectors is available, an existing 
or ad hoc similarity function that maps any two samples to a similarity value may be used 
(Bicego et al., 2006; Pekalska et al., 2001; Jacobs et al., 2000; Hochreiter & Obermayer, 2006). 
Among the existing similarity-based classifiers, the simplest method is the nearest neighbor 
classifier, which determines the most similar training sample z to the test sample x, and 
classifies x as z’s class: 

 
(1) 

where h is the set of training samples from class h. More generally, the k-nearest neighbor 
classifier (k-NN) determines a neighborhood of k most similar training samples to the test 
sample x, and classifies x as the most-frequently occurring class label among the neighbors. 
Experiments have shown that nearest neighbors can perform well on practical similarity-
based classification tasks (Cost & Salzberg, 1993; Pekalska et al., 2001; Simard et al., 1993; 
Belongie et al., 2002). For example, nearest neighbor classifiers using a tangent distortion 
metric and a shape similarity metric have both been shown to achieve very low error on the 
MNIST character recognition task. 
Condensed near-neighbor strategies replace the set of training samples for each class with a 
set of prototypes for that class. Usually the prototype set is an edited set of the original 
training samples (also called edited nearest neighbors), but the prototypes do not need to be 
from the original training set. Let ch be the number of the prototypes {µhl} for class h; then, 
the condensed nearest neighbor rule is to classify a test sample x as the class of the 
prototype to which it is most similar, 

 

(2) 

Many authors have considered strategies for condensing near-neighbors for similarity-based 

classification to increase classification speed, decrease the required memory, remove 

outliers, and possibly attain better performance (Weinshall et al., 1999; Jacobs et al., 2000; 

Lam et al., 2002; Pekalska et al., 2006; Lozano et al., 2006). A well-known strategy for 

condensing nearest neighbors in non-metric spaces is the k-medoids algorithm (Hastie et al., 

2001). Given a set of ch candidate prototypes selected from h, the remaining training 

samples z ∈ h are assigned to their nearest (most similar) prototype, so that the set h of all 

training samples from class h is partitioned in ch mutually-exclusive subsets { hl}, and each 

hl is uniquely associated with candidate prototype µhl. Then, the lth prototype for the hth 

class is updated according to the standard maximum similarity update rule, which selects 

the new µhl as the training sample in hl which is most similar to all other samples in hl, 

 
(3) 

The training samples are then reassigned to the updated prototypes, and the update rule (3) 
is repeated. The reassignment and update steps are repeated until a predetermined 
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maximum number of iterations is reached or until the updated prototypes  = µhl for all h 

and l. The number of prototypes in each class ch is determined by cross-validation; the initial 
prototypes {µhl} are selected randomly from the training set. 
An extreme form of condensed near-neighbors is to replace each class's training samples by 
one prototypical sample, often called a centroid. The resulting nearest centroid classifier can 
be considered a simple parametric model (Weinshall et al., 1999), though it lacks a 
probabilistic structure. Let s(x, z) be the similarity between a sample x and a sample z, and 
let there be a finite set of classes 1, 2, ... ,G. The nearest centroid approach classifies x as the 
class 

 
(4) 

where µh is the representative centroid for the class h. A standard definition for the centroid 
of a set of training samples is the training sample that has the maximum total similarity to 
all the training samples of the same class (Weinshall et al., 1999; Jacobs et al., 2000): 

 
(5) 

A variation of the nearest centroid classifier is the local nearest centroid classifier, which is 
an analog to the local nearest means classifier proposed by Mitani and Hamamoto (Mitani & 
Hamamoto, 2006, 2000). In this variant, the class centroids (5) are computed from a local 
neighborhood of each test point x; they are not computed from the entire training set. The 
neighborhood may be defined in many ways. The most common definition is the k-nearest 
neighbors. In this case, local nearest centroid is like the k-NN classifier, except that it 
classifies x as the class of its nearest centroid where the centroids are computed from the k-
nearest neighbors of x. 
The nearest centroid classifier is analogous to the nearest-mean classifier in Euclidean space, 

which is the optimal Euclidean-based classifier if one assumes that the class-conditional 

distributions are Gaussian, the class priors are equal, and that each class covariance is the 

identity matrix (Duda et al., 2001; Hastie et al., 2001). 

2. Similarity discriminant analysis 

In standard metric learning, quadratic discriminant analysis (QDA) is a generative classifier 

that generalizes the nearest-mean classifier by modeling each class-conditional distribution 

as a Gaussian (Duda et al., 2001). Analogously, SDA is a generative similarity-based 

classifier that generalizes the nearest-centroid classifier (Weinshall et al., 1999) by modeling 

each class-conditional distribution with a parametric probability model (Cazzanti et al.; 

Gupta et al., 2007). The SDA class-conditional probability models have exponential form, 

because they are derived as the maximum entropy distributions subject to constraints on the 

mean similarities of the data to the class centroids. As with other parametric approaches to 

classification, the resulting log-linear SDA classifier is powerful when it effectively models 

the true generating distribution. This section introduces SDA and shows how it classifies; 

then, it extends SDA from using class centroids to using arbitrary descriptive statistics to 

discriminate between the classes, including continuous-valued statistics. 
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2.1 A generative centroid-based classifier 
Assume a class centroid µh has been determined for the hth class, where h = 1, ..., G. A 

problem with the nearest centroid classifier given in (4) is that it does not take into account 

the variability of the similarities to the centroid within a class. To take into account this 

variability, first consider a simple generalization of nearest centroid, here called the adjusted 

nearest centroid classifier : classify a test sample x as class ŷ  where 

 
(6) 

and where s hh is the average similarity of class h samples to the class h centroid, 

 

where nh = │ h│. The adjusted nearest centroid classifier is analogous to the one-

dimensional Gaussian rule of classifying based on the the variance-weighted distances to 

the class means, ║x- μ# h║/σ# h, where x, μ# h, σ# h ∈ R. The adjusted nearest centroid 

classifier is more flexible than the nearest centroid classifier, but lacks a probabilistic 

structure, and takes into account only the similarity of a sample to one class centroid. 
Thus, a generative centroid-based classifier that models the probability distribution of the 

test sample similarity statistics s(x, µh) for each h is proposed. Begin with the Bayes classifier 

(Hastie et al., 2001), which assigns a test sample x the class ŷ  that minimizes the expected 

misclassification cost, 

 

(7) 

where C(f, ) is the cost of classifying the test sample x as class f if the true class is  and 

P( │x) is the probability that sample x belongs in class . In practice the distribution 

P( │x) is generally unknown, and thus the Bayes classifier of (7) is an unattainable ideal. 

Assume that all test and training samples come from some abstract space of samples , 

which might be an ill-defined space, such as  is the set of all amino acids, or  is the set of 

all terrorist events, or  is the set of all women who gave birth to twins. Let x, µh, z ∈ , and 

let the similarity function be some function s : ×  →Ω, where Ω ⊂ R. If the set of possible 

samples  is finite, then the space of the pairwise similarities Ω will also be finite, and hence 

discrete. For simplicity, in this section assume that Ω is a finite discrete space. Continuous 

and possibly infinite spaces B, Ω are briefly discussed in Section 2.2.3. 
Consider a random test sample X with random class label Y, where x will denote a 

realization of X. Assume that the relevant information about X’s class label is captured by 

the set (X) of G descriptive statistics 
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That is, the relevant information about x is captured by its similarity to each class centroid. 
Under this assumption, given a particular test sample x, the classification rule (7) becomes: 

classify x as class ŷ  that solves 
 

 
Using Bayes rule, this is equivalent to the problem 

 

(8) 

