
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Taking Experience to a Whole New Level

Luis Ignacio Lopera
Universidad de los Andes

Colombia

1. Introduction

Human kind through out history has shown a keen ability to learn by observation and to
create. He’s the only species on earth that has drastically changed his surroundings by
constructing cities, houses and parks among other things. He also has left the planet for the
nearest celestial body and built a home on the stars. But if one takes the knowledge needed
to build something as complicated as the space station, one soon realizes that one did not
have to learn everything at once. As matter of fact the knowledge needed to build the station
is the result of a very long learning process that was done one step at the time.
This type of learning process, based very strongly on previous experiences, has proved to be
efficient in the way that once something works it is fairly easy to replicate or do it better.
However, it is interesting to point out that regardless if it is the best method for learning it is
the only method used. The school systems all around the world expect a child to learn
certain skills during the first years of schooling, such as reading, writing and spatial
reasoning. Then these skills are broadly used from there on to learn things like basic algebra,
logic reasoning, arts, crafts, history and so on. Once in college the student is expected to
choose an area of interest and study the extra skills necessary to learn the advanced subjects
of the area and be able to use them in a professional environment. If the student pursues a
higher degree of education his success will reside on his ability to interconnect past
experiences to produce some new bits of knowledge.
Interesting enough, the power of knowledge is derived not only from personal experience
but from a collective experience as well. This can be seen in very isolated communities as
well as in the global community of today. In aborigine tribes, the collective experience is
passed from generation to generation usually by means of oral tradition. For example, the
best way to hunt, the best grassing places for cattle and so on. Such knowledge is updated
by the most recent personal experiences. In today’s more globalized community experiences
are shared through many different channels, such as books or the internet.
The discussion comes to the point where it becomes important to define experience. In a
general context; the Merriam Webster’s dictionary defines experience as:
“1 a: direct observation of or participation in events as a basis of knowledge b: the fact or
state of having been affected by or gained knowledge through direct observation or
participation
2 a: practical knowledge, skill, or practice derived from direct observation of or participation
in events or in a particular activity b: the length of such participation <has 10 years'
experience in the job> O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira,
 ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Machine Learning

54

3 a: the conscious events that make up an individual life b: the events that make up the
conscious past of a community or nation or humankind generally
4: something personally encountered, undergone, or lived through
5: the act or process of directly perceiving events or reality”.
These definitions illustrate clearly how knowledge can derive from direct or indirect
involvement in an activity. It also defines a way of learning. More precisely in the context of
this book, “Learning is done by a machine when it records its experience into internal system
changes that causes its behavior to be changed.” (Looney, 1997). Most algorithms in machine
learning use this definition to better adjust the detected classes and generate new ones if
necessary.
But unfortunately, these inner changes do not take the machine closer to a human like
learning method. It only perfects the machine output to a constrained set of variables. But if
the set of variables, all of the sudden, become unconstrained or the constraints change
drastically, the previews experiences become obsolete and the training process has to star all
over again (Hagras et al., 1997). As a result, for machine learning applications, you want the
problem to be as constrained as possible and the machine as invariable as possible. These
limitations become the “Achilles’ heel” of systems that have to undertake unexplored and
unstructured environments.
Understanding human experience has been the material of study by many philosophers,
and scientists. Is not the intention of this chapter to enter in the discussion on any way,
however, it is relevant to point out that the basic definition given before falls short to
describe experience that transcends the observed event’s context; in other words, experience
that is used in something else than the set of events where it was generated. This is best
illustrated by an example: An electrical technician learned throughout his career how to
repair CRT TV’s, now he is faced with the challenge of repairing LCD screens. It is evident
that some additional learning has to be done, but, a lot of the skills used to fix the CRT will
be useful to fix the LCD. And furthermore, if another CRT TV comes to his shop, he would
still be able to fix it.
From a systemic point of view, the agent’s physical capabilities, such as sensors actuators,
computational power, etc, can be considered services to the way of doing things. And these
services become the framework to design and develop the architecture that will take
experience to the next level.
The chapter starts the discussion by analyzing the way people carry out tasks, then
introduces a concept of knowledge and its intricate relation to experience then a series of
architectures are presented that illustrate the way next level experience can be implemented.
These architectures are thought out to implement the ability, very often seen in human
reasoning, of extrapolating experience; as in the example of the TV technician. The goal of
the presented architectures is to establish the ways in which to use the agent’s services to
obtain the most of the agent’s capabilities and increase the chance of success when faced
with various problems and circumstances. Then it shows the application of one of the
architectures to a theoretical problem and ends the discussion with some final remarks
about the practical implications of using the proposed architectures.