Note that P( (x)│Y = ) is the probability of seeing a particular set of similarities between 
the test sample x and the G class centroids {µ1, µ2, ...,  µG} given that x is a class  sample. 
Next, assume that each unknown class-conditional distribution P( (x)│Y = ) has the same 
average value as the training sample data from class g. That is, given a random test sample 
X there will be a random similarity s(X, µh); constrain the class-conditional distribution  
P( (x)│Y = ) such that 

 

(9) 

holds for each  and h where ng is the number of training samples of class . Each constraint 
requires that the class-conditional expectation of one of the elements of (X) is equal to the 
maximum likelihood estimate of that element given the training data. This makes for G 
constraints for each class-conditional distribution, for a total of G×G constraints because 
there are G class-conditional distributions. Given these constraints, there is some compact 
and convex feasible set of class-conditional distributions. A feasible solution will always 
exist because the constraints are based on the data. 
As prescribed by Jaynes' principle of maximum entropy (Jaynes, 1982), a unique class-
conditional joint distribution is selected by choosing the maximum entropy solution that 
satisfies (9). Maximum entropy distributions have the maximum possible uncertainty, such 
that they are as uniform as possible while still satisfying given constraints. Given a set of 
moment constraints, the maximum entropy solution is known to have exponential form 
(Cover & Thomas, 1991). For example, in standard metric learning, the Gaussian class-
conditional distribution model used in LDA and QDA is the maximum entropy distribution 
given a specific mean vector and covariance matrix (Cover & Thomas, 1991). 
The maximum entropy distribution that satisfies the moment constraints specified in (9) is 

 
(10)

where {γg, λg1, λg2, ... , λgG} are a unique set that ensures that the constraints (9) are satisfied 

and that P̂ ( (x)│Y = ) is non-negative and normalized. Rewrite equation (10) as 
 

 

(11)
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where . Let 
 

 
then (11) can be written 

 

That is, under the maximum entropy assumption, the joint distribution on (x) is the 
product of the marginal distributions on each similarity statistic comprising the set (X). 
Thus, the similarity statistics are conditionally independent given the class label under this 
model. Although one does not expect this conditional independence to be strictly valid, the 
hypothesis is that it will be an effective model, just as the naive Bayes' model that features 
are independent is optimistic but useful. 
Substituting the maximum entropy solution (10) into (8) yields the classification rule: 

classify x as the class ŷ  which solves 

 

(12)

To solve for the parameters {λgh, γgh}, one solves the G constraints individually for λgh. Then 

given {λgh}, the {γgh} are trivially found using the normalization constraint. Solving for λgh is 
straightforward; for example, one uses the Nelder-Mead optimizer built into Matlab 
(version 15) in the fminsearch()function (Mat). This is the method used throughout this 
work. As an alternative, one may find the probability mass function with maximum 
entropy, subject to the constraints, without a priori knowledge that the solution is 
exponential. 
The classifier given in (12) is termed the similarity discriminant analysis (SDA). 

2.2 General generative models for similarity-based classification 
The previous section introduced SDA for the case when the descriptive statistics are the 
similarities of the samples to the class centroids. This section generalizes SDA to arbitrary 
descriptive statistics (x) which can be used to discriminate different classes and describes 
the resulting general generative model for classifying with arbitrary statistics. 

2.2.1 Descriptive statistics 
Several possibilities for the descriptive statistics (x) are described below.  

• Centroid Definitions - A standard centroid definition was given in (5). Another choice is 
to allow a class prototype that is not constrained to be a training sample, 

 
(13)

In this case the solution  requires a description of the entire space of possible samples 

. In practice, one may not know the entire sample space , only the training samples 
, so it may not be possible to calculate . 
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A third definition of a class prototype is based on Tversky's analysis of similarity-based 
near-neighbor relationships (Tversky & Hutchinson, 1986; Schwartz & Tversky, 1980), 
and takes into account the similarity-based ranks of a training sample's near-neighbors. 

Define the neighborhood (z) ⊆  of a sample z as the set of training samples whose 
nearest neighbor in similarity space is z. The popularity of z is the size of its 
neighborhood │ (z)│. The class centroid is the sample with the highest popularity, 
that is, 

 
(14)

This centroid is the training sample that is most often the closest neighbor of the 
training samples in the class. Ties in popularity are broken by selecting the sample with 
the highest total similarity to its neighbors. 

• Higher Order and Non-Centroidal Descriptive Statistics - Given a set of class centroids 

{µh}, higher-order statistics could be used as, or added to, the set of descriptive statistics 

(X), such as (s(X, µh) - E[s(X, µh)])
2, or cross-class statistics, such as (s(X, µh) - E[s(X, 

µg)])
2. Or, instead of the centroid-based statistics fs(X, µh)g, it might be more appropriate 

to use the nonparametric statistics formed by the total pairwise similarity for each class 

h, such that the hth descriptive statistic in test set (X) is s(X, z). 

• Nearest Neighbor Similarity - A descriptive statistic that is not centroid-based is the nearest 
neighbor similarity: a test sample's similarity to its most similar training sample. Given a 

sample x and the training samples z ∈ , the nearest neighbor similarity is defined 

 
(15)

The SDA classifier based on nearest neighbor similarity, denoted by nnSDA, may be 
viewed as a generalization of the similarity-based nearest neighbor classifier (1-NN) 
defined in 1. That classifier labels x with the same class label as its nearest neighbor 
without making use of any information about its similarity to such nearest neighbor. 
The nnSDA classifier, on the other hand, classifies x as the class of its nearest neighbor 
based on a probabilistic model of snn(x). The probability model is computed with the 
mean-constrained maximum entropy approach of Section 2.1, which results in 
exponential solutions. In this case, the constraint is that the mean of the distribution 
must be the same as the empirical average of the observed nearest neighbor similarities. 
Denote by snn,h(X) the random similarity of a random test sample X to its nearest 
neighbor in class h. For nnSDA, the constraint is written as 

 

(16)

and the classification rule becomes to classify as the class ŷ  that solves 

 

(17)
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where the parameters λgh and γgh are computed with the same numerical optimization 
method used for SDA. 

As further discussed in the next section, the SDA framework accommodates any desired set 
of descriptive statistics (x): different similarity functions could be mixed, dissimilarities 
and similarities can be mixed, and so on. 

2.2.2 Generative classifier from arbitrary descriptive statistics 
Given an arbitrary set of M descriptive statistics (x), the same reasoning of Section 2.1 
produces a generative similarity-based classifier. First, the assumption is that (x) is 
sufficient information to classify x leads to the classification rule given in (8). Second, for the 

mth descriptive statistic Tm(x) ∈ (x), m = 1, ..., M, one assumes that its mean with respect to 
the class conditional distribution of (x) is equal to the training sample mean: 

 

(18)

Third, given the M×G constraints specified by (18), one estimates the class-conditional 
distribution to be the maximum entropy distribution, 

 

(19)

Substituting the maximum entropy solution (19) into (8) yields the SDA classification rule: 

classify x as the class ŷ  which solves 

 

(20)

The parameters {λgm, γgm} are calculated as in the centroid-based SDA case described in 
Section 2.1. 

2.2.3 Continuous-valued statistics 
The generative classification models presented in this chapter can be extended to the case in 
which the statistics (x) are from a continuous set Ω. This will be the case, for example, 
when using an overlap similarity (e.g. max{x[i], z[i]}) with real-valued features, or when the 
similarity between X and z is the Euclidean distance. Then, the expectation in (18) is a 
normalized integral over the continuous set of possible similarity values. Let a and b denote 
the minimum and maximum possible similarity values (and hence the lower and upper 
bound on the expectation's integral). Then simplifying (18) yields the relationship 

 

(21)
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where
 

. The solution to (21) can be computed numerically. For  the 

special case a = 0 and b = ∞, the solution is  

3. Local SDA 

This chapter introduces local SDA (Cazzanti & Gupta, 2007), a similarity-based classifier that 
is both generative and local. An advantage of generative classifiers is their interpretability: 
classes are modeled by conditional probability distributions which are assumed to have 
generated the observed data. An advantage of local classifiers it that they reduce the 
estimation bias problem which affects generative classifiers. Local SDA combines the 
qualities of both generative and local classifiers. 
For the SDA classifier, the class-conditional generative distributions are exponentials that 
model the similarities between samples - or more generally the descriptive statistics of the 
sample. The exponentials are the maximum entropy distributions subject to constraints on 
the mean values of the similarities. However, when the underlying distributions are 
complex, a particular set of empirical statistics may fail to capture the necessary information 
about a sample’s class membership. In fact, in SDA, constraining the means of the class-
conditional distributions may result in too much model bias, just as the QDA model of one 
Gaussian per class causes model bias (Hastie et al., 2001). In standard metric learning, one 
way to address the bias problem while retaining the advantages of a generative approach is 
to form more flexible Gaussian mixture models. In similarity-based learning, mixture 
models may also be formed; this approach is discussed in Section 4. 
Here, the bias in SDA is addressed by using local classifiers in similarity space. In metric 
learning, one way to avoid the bias problem is to use local classifiers, e.g. k-NN, which 
classify test samples based on the class labels of their nearest neighbors. Local classifiers do 
not estimate probabilistic models for the sample classes and consequently lack the 
interpretability of generative models. Even so, they provide an intuitive framework for 
classification through the concepts of nearest-neighbor and neighborhood. In this chapter, 
SDA is applied to a local neighborhood about the test sample. The resulting local SDA 
classifier trades-off model bias and estimation variance depending on the neighborhood 
size, while retaining the power of a generative classifier. To the author's knowledge, local 
SDA is the first example of a classifier that is both generative and local. The only arguable 
contender is the local nearest- mean classifier (Mitani & Hamamoto, 2000, 2006) for metric 
learning; however that classifier was not proposed as a generative model. 
Local SDA is a straightforward variation of SDA. The local SDA classifier model is that all of 
the relevant information about classifying a test sample x depends only on the k nearest 
(most similar) training samples to x. Thus, the local SDA classifier computes the descriptive 
statistics from a neighborhood of a test sample. More specifically, local SDA is a log-linear 
generative classifier that models the probability distribution of the similarity s(x, µh) 
between the test sample x and the class centroids {µh}, just like SDA. Unlike SDA, the class 
centroids, the class-conditional similarity probability models, and the estimates of the class 
priors are computed from a neighborhood of the test sample rather than from the entire 
training set. Thus, the class centroid definition (5) used for SDA still holds for local SDA; one 
simply redefines h as the subset of the k nearest neighbors from class h. The class priors are 

estimated using normalized class membership counts of the neighbors of x, that is P̂  (Y = h) 
= │ h│/k. The mean similarity constraints (9) for the SDA maximum entropy optimization 
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are formally the same for local SDA, except that the mean is computed from the neighbors 

of test sample x rather than the whole training set. Thus, the optimized parameters λgh and 

γgh are local. Given the set of local class centroids {µh}, the local class priors P̂ (Y = g), and 

the local class-conditional model parameters γgh the local SDA classification rule is identical 
to the SDA rule (12): 

 

A problem can occur if the hth class has few training samples in the neighborhood of test 
sample x. In this case, the local SDA model for class h is difficult to estimate. To avoid this 
problem, if the number of local training samples in any of the classes is very small, for 
example nh < 3, the local SDA classifier reverts to the local nearest centroid classifier. If nh = 0 
so that h is the empty set, then the probability of class h is locally zero, and that class is not 
considered in the classification rule (12). This strategy enables local SDA to gracefully 
handle small k and very small class priors. 
Local classification algorithms have traditionally been weighted voting methods, including 
classifying with local linear regression, which can be formulated as a weighted voting 
method (Hastie et al., 2001). These methods are by their nature non-parametric and their use 
arises in situations when the available training samples are too few to accurately build class 
models. On the other hand, it is known that the number of training samples required by 
nonparametric classifiers to achieve low error rates grows exponentially with the number of 
features (Mitani & Hamamoto, 2006). Thus, when only small training sets are available, 
nonparametric classifiers are negatively impacted by outliers. In 2000, Mitani and 
Hamamoto (Mitani & Hamamoto, 2000, 2006) were the first ones to propose a classifier that 
is both model-based and local. However, they did not develop it as a local generative 
method; instead, they proposed the classifier as a local weighted-distance method. Their 
nearest-means classifier can be interpreted as a local QDA classifier with identity 
covariances. In experiments with simulated and real data sets, the local nearest-means 
classifier was competitive with, and often better than, nearest neighbor, the Parzen classifier, 
and an artificial neural network, especially for small training sets and for high dimensional 
problems. 
Local nearest-means differs from local SDA in several aspects. First, the classifier by Mitani 
and Hamamoto in (Mitani & Hamamoto, 2006) learns a metric problem, not a similarity 
problem: the class prototypes are the local class-conditional means of the features and a 
weighted Euclidean distance is used to classify a test sample as the class of its nearest class 
mean. Second, the neighborhood definition is different than the usual k nearest neighbors: 

they select k nearest neighbors from each class, so that the total neighborhood size is k ×G. 
More recently, it was proposed to apply a support vector machine to the k nearest neighbors 
of the test sample (Zhang et al., 2006). The SVM-KNN method was developed to address the 
robustness and dimensionality concerns that a²ict nearest neighbors and SVMs. Similarly to 
the nearest-means classifier, the SVM-KNN is a hybrid local and global classifier developed 
to mitigate the high variance typical of nearest neighbor methods and the curse-of-
dimensionality. However, unlike the nearest means classifier of Mitani and Hamamoto, 
which is rooted in Euclidean space, the SVM-KNN can be used with any similarity function, 
as it assumes that the class information about the samples is captured by their pairwise 
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similarities without reference to the underlying feature space. Experiments on benchmark 
datasets using various similarity functions showed that SVM-KNN outperforms k-NN and 
its variants especially for cases with small training sets and large number of classes. SVM-
KNN differs from local SDA because it is not a generative classifier. 
Finally, note that different definitions of neighborhood may be used with local SDA. One 
could use the Mitani and Hamamoto (Mitani & Hamamoto, 2006) definition described 
above, or radius-based definitions. For example, the neighborhood of a test sample x may be 

defined as all the samples that fall within a factor of 1+α of its similarity to its most similar 

neighbor, and α is cross-validated. This work employs the traditional definition of 
neighborhood, as the k nearest neighbors. 

3.1 Consistency of the local SDA classifier 
Generative classifiers with a finite number of model parameters, such as QDA or SDA, will 
not asymptotically converge to the Bayes classifier due to the model bias. This section shows 
that, like k-NN, the local SDA classifier is consistent such that its expected classification 
error E[L] converges to the Bayes error rate L* under the usual asymptotic assumptions that 

the number of training samples N → ∞, the neighborhood size k → ∞, but that the 

neighborhood size grows relatively slowly such that k=N → 0. First a lemma is proven that 
will be used in the proof of the local SDA consistency theorem. Also, the known result that 
k-NN is a consistent classifier is reviewed in terms of similarity. 

Let the similarity function be s :  ×  → Ω, where Ω ⊂ R is discrete and let the largest 

element of -Ω be termed smax. Let X be a test sample and let the training samples {X1,X2, ... 