2. Simplicity, fun facts of the way we do things.

‘STOP, think on what are you about to do!’, many times we have heard mothers instruct their
children, usually because the youngster is about to harm himself, or engage in some
mischievous behavior. This phrase is going to be the motto for this chapter’s section.

www.intechopen.com

Taking Experience to a Whole New Level

55

Must people have certainly come across the annoying problem of having to fix a house
appliance or an office gadget. And the resulting outcome for most of these people is to
throw it away or call tech services. The focus of this section is the small portion of users who
actually try to fix the broken object. For them here’s the motto: ‘STOP!!, think on what are you
about to do!’. Otherwise, how are we ever going to understand what’s going on in the users’
heads?
The problem of fixing things is very interesting to study the way we do things, mostly
because it involves several brain actions/properties, like experience, analysis, observation,
decision making, and coordination of movement, among others.

2.1 Case 1: opening the black box problem.

Once upon a time there was a black box. This box had a lid which was screwed shut with
flat head screws, there where four of them one on each corner. The box had a “broken”
behavior. (At this point it is irrelevant what the problem of the box is) To fix it, the person
who’s going to fix it (from here on, the fixer) must open the box and see what is causing the
problem.
Inspired by the motto, an interesting question arises: What is the sequence of steps that are
required to get in to the box? Let’s follow a line of reasoning to find the answer to this
question.
First step is always observation, observe the problem in detail and get as many
characteristics as possible. From here the fixer will know things like there’s a lid, there are 4
flat head screws, their position and size, and so on. It seems obvious after reading the
problem’s description, but bear in mind that the fixer is presented with the black box and
not the description of the black box.
Next step is experience, the fixer must ask himself, “Have I opened THIS black box before?” if
the answer to this question is YES, the answer to the “what is the sequence…” question is
immediately found, the steps are somewhere in the fixer’s head. But this trivial answer is
not what we are looking for. If we take the NO answer, the following question arises: “Have
I opened SOMETHING LIKE this before?” In this case a YES answer would lead to compare
the black box, with every experience of opening THINGS LIKE this one, and using the best
match to try and open it. In essence, finding similarities with previous elements would give
us a starting point that is further ahead in the solution process than starting from scratch.
On the other hand, the NO answer would lead to the next step.
Analysis, here the fixer must determine the type of tool he’s going to use to unscrew the
screws. Probably establish if there’s a sequence to follow or just any random order will do
the job, determine if it is sufficient to unfasten the screws or if they have to be removed
completely.
The final step is action: the fixer does something, for example, removes a screw, from here
on, the road can take two paths: trial and error or a methodic process of disassembly. Either
one will get the job done, it’s important to appreciate that in both roads the process becomes
cyclic, as the fixer will have to stop and observe after each step is taken to determine if he’s
going to achieve his goal and apply this sequence of steps for each particular problem
encountered. Figure 1, shows a flow chart of the Meta algorithm of opening the black box.
It is interesting to notice how there are two type of experiences that become very useful in
this process. The first type of experience is very much like defined in section 1, and used
widely in machine learning algorithms: direct experience over the event, the second type of

www.intechopen.com

 Machine Learning

56

experience is an extrapolated experience, in other words, it is experience achieved in other
events that is used to find a quick solution to the problem, a starting point further ahead in
the road of solving the problem. As an example, opening the black box would allow the
fixer to understand the way the computer’s cover is quickly removed.