,XN} be drawn identically and independently. Re-order the training samples according to 

decreasing similarity and label them {Z1,Z2, ..., ZN} such that Zk is the kth most similar 

neighbor of X. 
Lemma 1 Suppose s(x,Z) = smax if and only if x = Z and P(s(x,Z) = smax) > 0 where Z is a random 

training sample. Then P(s(x,Zk) = smax) → 1 as k, N →∞ and k/N → 0.  
Proof: The proof is by contradiction and is similar to the proof of Lemma 5.1 in (Devroye et 

al., 1996). Note that s(x,Zk) ≠ smax if and only if 

 

(22)

because if there are less than k training samples whose similarity to x is smax, the similarity of 

the kth training sample to x cannot be smax. The left-hand side of (22) converges to P(s(x,Z) = 

smax) as N→∞ with probability one by the strong law of large numbers, and by assumption 

P(s(x,Z) = smax) > 0. However, the right-hand side of (22) converges to 0 by assumption. 

Thus, assuming s(x,Zk) ≠ smax leads to a contradiction in the limit. Therefore, it must be that 

s(x,Zk) = smax. 

Theorem 1 Assume the conditions of Lemma 1. Define L to be the probability of error for test sample 
X given the training sample and label pairs {(Z1, Y1), (Z2, Y2), ... , (ZN, YN)}, and let L* be the Bayes 

error. If k,N → ∞ and k/N → 0, then for the local SDA classifier E[L] → L*.  

Proof: By Lemma 1, s(x,Zi) = smax for i ≤ k in the limit as N → ∞, and thus in the limit the 
centroid µh of the subset of the k neighbors that are from class h must satisfy s(x, µh) = smax, 
for every class h which is represented by at least one sample in the k neighbors. By definition 
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of the local SDA algorithm, any class h  that does not have at least one sample in the k 

neighbors is assigned the class prior probability P(Y = h ) = 0, so it is effectively eliminated 

from the possible classification outcomes. Then, the constraint (9) on the expected value of 
the class-conditional similarity for every class g that is represented in the k neighbors of x is 

 
(23)

which is solved by the pmf P(s(x, µh)│Y = g) = 1 if s(x, µh) = smax, and zero otherwise. Thus 
the local SDA classifier (12) becomes 

 
(24)

where the estimated probability of each class P̂  (Y = g) is calculated using a maximum 

likelihood estimate of the class probabilities for the neighborhood. Then, P̂  (Y = g) →P(Y = 

g│x) as k →∞ with probability one by the strong law of large numbers. Thus the local SDA 

classifier converges to the Bayes classifier, and the local SDA average error E[L] → L*. 
The known result that k-NN is a consistent classifier can be stated in terms of similarity as a 
direct consequence of Lemma 1: 
Lemma 2 Assume the conditions of Lemma 1 and define L and L* as in Theorem 1. For the 

similarity-based k-NN classifier E[L] →L*. 
Proof. It follows directly from Lemma 1 that within the size-k neighborhood of x, Zi = x for i 

≤k. Thus, the k-NN classifier (1) estimates the most frequent class among the k samples 

maximally similar to x: 

 

The summation converges to the class prior P(Y = g→x) as k →∞ with probability one by the 

strong law of large numbers, and the k-NN classifier becomes that in (24). Thus the 

similarity-based k-NN classifier is consistent. 

4. Mixture SDA 

Like LDA and QDA, basic SDA may be too biased if the similarity space - or more generally 
the descriptive statistics space - is multi-modal. In analogy to metric space mixture models, 
the bias problem in similarity space may be alleviated by generalizing the SDA formulation 
with similarity-based mixture models. In the mixture SDA models, the class-conditional 
probability distribution of the descriptive statistics (x) for a test sample x is modeled as a 
weighted sum of exponential components. Generalizing the single centroid-based SDA 
classifier and drawing from the metric mixture models (Duda et al., 2001; Hastie et al., 2001), 
each class h is characterized by ch centroids {µhl}. The descriptive statistics for test sample x 
are its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), ... , s(x, )}, for each class h. 

The mixture SDA model for the probability of the similarities, assuming that test sample x is 
drawn from class g, is written as 
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(25)

where wghl = 1 and wghl > 0. Then, the SDA classification rule (12) for mixture SDA 

becomes to classify x as the class ŷ  that solves the maximum a posteriori problem 

 

(26)

Note how the mixture SDA generative model (25) parallels the metric mixture formulation 

of Gaussian mixture models (GMMs), with the exponentials  in place of the 

Gaussian components. However, there are deep differences between mixture SDA and 
metric mixture models. In metric learning, the mixtures model the underlying generative 
probability distributions of the features. Due to the curse of dimensionality, high-
dimensional, multi-modal feature spaces require many training samples for robust model 

parameter estimation. For example, for d features, GMMs require that a d × 1 mean vector 

and a d × d covariance matrix be estimated for each component in each class, for a total of  

ch ×(d2 +3d)/2 parameters per mixture. Constraining each Gaussian covariance to be diagonal, 
at the cost of an increased number of mixture components, alleviates the robust estimation 
problem, but does not solve it (Reynolds & Rose, 1995). 
When relatively few training samples are available, robust parameter estimation becomes 

particularly di±cult. In similarity-based learning the modeled quantity is the similarity of a 

sample to a class centroid. The estimation problem is essentially univariate and reduces to 

estimating the exponent λghl in each component of the mixture, for a total of ch × G × 2 

parameters per mixture (the scaling parameter γghl follows trivially). This simpler classifier 

architecture allows robust parameter estimation from smaller training set depending on the 

number of centroids per class, or, more generally, the number of descriptive statistics. 

Another major difference between mixture SDA and metric mixture models is in the number 
of class-conditional probability models that must be estimated. In metric learning, G 
mixtures are estimated, one for each of the G possible classes from which a sample x may be 

drawn. In mixture SDA, G2 mixture models are estimated. Each sample x is hypothesized 
drawn from class g = 1, 2, ...G, and its similarities to each of the G classes are modeled by the 
mixture (25), with h = 1, 2. ...G. When the number of classes grows, or when the number of 
components in each mixture model grows, the quadratic growth in the number of needed 
models presents a challenge in robust parameter estimation, especially when the number of 
available training samples is relatively small. However, this problem is mitigated by the fact 
that the component SDA parameters may be robustly estimated with smaller training sets 
than in metric mixture models due to the simpler, univariate estimation problem at the heart 
of SDA classification. The next section discusses the mixture SDA parameter estimation 
procedure. 

4.1 Estimating the parameters for mixture SDA models 

Computing the SDA mixture model for the similarities of samples x ∈ g to class h requires 
estimating the number of components ch, the component centroids {µhl}, the component 
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weights {wghl} and the component SDA parameters {λghl} and {γghl}. This section describes an 
EM algorithm for estimating these mixture parameters. The algorithm parallels the EM 
approach for estimating GMM parameters (Duda et al., 2001; Hastie et al., 2001); it is first 
summarized below, and then explained in detail in the following sections. 

Let θgh = {{wghl}, {γghl}, {λghl}} for l = 1, 2 ... ch be the set of parameters for the class h mixture 
model to be estimated under the assumption that the training samples zi, for i = 1, 2, ... ng are 
drawn identically and independently. Denote by C a random component of the mixture and 

by P(C = l│s(zi, µhl), θgh) the responsibility (Hastie et al., 2001) of the lth component for the 

ith training sample similarity s(zi, µhl). Also write P(s(zi, µhl)│C = l, θgh) = . 

The proposed EM algorithm for mixture SDA is: 
1. Compute the centroids {µhl} with K-medoids algorithm. 

2. Initialize the parameters {wghl} and the components P(s(zi, µhl)│C = l, θgh). 
3. E step: compute the responsibilities 

 
(27)

4. M step: compute model parameters 

(a) Find the λghl which solves 

 

(28)

(b) Compute the corresponding scaling factor 

 

(29)

(c) Compute the component weights 

 

(30)

5. Repeat E and M steps until convergence criterion is satisfied. 
Note that, just like EM for GMMs, the EM algorithm for mixture SDA involves iterating the 

E step, which estimates the responsibilities, and the M step, which estimates the parameters 

that maximize the expected log-likelihood of the training data. At each iteration of the M 

step, the explicit expression (30) updates the component weights. However, unlike EM for 

GMMs, the update expression for the component parameters (28) is implicit and must be 

solved numerically. Another difference between the GMM and SDA EM algorithms is in 

how the centroids are estimated. For GMMs, the component means {uhl}, which are the 

metric centroids, are updated at each iteration of the M step. For mixture SDA, the centroids 

{µhl} are estimated at the beginning of the algorithm and kept constant throughout the 

iterations. 
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The update expressions for the mixture SDA parameters are derived from the expression of 
the expected log-likelihood of the observed similarities. A standard assumption in EM is 
that the observed data are independent and identically distributed given the class and 
mixture component. For mixture SDA, this assumption means that the training sample 

similarities { g(zi)} = {s(zi, µhl)}, zi ∈ g to the component centroids are identically 
distributed and conditionally independent given the lth class component. Then, the 
expected log-likelihood of { g(zi)} is 

 

(31)

Using the properties of the logarithm and rearranging the terms, L({ g(zi)}│θgh) splits into 

the terms depending on wghl and the terms depending on λghl and γghl: 

 

(32)

The standard EM approach to maximizing (32) is to set its partial derivatives with respect to 
the parameters to zero and solve the resulting equations. This is the approach adopted here 

for estimating the mixture SDA parameters θgh for all g, h. 
The derivation of the expression for the component weights {wghl} follows directly from (32); 
both the derivation of and the final expression for the component weights are identical to 
the metric mixtures case. Section 4.1.1 re-derives the well-known expression for wghl. 
Applying the EM approach, however, does not lead to explicit expressions for {λghl} and 
{γghl}. Instead, it leads to many single-parameter constraint expressions for the mean 
similarities of the training data to the mixture component centroids. These expressions are 
solved with the same numerical solver used in the single-centroid SDA classifier. 

4.1.1 Estimating the component weights 
To compute the log-likelihood-maximizing weights wghl, one uses the standard technique of 
taking the derivative of the log-likelihood with respect to wghl, setting it to zero, and solving 

the resulting expression for wghl. The constraint wghl = 1 is taken into account with the 

Lagrange multiplier η: 

 
which gives the well-known expression for the component weights of a mixture model in 
terms of the responsibilities: 
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(33)

4.1.2 Estimating γghl and λghl 

The same approach used for estimating the component weights {wghl} is adopted to estimate 

the SDA parameters {γghl} and {λghl}: Find the likelihood-maximizing values of the 

parameters by setting the corresponding partial derivatives to zero and solving the resulting 

equations. First, since each γghl is simply a scaling factor that ensures that each mixture 

component is a probability mass function, one rewrites 

 

(34)

where X ∈ g is a random sample from class g, s(X, µhl) is its corresponding random 

similarity to component centroid µhl, and Ω is the set of all possible similarity values. 

Substituting (34) into (32), setting the partial derivative of L({ h(zi)}│θgh) with respect to λghl 

to zero, and rearranging the terms gives 

 

(35)

The first term on the left side of (35) is simply the definition of the expected value of the 
similarity of samples in class g to the lth centroid of class h. Thus, one rewrites (35) 

 

(36)

Expression (36) is an equality constraint on the expected value of the similarity of samples  

zi ∈ g to the component centroids µhl of class h. This is the same type of constraint that must 
be solved in the mean-constrained, maximum entropy formulation of single-centroid SDA 
(9). In (9), the mean similarity of samples from class g to the single centroid of class h is 
constrained to be equal to the observed average similarity. Analogously, in (36), the mean 
similarity of the samples from class g to the lth centroid of class h is constrained to be equal 
to the weighted sum of the observed similarities, where each similarity is weighted by its 

normalized responsibility. To solve for λghl, one uses the same numerical procedure used to 

solve (9) and described in Section 2.1. Thus, solving for all the {λghl} requires solving the  

G ×  ch expressions of (36). 

It is not surprising that taking the EM approach to estimating λghl has lead to the same 
expressions for the mean constraints in the maximum entropy approach to density 
estimation. It is known that maximum likelihood (ML) - the foundation for EM - and 

www.intechopen.com



 Machine Learning 

 

110 

maximum entropy are dual approaches to estimating distribution parameters which lead to 
the same unique solution based on the observed data (Jordan, 20xx). The ML approach 
assumes exponential distributions for the similarities, maximizes the likelihood, and arrives 
at constraint expressions whose solutions give the desired values for the parameters. The 
maximum entropy approach assumes the constraints, maximizes the entropy, and arrives at 
exponential distributions whose parameters satisfy the given constraints. This powerful 
dual relationship between ML and maximum entropy extends from metric problems to 
similarity-based problems; for this reason it leads to the the constraint expression (36), from 

which λghl is numerically computed. The corresponding γghl is found by applying (34). 

4.1.3 Estimating the centroids 
Estimating the centroids of a mixture model encompasses two problems: estimating the 
number of components (i.e. centroids) {ch}, and estimating the centroids {µhl}. This work 
adopts the common metric learning practice of cross-validating the number of mixture 
components {ch}. The centroids {µhl} are estimated with the K-medoids algorithm (Hastie et 
al., 2001), using the maximum-sum-similarity criterion (3). The initial centroids are selected 

randomly from the training set samples zi ∈ h. 

4.1.4 Initializing EM for SDA 
In this work, the component weights {wghl} are uniformly initialized to wghl = 1=ch and the 

components are assigned uniform initial probability P(s(zi, µhl)│C = l, θgh) = 1/ch. This 
initialization reflects the assumption that initially the mixture components equally 
contribute to a sample's class-conditional probability: it is the least-assumptive initialization. 
Another strategy would be to initialize the weights by the fraction of training samples 
assigned to the clusters which result from estimating the centroids with K-medoids. The 

component probabilities may also be initialized by estimating the SDA parameters {λghl} and 

{γghl} from the K-medoids clusters. This is analogous to the GMM initialization strategy 
based on the results of the K-means algorithm. In practice, the simple uniform initialization 
works well. 

5. Experimental results 

SDA, local SDA, mixture SDA, and nnSDA are compared to other similarity-based 

classifiers in a series of experiments: the tested classifiers are the nearest centroid (NC), local 

nearest centroid (local NC), k-nearest neighbors (k-NN) in similarity space, condensed 

nearest neighbor (CNN) (Hastie et al., 2001) in similarity space, and the potential support 

vector machine (PSVM) (Hochreiter & Obermayer, 2006). When the features underlying the 

similarity are available, the classifiers are also compared to the naive Bayes classifier (Hastie 

et al., 2001). The counting similarity (the number of features identically shared by two 

binary vectors) and the VDM (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Wilson & 

Martinez, 1997) similarities are used to compute the similarities on which the classifiers 

operate, except for cases in which similarity is provided as part of benchmark datasets. 

The first set of comparisons involves simulated binary data, where each class is generated 
by random perturbations of one or two centroids. The perturbed centroids simulation is a 
scenario where each class is characterized by one or two prototypical samples (centroids), 
but samples have random perturbations that make them different from their class centroid 
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in some features. Thus, this simulation fits the centroid- based SDA models, in that each 
class is defined by perturbations around one or two prototypical centroids. 
Then, three benchmark datasets are investigated: the protein dataset, the voting dataset, and 
the sonar dataset. The results on the simulated and benchmark datasets show that the 
proposed similarity-based classifiers are effective in classification problems spanning 
several application domains, including cases when the similarity measures do not possess 
the metric properties usually assumed for metric classifiers and when the underlying 
features are unavailable. 
For local SDA and local NC, the class prior probabilities are estimated as the empirical 
frequency of each class in the neighborhood; for SDA, mixture SDA, nnSDA, NC, and CNN 
they are estimated as the empirical frequency of each class in the entire training data set. The 
k-NN classifier is implemented in the standard way, with the neighborhood defined by the 
test sample’s k most similar training samples, irrespective of the training samples class. Ties 
are broken by assigning a test sample to class one. 