Fig. 1. Meta algorithm for problem solving

Other interesting observation on this case is the way it can be compared to recursive
programming. In recursive programming the algorithm is called several times but every
time with a simpler task, in terms, the same thing happens in case 1, the same four basic
steps are recalled every time with partitions of the bigger problem.
Simplicity in this case is related to understanding that only 4 steps are needed, and that they
repeat themselves over and over.

2.2 Case 2: fixing the black box’s broken behavior.

At this point the fixer has opened the black box, and needs to fix the problem, as in the
previous case, a very similar question arises: What is the sequence of steps needed to repair
the problem? To find the answer to this question this time, we are going to take a different
path; there is a meta-algorithm used widely for fixing things, it can be simplified to three
stages as: Diagnose, repairing (replace, reposition, reconfigure, reinstall) and test.
With this meta-algorithm it is important to subdivide the task in two types. First type, it is
the kind that comes with a manual, in this type of fixing, the fixer only needs to follow a set
of steps designed to pinpoint the problem and fix it. Its only reasonable to mention that on
this type of process, the fixer needs direct experience on how to solve the little details, the
ones the “manual” assumes the fixer knows how to do. So, only one type of experience is
needed. This is the type of activity people train for.
The second type of subdivision is the one with no “manual” or only limited information
available. There are no steps or a determined sequence to follow, in this case (which is very
interesting for this chapter), the fixer must use experience of different types to diagnose the

www.intechopen.com

Taking Experience to a Whole New Level

57

problem, and fix it. Interesting enough, if the meta-algorithm applied in case 1 is used for
the diagnostics, repairing and testing stages, a solution to the problem can be found.
To illustrate, let’s say the black box’s broken behavior consists of a failure on an indication
led that informs the status of the connection to a wireless network. Assume that the problem
is a burnt resistor from the led’s amplifying circuit. To understand what is going on
(diagnostics stage) the fixer starts proving, looking to see if the box is actually able to
connect, regardless of the led. The fixer must see that the box seems to work fine in this
regard (observation), he turns to analyze the led’s circuitry, un-solders the led (action) and
tests it by itself. This because he knows from his experience, that L.E.Ds blow out rather often
(It is important to mention that this is based on the fixer’s experience, and only for the
purpose of the example). When he finds that the led is not the problem, then he solders back
the L.E.D, and starts checking for voltage level in the amplifying circuit until he finds the
blown resistor. Again it is clear how the four basic steps of the meta-algorithm are used over
and over again.
Then he gets the replacement resistor (repairing stage), un-solders the blown one and
solders the new one. Repairing is usually a trained activity, therefore, this stage usually does
not use the meta-algorithm; rather, it will use a list of steps or procedures. However, once in
a while, to repair something the fixer must get creative. Assume now that he doesn’t have
the right value resistor, better yet, he has no resistors at all. He could run to the store and
buy a new one; but again, not a very interesting solution. He could get the resistor from
another broken gadget. In this case the meta-algorithm could be used to find and recover the
part, and as it usually happens, the replacement is probably not a perfect fit, so he would
have to use the meta-algorithm again to modify it and make it fit.
Finally testing, the fixer has to undergo a procedure to figure out if the repair was well
done. Again we stumble with the duality of procedure vs. experience. The fixer could use
procedures if they exist. But if not, he must rely heavily on experience to test the system
until a suitable set of possibilities for failure is tried out and pass satisfactorily. In the
example of the black box, it is rather simple: Activate wireless communication and see if the
L.E.D blinks as it is supposed to.
With case 2 it becomes clear that there’s a layer-like architecture to the process of fixing
something. Upper layers determine the general procedure to follow, and lower layers take
care of particular tasks. Furthermore, simplicity is associated to the use of the meta-
algorithm in several occasions and contexts.
After having “stopped and thought” on what we where about to do to the black box; it is
important to extrapolate at this point. If all possible problems are grouped together in to
categories based on the agent’s capacity to solve them, only three categories arise: problems
which already have been solved, those which haven’t and those which can’t be solved by
the agent. Those that have been solved become procedures like how to build a computer or
a car, in the case of people, they could also become instinct, like running or dancing. Those
that haven’t been solved are the ones that present a challenge, and there’s where the meta-
algorithm comes in action, always observing, putting all other experiences to the test,
analyzing and acting upon.
Although it is not the intention of this section either to undermine or to simplify the creative
process, the act of problem solving of the human mind, which relies on creativity, can be
approximated by understanding that a big part of the creative process comes from melding
experiences achieved through out a series of events in a similar or even in completely
different context than that of the problem at hand. A glance at the way any engineer’s talent

www.intechopen.com

 Machine Learning

58

evolves shows that although early stages could be magnificent, the best work is always later
in the career because is fueled in part by the new experiences achieved in the early stages.

3. Storage, the key for knowledge.

Although the debate on a definition of Knowledge is still on-going, for all purposes of this
chapter knowledge would be understood as defined in the Oxford English Dictionary: (i)
expertise, and skills acquired by a person through experience or education; the theoretical or
practical understanding of a subject, (ii) what is known in a particular field or in total; facts
and information or (iii) awareness or familiarity gained by experience of a fact or situation.
It is interesting how knowledge and experience are intricately related. From the definition
can be derived that since machine learning algorithms use a process of experience to better
perform the given tasks, ergo, any system that uses a machine learning algorithm has
knowledge of the specific task. The only problem with this statement is that by definition,
knowledge seems to be a trait exclusive of a “person”. Never the less it is still valid, if we
understand a person as the ultimate system or agent. In other words, extrapolating the
concept of knowledge to lesser systems, such as mechanical or electronic system, to describe
the information, expertise and familiarity obtained through experience or education.
The term information is clear to see in current day technology, people store hundreds of
thousands of information represented in bytes. It is also clear to see how a few fields in
memory describing the algorithm’s results or properties can be considered valid information,
and that such can be acquired or refined through experience or programming (the equivalent
of education in “lesser” systems),therefore also considered as knowledge. However, what to
make of awareness and expertise? Can they be replicated in a non human system?
Expertise can be defined as the capacity of the system to carry out a task efficiently.
Therefore, it can be replicated as it has been widely demonstrated that for certain tasks,
machines are far more efficient than people. Awareness at a very primitive level has been
replicated in machines (Bongard, Zykov, Lipson, 2006), and as a matter of fact is achieved
through a method of experience. So, it is safe to extrapolate the term knowledge to a wider
variety of systems.
A system has knowledge of how to carry out the task it is meant to do, because, in the worst
case, the system was programmed to do it, since programming was proposed equivalent to
education, the statement becomes true by definition.
But in the interest of this chapter, how does having knowledge take experience to the next
level? From section 2 it can be determined that next level experience starts when the system
can extrapolate what was learnt in one problem and use that to solve something else, and it
ends when the system has evaluated the level of success on solving the problem. Then,
knowledge of other problems is useful when using next level experience. But as experience
goes up on level, so does knowledge, because by definition, if there is experience, the
information achieved by it is knowledge.
A quick look on what could be seen in next level knowledge would throw probably some
algorithms and some indicators on how efficient it was under certain circumstances. There
would be an algorithm that would know how to choose and combine algorithms to solve
new problems, and there must certainly be an algorithm that would store procedures that
had effectively solved a problem. In this case, traditional machine learning algorithms and
any algorithm designed to specifically solve a problem becomes an essential component to
the algorithms found in next level knowledge.