5.1 Perturbed centroids 
In this two-class simulation, each sample is described by d binary features such that  
B = {0, 1}d. Each class is defined by one or two prototypical sets of features (one or two 
centroids). Every sample drawn from each class is a class centroid with some features 
possibly changed, according to a feature perturbation probability. Several variants of the 
simulation are presented, using different combinations of number of class centroids, feature 

perturbation probabilities, and similarity measures. Given samples x, z ∈ B, s(x, z) is either 
the counting or the VDM similarity. The simulations span several values for the feature 
dimensions d and are run several times to better estimate mean error rates. For each run of 
the simulation and for each number of features considered, the neighborhood size k for local 
SDA, local NC, and k-NN is determined independently for the three classifiers by leave-one-
out cross-validation on the training set of 100 samples; the range of tested values for k is  
{1, 2, ... 20, 29, 39, ... , 99}. The optimum k is then used to classify 1000 test samples. Similarly, 
the candidate numbers of components for mixture SDA and for CNN are {2, 3, 4, 5, 7, 10}. To 
keep the experiment run time within a manageable practical limit, five-fold cross validation 
was used to determine the number of components for mixture SDA, and the mixture SDA 
EM algorithm was limited to 30 iterations for each cross-validated mixture model. The 
parameters for the PSVM classifier are cross-validated over the range of possible values  

ε = {0.1, 0.2, ... 1} and C = {1, 51, 101, ... 951}. 

The perturbed centroid simulation results are in Tables 1-8. For each value of d, the lowest 
mean cross-validation error rate is in bold. Also in bold for each d are the error rates which 
are not statistically significantly different from the lowest mean error rate, as determined by 
the Wilcoxon signed rank test for paired differences, with a significance level of 0.05. The 
naive Bayes classifier results are also included for reference. 

5.1.1 Perturbed centroids – one centroid per class 
Each class is generated by perturbing one centroidal sample. There are two, equally likely 
classes, and each class is defined by one prototypical set of d binary features, c1 or c2, where 

c1 and c2 are each drawn uniformly and independently from {0, 1}d. A training or test sample 

z drawn from class g has the ith feature z[i] = cg[i] with probability 1 - pg, and z[i] ≠ cg[i] with 
perturbation probability pg. In one set of simulation results p1 = 1/3 and p2 = 1/30; thus, class 
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two is well-clustered around its generating centroid and the two classes are well-separated. 
In another set of simulation results, p1 = 1/3 and p2 = 1/4 and the two classes are not as well 
separated. Classifiers are trained on 100 training samples and tested on 1000 test samples 
per run; twenty runs are executed for a total of 20, 000 test samples. The number of features 
d ranges from d = 2 to d = 200 in the simulation, but the number of training samples is kept 
constant at 100, so that d = 200 is a sparsely populated feature space. This procedure was 
repeated for the counting and for the VDM similarities, so there are four sets of results for 
the one centroid simulation, depending on the perturbation probabilities and the similarity 
measure used. The results are in Tables 1-4. 
The performance of all classifiers increases as d increases. For large d, the feature space is 
sparsely populated by the training and test samples, which are segregated around their 
corresponding generating centroids. This leads to good classification performance for all 
classifiers. For small d, the feature space is densely populated by the samples, and the two 
classes considerably overlap, negatively affecting the classification performance. 
 

 

Table 1. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30. 

Across all four sets of results, the naive Bayes classifier almost always gives the best 
performance. Its assumption that the features are independent captures the true underlying 
relationship of the sample features makes the naive Bayes classifier well suited for these 
particular data sets: indeed the samples are generated as random vectors of independent 
binary features. The consequent excellent performance of the naive Bayes classifier provides 
a reference point for the other classifiers. More generally, when a classification problem 
involves samples natively embedded in an Euclidean space, as in these perturbed centroids 
experiments, metric-space classifiers like naive Bayes can perform well. In these cases, the 
similarity-based classification framework provides no clear advantage. 
On the other hand, naive Bayes cannot be used when the samples are not described by vectors 
of independent features, either because the features are not known, the independence 
assumption is too restrictive for effective performance, or because the Euclidean 
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representation does not sufficiently capture the pairwise relationships of the samples. In 
these cases, the similarity-based techniques provide solutions to classification problems. 
Thus, in these perturbed centroids experiments, the naive Bayes classifier is a good reference 
for assessing the effectiveness of the similarity-based classifiers, but it is not considered for 
the Wilcoxon significance tests because it is not generally applicable to similarity-based 
classification. 
 

 

Table 2. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4. 

 

Table 3. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30. 
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Table 4. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4. 

With few exceptions the PSVM performs best on the four sets of results on a wide range of d. 
This is likely because the PSVM classifies a test sample based on its similarities to the entire 
training set. In contrast, local methods such as local SDA, local NC, nnSDA, k-NN, and 
CNN make use of a subset of the training samples and thus have less information available 
to classify. Global methods based on the similarity-to-class-centroid summary statistic such 
as SDA, NC, and CNN also use less information. It is plausible that the ability to make use 
of all the similarity information in the training set and to optimally weight the similarities to 
the training samples gives the PSVM a performance advantage over the other techniques. 
However, in spite of this advantage, the results show that for low and high values of d the 
SDA-based techniques yield statistically equivalent performance to the PSVM, and in some 
cases match or exceed its results. When the PSVM statistically produces significantly 
different results from the other techniques, its performance does not hugely surpass them. 
Thus the similarity-based techniques possess the ability to produce good classification 
results using less information. This quality can be immensely useful when few training 
samples are available. 
In all four sets of results, the SDA-based algorithms generally perform better than their non-
generative counterparts: local SDA performs better than local NC and SDA performs better 
than NC. This shows that generative models based on the similarity of samples to local or 
global class centroids provide increased discriminative power over the non-generative 
centroid-based similarity models. Furthermore, in almost all cases across the four sets of 
results, local SDA performs better than SDA. While the classification performance of SDA is 
good, its inherent model bias prevents it from achieving even better performance; local SDA 
is not as susceptible to model bias, and is able to perform very well. Still, the SDA 
performance is close to that of the local SDA in all cases and sometimes it surpasses it (VDM 
similarity with p2 = 1/4), a confirmation that the single-centroid generative model at the heart 
of SDA matches well the perturbed single-centroid experimental setup for these sets of 
results. 

www.intechopen.com



Similarity Discriminant Analysis 

 

115 

The similarity-space k-NN performs well, albeit not as well as the PSVM. Compared to SDA, 
k-NN performs better only for the counting similarity and p2 = 1/4. Since SDA matches well 
the class models for the generated samples, it is not surprising that it performs better than k-
NN, which does not rely on class models. However, k-NN does better when the class two 
perturbed samples are more likely to differ from their generating class two centroid (p2 = 
1/4), that is when the classes overlap more. In this case, it is more di±cult to estimate the 
class centroids, and the SDA performance is affected. On the other hand, SDA is better than 
k-NN for the VDM similarity, for both p2 = 1/30 and p2 = 1/4. The VDM similarity is 
calculated from class-dependent lookup tables pre-computed from the training set, and this 
additional information seems to favor the SDA classifier more than the k-NN. Local SDA, 
performs slightly better than k-NN when p2 = 1/30 for both counting and VDM similarities. 
The CNN classifier generally does not perform as well as k-NN. This is expected, because, 
as for its metric learning analog, the condensing process primarily aims to reduce the size of 
large training sets and possibly eliminate outliers rather than to improve classification 
performance. The observed lower performance of CNN compared to k-NN reflects the 
expectation that classification performance will degrade when using the condensed training 
set instead of the full set of available training samples. 
The nnSDA classifier performs well for the counting similarity when p2 = 1/30, and in 
general for higher values of d. For low values of d the performance is particularly poor: for  
d = 2 the error rate is essentially equal to that of a random classifier (50%) and for d = 4 it is 
only slightly better. In fact, the nnSDA performance is limited by the interplay of its 
asymptotic behavior and the value of d. Recall that by Lemma (1) from Section 3.1,  

P(s(x,Zk) = smax) → 1 as k,N →∞ and k/N → 0, where k is the neighborhood size, N is the 
number of available training samples, and Zk is the k-th nearest neighbor of test sample x. 

Then, it follows that P(snn,h(x) = smax) → 1 for all h as k, n →∞, because snn,h(x) = s(x,Z1) for  

Z1 ∈ h as k→∞. Thus, for nnSDA, the similarities of a test sample to its nearest neighbors in 
each class are all identical in the limit of infinite number of training samples. Consequently, 
for a large training set, all class discriminants in the nnSDA classification rule (17) are 
identical and therefore uninformative. The classification rule (17) reduces to the trivial rule 
that classifies according to the cost-adjusted class priors, 

 

(37)

When 0-1 costs are used, as in this simulation, the rule (37) always classifies as the class g 

with the highest prior probability P̂ (Y = g), estimated as the empirical frequency from the 

training data: 

 
(38)

In this experiment, the samples are generated from two, a priori equally likely classes, so the 

limit misclassification rate is
 

 

The limit error rate is noticeable when d is small. In this case the similarity can take on 

values in a limited range bounded by d (s(x, z) ∈[0, 1 ...d] for the counting similarity) and the 
training set is highly redundant. Thus, a test sample x is very likely to be maximally similar 
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to its nearest neighbor from each class, and snn,h(x) is uninformative. In higher dimensions, 
the experimental results show that the training set is sufficiently sparse for effective 
classification. Thus nnSDA is a viable classifier for sparse training sets which do not cover 
the entire range of possible values for the chosen similarity. In applications when few 
training samples are available, nnSDA can be a valuable tool for achieving actionable 
classification results. 

5.1.2 Perturbed centroids – two centroids per class 
In this variation of the perturbed centroids simulation, each class is characterized by two 
prototypical samples, c11, c12 for class one, and c21, c22 for class two. Each time the simulation 
is run, the centroids c11, c12, c21, c22 are drawn independently and identically using a uniform 
distribution over . 
Every sample drawn from each class is a perturbed version of one of the two class 
prototypes, where the class labels are drawn independently and identically with probability 
1/2. A training or test sample z drawn from class one is randomly selected to be z = c11 or z = 
c12 with probability 1/2, and then for each i = 1, ... , d, z’s ith feature is probabilistically 
perturbed so that z[i] ≠ c11[i] with probability p11 (or z[i] ≠ c12[i] with probability p12). Thus on 
average, a randomly drawn sample based on c11 will have dp11 features that are different 
from the class prototype c11’s features. Likewise, a training or test sample v drawn from class 
two starts out as v = c21 or v = c22 with probability 1/2, but then for each i = 1, ..., d, v’s ith 
feature is changed so that v[i] ≠ c21[i] with probability p21 (or v[i] ≠ c22[i] with probability p22). 
The number of features d ranges from d = 2 to d = 200 in the simulation, but the number of 
training samples is kept constant at 100, so that d = 200 is a sparsely populated feature space. 
Two different sets of values of the perturbation probabilities p11, p12, p21, p22 were used: in the 
first case p11 = p12 = 1/3 and p21 = p22 = 1/30, so that the class two samples are much more 
tightly clustered around c21 and c22 than the class one samples are with respect to c11 and c12. 
In the second case, p11 = p12 = 1/3 and p21 = p22 = 1/4, resulting in a higher Bayes error. Each 
simulation was run twenty times, for a total of 20,000 test samples. The resulting mean error 
rates are given in Tables 5-8. 
 

 

Table 5. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30. 
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Table 6. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4. 
 

 

Table 7. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30. 

For all four sets of results, the local SDA classifier performs better than the local NC 
classifier. This result agrees with the analogous case for the single centroid experiments and 
attests to the advantage that similarity-based generative models provide over simpler 
nearest-centroid classifiers. However, the SDA classifier yields better classification than its 
counterpart NC classifier only for the VDM similarity. For the counting similarity, SDA does 
not provide an advantage over NC. There are two causes that contribute to this outcome. 
First, the single-centroid SDA is a biased model that does not match the true two-centroids-
per-class experimental setup. Consider class one and its centroids, c11 and c12. SDA at best 

correctly estimates one of the two centroids per class, let's say ĉ 11. Thus, the estimated 
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centroid- based generative model for class one is a good match for the samples which are 
generated as random perturbations of c11. The model, however, is not a good match for 
samples generated as random perturbations of c12. The model cannot distinguish the 

similarities of these class one samples to ĉ 11 from their similarities to the centroids of class 

two. The result is that the c12-generated samples are classified according to the class priors, 
that is half as class one and half as class two. The same argument applies to class two, so 
that overall about 25% of the samples are misclassified. Indeed, the SDA error rates quickly 
settle to ≈25% for the counting similarity for medium to large values of d. For lower d, the 
class overlap due to the density of the feature space dominates the misclassification rate. 
 

 

Table 8. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4. 

The second cause contributing to the observed SDA results stems from the way the class 
centroids are generated. Each class centroid is generated randomly from a multivariate 
uniform distribution over the feature space. Thus, there is no guarantee that two centroids 
from the same class be more similar to each other than two centroids from different classes, 
that is there is no guarantee that s(c1i, c1j) < s(c1i, c2j) for i, j = 1, 2. On the contrary, on average 
over many draws from the sample space, the centroids are equally similar, and 
consequently the samples generated as perturbations of c12, c21, and c22 are approximately 
equally similar to c11. This amplifies the detrimental effect of the bias in the SDA model. If 
the condition on the similarities between centroids s(c1i, c1j) < s(c1i, c2j) were enforced, then 
even the biased SDA model would produce better classification results. 
The performance of mixture SDA is comparable to that of SDA if not slightly better. For the 
particularly simple case of the counting similarity with p21 = p22 = 1/30, the mixture SDA 
provides an order of magnitude improvement over SDA, showing that it is able to alleviate 
the bias problem inherent to the single-centroid SDA. However, in all other perturbed 
centroids results the comparison between the performance of mixture SDA and SDA is 
inconclusive. For p21 = p22 = 1/4, the overlap between the classes overshadows any 
performance gains mixture SDA might obtain; for the VDM results, the advantage provided 
by the optimized similarity measure brings the performance of SDA and mixture SDA closer 
together, and thus limits the gains of mixture SDA. Given the increase in complexity of the 
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mixture SDA classifier and its inconclusive performance advantages, for these experiments 
it might be more advantageous to use local classifiers such as local SDA to obtain improved 
performance. The results show that local SDA consistently performs very well, and with 
only a few exceptions outperforms SDA and mixture SDA. 
Note that for the VDM similarity, SDA produces excellent classification results which are 

very competitive with local SDA and local NC, and consistently outperform NC. The large 

improvement is attributable to the fact that the VDM undergoes a training phase, performed 

on the training set, in which the class information is used to optimize the similarity measure 

for class discrimination. This training step greatly benefits the SDA classifier and yields 

improved classification results for all classifiers when compared to the counting similarity, 

which does not rely on such pre-computations. 

As for the single-centroid results, nnSDA is most effective at higher values of d, when the 

feature space is sparsely populated by the samples. A consistently good performer is the k-

NN classifier, which is very competitive with local SDA, local NC, and the PSVM when p21 = 

p22 = 1/30, and often outperforms them when p21 = p22 = 1/4. Using a subset of the training 

samples, as with CNN, negatively impacts the classification performance for all sets of 

simulations, consistently with the single-centroids results discussed in the previous section. 