www.intechopen.com

Taking Experience to a Whole New Level

59

People store information by creating interconnection between different neurons, part of that
information, which is consider knowledge, is actually information about the way people
carry out tasks. Some of it is fuzzy knowledge as the person knows that certain algorithm
works well under certain cases in a certain way, while other may not work as well. There’s
also deterministic knowledge of this kind, for example, the way a person writes; clearly
there is certainty that the algorithm for writing works every time.
Without the neurons’ connections the storing of information wouldn’t be possible, and
without storage, comparison, characterization and choosing are not feasible. One of the
reasons would be that there would be no knowledge (because there’s no information) about
the efficiency of an algorithm, so there would be no factors in which to base the choice other
than randomness; there would also be no information to compare any two algorithms and
no information about any algorithm could be generated because it would be immediately
forgotten.
As in people, machines have various methods to store information. From the simpler latch
or flip-flop all the way trough to quantum dots (Stick, Sterk, Monroe, 2007) and
buckyballs(Anderson, 2007) passing by registers, and more traditional R.A.Ms, R.O.Ms, and
magnetic hard drives. Although some neuroscientist despise the idea of comparing the
human brain to a computer, some similarities can be pointed out; for instance, the “natural
instinct” or “born instinct” can be compared to the functionality of the ROM in the
computer, the short term memory to the RAM, and the long term memory to the hard drive.
Information in the brain seems to be stored in different sectors of the brain, depending of
where it comes from or what it does; in a system, the information also has to be structure to
achieve functionality.
By design artificial systems have a “natural” partition, in one hand there’s the program
memory while on the other is the data memory. In a way, this separates the “how to” from
information, as mentioned before a program is knowledge achieved through “education” so
this basic natural partition could be sufficient in some cases. However, the downside of this
storage strategy is that the size of program memory is usually limited. This lack of space
obligates to simplify algorithms and use only a small set of them. It also implies that the
complexity of the higher level algorithms (HLA) is reduced to simple lookup tables as the
actual algorithms could not be changed or manipulated.
In modern computing systems this lack of capacity is a matter of the past, today it is very
inexpensive to have large amounts of memory available. This means a large number of
programs and a large amount of information could be made available to a CPU or the
processing unit of choice. Under this circumstances, HLA do not have to be limited to a look
up table, they can be very sophisticated algorithm that could spawn new versions of basic
level algorithms (BLA).
It is clear at this point that in order to have knowledge, there has to be a storage system.
And such storage system has to be capable not only of storing data, but it has to be able to
store algorithms as well, and if the HLA are sophisticated enough, it must allow them to
manipulate the algorithms.
There are three characteristics intrinsic to a storage system of any kind. First of all it must
have an appropriate capacity, not too much that the system would have trouble carrying the
extra space not too little that algorithms could not work or be worked around easily. And
second, the storage system has to be fast, even it means that it must compensate for latencies
associated to slow media, it also means that it needs to be organized so it will find the data
or algorithm that the HLA is looking for almost immediately. Last but actually the most

www.intechopen.com

 Machine Learning

60

important, the storage system has to allow algorithm modification; with ever increasing
complexity a good HLA could evolve an algorithm with time, so it is important to allow for
such type of action over the algorithm.
Based on the second characteristics, the way an algorithm is stored has a great impact on the
overall performance of the system. If the storage system is not fast enough, the system is
going to have critical waiting periods while it loads the next algorithm to execute, and if
such times are grater than the system’s natural response time. The system could become
unstable or collapse all together. Therefore it is crucial to structure the storage system to
have a fast response.

To execution

buffer

New or modified

algorithm

Copy of algorithm

Actual algorithm

Speed through

structure and

organization

Adequate size

Allow HLA and BLA

modification

Fig. 2. Storage system characteristics

4. Architectures that allow for higher level algorithms.

Any means of storage could be considered a valid architecture for HLAs; however, it is
important to keep in mind the three qualities associated for a good storage system for
knowledge. Furthermore, any architecture has to provide the means to evaluate or at least
have a grading mechanism to choose the appropriate algorithm for the given set of
circumstances.
Without evaluation there’s no experience to be achieved, because there wouldn’t be the
means to measure an improvement in certain task. In other words, if there is an HLA, it
needs to keep track of how well it has resolved the problems at hand with the BLAs,
meaning it needs to evaluate each BLA’s performance. So whether the evaluation is