5.2 Benchmark data sets 
Three benchmark data sets are used to analyze further the performance of various 

similarity-based classifiers: a data set of protein similarities, a data set of congressional 

voting records, and a data set of aural sonar similarities. The tested classifiers are the local 

SDA, local NC, SDA, NC, nnSDA, k-NN, and PSVM classifiers. The mixture SDA and CNN 

classifiers are not tested on these data sets, as the long time required to cross-validate their 

parameters does not justify their attainable performance. 

The performance of the classifiers on all three benchmark data sets is evaluated as the leave-
one-out error, as follows. One sample is set aside as the test sample, and all other N – 1 
samples are used for training. The parameters for each classifier are cross-validated on the N 
– 1 training samples using leave-one-out cross validation. The resulting best parameters are 
used to train each classifier on the entire N – 1 training samples, and the trained classifier 
finally classifies the test sample. The process is repeated until all available samples are 
tested by the trained classifiers. For local SDA, local NC and k-NN, the neighborhood size is 
cross-validated on the set of possible sizes {1, 2, ... 20, 30 ... 100, 150, 200}. The PSVM 
parameters are cross-validated over the sets of possible values C = {1, 51, ... 951}, and  

ε = {0.1, 0.2, ... 1}. The class priors are estimated to be the empirical probability of seeing a 

sample from each class, with Laplace correction (Jaynes, 2003). Table 9 shows the percent 
leave-one-out error for each classifier evaluated on the three benchmark datasets. The data 
sets experiments are discussed in more detail in the following sections. 
 

 
 

Table 9. Percentage of leave-one-out misclassifications on the protein data set. 
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5.2.1 Protein data 
Many bioinformatics prediction problems are formulated in terms of pairwise similarities or 

dissimilarities. An example is the protein data set used by (Hochreiter & Obermayer, 2006). 

For this data set, pairwise dissimilarity values are calculated using the evolutionary 

distance, which is the probability that an amino acid sequence transforms into another one 

(Hofmann & Buhmann, 1997). The sample space  is not enumerated, so classification must 

be done based only on the pairwise dissimilarity values. The dataset contains 213 proteins 

with class labels “HA” (72 samples), “HB” (72 samples), “M” (39 samples) , and “G” (30 

samples). The SDA, local SDA, nearest centroid, local nearest centroid, and k-NN classifiers 

natively support multiclass classification problems, so they can be applied directly to this 

four-class experiment. The PSVM, however, is a binary classifier and cannot be applied to 

this multiclass data set. 

Guessing that all samples were from the most prevalent class would yield a 66.2% error rate. 

The simple one-centroid per class model of SDA achieves half that error, and works better 

than the more flexible local nearest centroid classifier. Local SDA, local nearest centroid and 

k-NN all have the same free parameter, the neighborhood size k. Of these, local SDA is seen 

to be best suited to this problem. 

5.2.2 Voting data set 
The UCI voting data set (Newman et al., 1998) records the voting record of 435 members of 

the US House of Representatives on 16 bills. The binary classification problem is to predict 

each member's political party affiliation given the voting records. Each of the 16 votes is 

either a yes, a no, or “neither”, so there are 16 features which can each take on 3 possible 

values. This classification problem can be treated as a similarity-based classification problem 

by applying a similarity function to the trinary feature space. The adopted similarity in this 

experiment is the counting similarity. 

5.2.3 Aural sonar echoes classification 
In the sonar echoes classification experiment, the data consist of 100 pairwise similarities 

assessed by human listeners. The listeners rated the pairwise similarities of digitized active 

sonar echoes from two classes { clutter or target { without knowledge of the class labels, and 

based their evaluation of similarity only on their perceptual judgement of how the echoes 

sounded similar; thus, the underlying features of similarity are inaccessible. Each listener 

assigned a discrete similarity value between 1 and 5 to each pair of echoes; each pair was 

rated by two different listeners, and the two assigned similarity scores were added, so that 

the range of possible values for the similarity is [2, 10]. The target and clutter classes are 

equally likely, each one containing 50 echoes. This set of echoes is particularly difficult to 

classify in that metric-space classifiers produced incorrect results. Further details on this 

data set are in (Philips et al., 2006). 

6. Summary 

The chapter introduced a new framework for classification that is both similarity-based and 

generative: similarity discriminant analysis, or SDA. The experimental results show that the 
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classifiers resulting from the proposed SDA framework have practical advantages in terms 

of performance, interpretability, and ease of use. SDA is similarity-based in that it classifies 

samples based on their pairwise similarities and does not require that the samples be 

described by numerical feature vectors, the standard sample description method in metric 

learning. SDA is generative, in that it estimates probabilistic models based on descriptive 

statistics of the classes. Having access to probability estimates is important. A probabilistic 

framework seamlessly accommodates multi-class classifiers, asymmetric misclassification 

costs, and class priors. Furthermore, probability estimates are easily fused into into larger 

systems, and can be used to identify abnormal samples that have low probability of any 

class. The generative models in the SDA family are solutions to constrained maximum 

entropy problems where the constraints are placed on the mean values of the similarity-

based descriptive statistics. As dictated by the principle of maximum entropy, the resulting 

generative class models are exponential functions of the similarity statistics. 

Di®erent choices for the descriptive statistics lead to different SDA classifiers. This chapter 

focused on the centroid-based SDA classifiers: each class is described by a prototypical 

sample, a centroid, and the generative models are based on the similarities of the samples to 

each class centroid. SDA accommodates various definitions of centroid; this chapter focused 

on the maximum-sum-similarity centroid. The nearest neighbor similarity is also explored 

as a descriptive statistic, yielding the nnSDA classifier. 

As with LDA and QDA, the power of the SDA generative classifier depends on how well its 

model matches the true class-conditional distributions. A mismatched model will be biased 

and produce erroneous classifications. The centroid-based SDA classifier is a good match for 

single-centroid distributions of objects, but is a biased model for multi-centroidal 

distributions. This chapter proposes local SDA and mixture SDA as similarity-based 

generative classifiers with reduced bias that can be used for multimodal distributions. Local 

SDA is the SDA classifier applied to a local neighborhood of a test sample. A local class 

centroid can be viewed as a representative prototype for the class in the neighborhood of a 

test sample and the class-conditional models provide an estimate of the local distribution of 

the similarities to the local centroid. Local SDA was shown to be a Bayes error-consistent 

classifier and is the first classifier to be similarity-based, generative, and local. Mixture SDA 

builds on the metric-learning mixture models by modeling each class as a linear 

combination of several single-centroid SDA models. The parameters for the mixture SDA 

classifier can be estimated with the EM algorithm. 

The family of SDA classifiers is very competitive with, and often outperforms, their 

corresponding non-generative similarity-based classifier. SDA competes with nearest 

centroid; local SDA competes with local NC. The SDA classifiers are also competitive with 

the PSVM, the state-of-the-art support vector machine for similarity-based classification. The 

PSVM bases its classification on the entire training set of pairwise similarities. This requires 

enumeration of size N × N similarity matrices, thus posing computational challenges for 

large data sets. Furthermore, PSVM is a non-generative, intrinsically binary classifier: it is 

di±cult to view it in a probabilistic framework where there are more than two possible 

classes for the data samples. The SDA classifiers remain competitive while relying on more 

parsimonious representations of the underlying similarity relationships between the 

samples. Furthermore, the generative quality of the SDA family of classifiers provides 
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intuitive information about the similarity characteristics of the data. The SDA-generated 

probability estimates are useful for interpreting the results in a probabilistic framework, and 

allow for class priors and costs to be seamlessly integrated into the classification rules. 
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