www.intechopen.com

Taking Experience to a Whole New Level

61

embedded into the HLA or its part of the system design and it is made available to the HLA
as a service, it needs to be present.
Turning to the architectures, they can be divided into two groups, software architectures and
hardware architectures. Although software architectures are the easiest to implement and the
most familiar for developers, resent studies in hardware design are showing promising results.
Software based architectures have several advantages, for starters, must of the elements
needed to create them are intrinsic to an operating system or a program i.e. multi-thread
multi-process operations, file management or dynamic library loading. Other important
advantage is the level of possible manipulation; an algorithm can be disassemble and
assemble with changed properties. But the downside is that all that preparedness has a high
cost in size, operating systems usually take a lot of space in order to give all that
functionality as does the additional software.
In contrast, the speed achieved in hardware is dazzling, and with reconfigurable hardware
techniques, drastically changing algorithms is possible. The problem is that there’s a higher
cost in design time, because all the interfaces needed to use massive storage, and reconfigure
hardware have to be hard wired and hard coded; also there’s less portability to other
systems due to the hardware specificity.
Regardless of the technical issues that embrace each technology, it is important to take a
look at some examples as for different practical problems there’ll be a most appropriate
implementation.

4.1 Software architectures: using a file system.

Despite the operating system of preference, it is going to present the developer with a file
system. This File system allows the storage of massive amounts of information, and usually
lets you handle multiple storage media like USB memories or hard drives with ease.
Figure 3 illustrates the basic layout of an architecture based on a file system. The evaluation
subsystem could be an independent module; or as mentioned before, embedded in the HLA.
The file type of choice is a dynamically linked library that can be loaded and unloaded as
needed. The HLA is the entity that decides which algorithm to load based on the
information stored in the evaluation file. The execution module runs the algorithm
achieving a change on the system’s stat; the efficiency and accuracy of the operation is
measured by the HLA and the result is stored through the evaluation module.
The algorithms are recommended to be stored in compiled form, in other words in an
executable format, i.e. .dll for Windows operating systems. This ensures a faster execution
and allows the direct interaction with all of the systems’ services; also it allows the direct use
multi thread technology, leaving the responsibility of processor time assignment to the
operating system.
Interpreted formats, like a Matlab file, are not recommended for the BLA as they become
costly to execute because they have to load the interpreter. Also the algorithm has to use the
interface provided by the interpreter in order to access the system’s services, this usually has
an impact on performance and some services are restricted. Things like multi threading
depend exclusively on the interpreter of choice so it is not always available. In (Lopera,
2005) the Matlab algorithms always caused the execution time to default to the worst case.
When regarding direct algorithm manipulation by the HLA, a few things have to be taken
care of. First of all naming new libraries, the HLA has to keep track of the new libraries
created otherwise it might not keep an appropriate performance log and thus, it might not
use the newly created algorithms even if they turn out to be more efficient.

www.intechopen.com

 Machine Learning

62

Dynamically linked libraries

Statically linked libraries

Execution

module

HLA

Evaluation

System’s Status

Algorithm (File)

Selection

Algorithm

Performance Record

File

System

Fig. 3. Basic layout of file system based architecture

Algorithm manipulation is easier to do in interpreted formats because is a natural way to

partition and mix functionalities, in compiled formats, it requires more steps but it can be

done, weather is combining at a source file level and recompiling, or mixing in binary

format; which it hasn’t been tested and requires a profound knowledge of the binary

structure of the compiled library. This also means that the HLA has to keep track of what

source code belongs to which library.

One of the advantages of file system based architecture, especially when using compiled
format, is that the system will only load what ever algorithm is executing and the system’s
services, nothing else, so it can be very efficient in respect to memory usage.
By designed, a file system complies with the characteristics proposed for knowledge
storage; however is the responsibility of the HLA to keep the order and structure of the file
system. A poorly designed HLA can end up clogging the file system surrendering it
inefficient and ultimately halting the system. Other advantage of the file system is its
portability; the hardware architecture is some what transparent, as long as it supports the
operating system: it will support the file system.
The disadvantages lie with the evaluation module; because is a file based module, all
searches have to be carried on within files, so a lot of searching and updating functions have
to be written in order to allow the HLA to effectively evaluate and choose BLAs.

4.2 Software architectures: databases

The database architecture is an expansion of the file system architecture; it seeks to improve

where the file system presents its most weaknesses. It also takes care of the evaluation

structure, which allows having multiple HLAs that share the same information about the

algorithms and simplifies overall HLA development.

A database is designed to store information, and as such it allows storage of multiple types
of information in an orderly fashion; its internal structure is designed to relate information
between tables so it facilitates data management and storage structure, furthermore, it also
specializes on information retrieval; it is designed to fetch huge amounts of information in
short periods of time. This makes it ideal to take care of storing the algorithms in binary

www.intechopen.com

Taking Experience to a Whole New Level

63

form as well as in source code form, associating all sorts of parameters that allow the HLA
to choose the best algorithm for a more complex context.
Figure 4 illustrates a general architecture, in this case the HLA works with the database to
manipulate and evaluate the stored algorithms, once it has chosen one, it retrieves it and
saves it to the file system for execution. This because most operating systems don’t allow
executing information that is considered data, except for executable files on the file system.

Dynamically linked libraries

Statically linked libraries

Execution

module

HLA

Evaluation Table

Algorithm Table

System’s Status

Algorithm Performance Record

Algorithm Selection

Algorithm Manipulation

File

System

Data

Base

Save Algorithm to file

SQL statements

Fig. 4. Basic layout for the database architecture

As mentioned before, the database improves performance and facilitates the job of the
HLAs, at the cost of having to load the database server which implies some memory usage
and processor time; however for most systems based on pc computers this is not a problem.
The advantages outweigh the cost. In (Lopera, 2007) there is an interesting analysis about
the pros and cons between both architectures.

4.3 Software architecture: when space is limited

This type of architecture is considering systems that are developed using microcontrollers
where access to memory resources is limited and no operating system is available or does
not have file system capabilities much less a database server.

Routines

Execution

module

HLA

Evaluation

System’s Status

Algorithm Performance Record

Memory

Bank

Fig. 5. basic layout for limited space architectures

www.intechopen.com

 Machine Learning

64

In this case HLA must have embedded the evaluation module; it should work over a

memory area, keeping a rather simple record of performance and link to the respective

program counter’s position of each routine. It is recommended that the routines be

constructed in an interrupt basis so in that way they’ll return handle to the HLA so it will be

able to monitor the system status and the routine’s performance.

To achieve some level of routines manipulation they should be parameterize, in that way
the HLA can modify the parameters to fine tune the routine’s efficiency.

4.4 Hardware architectures: reconfigurable hardware

A typical architecture for reconfigurable hardware is the cooperation of a processor unit

with a programmable electronic device (PED) as PSOC or FPGA. In this configuration the

processor has the responsibility of programming the PED, and for that, the processor uses

storage memory to store the binary files that contain the programming sequences, usually

downloaded in to the PED through JTAG.

Processor running the HLA

Evaluation

Storage

Memory

Reconfigurable

Hardware

(FPGA CPLD etc)
Inputs Outputs

Hardware Programming

Interface

Fig. 6. basic layout for reconfigurable hardware architectures

In this case there are several configurations that can be carried out, and they all depend on

the capacity and speed of the processor as well as the PED. For instance the evaluation

module can be run at the processor along with the HLA or can be programmed and

configured in the PED so it will match its internal configuration and facilitate performance

measurement.

The HLA is recommended to be executing in the non-reconfigurable part of the system as it

is pointless to load and reload every time the PED has to go through a programming. This

takes up some time, and could compromise system’s stability.

Some of this configurations support small operating systems, this operating systems could

run small database servers, in this case leaving the BLA to be implemented at hardware

level. This certainly has some performance issues that have to be evaluated based on each

specific application.

www.intechopen.com

Taking Experience to a Whole New Level

65

One of the advantages of this architecture is that PED have become interestingly complex
and powerful as they have grown in capacity, mixing microcontrollers with analog cells and
digital cells. This resource availability can be used to implement high performance BLAs
using very up to date design techniques.

4.5 Hardware architectures: non reconfigurable hardware

Not all types of algorithms are worth the trouble of implementing at a hardware level. In
most cases due to the repetitiveness and the sequential nature of its internal operations a
software architecture is more suitable. Even though, parallel processing, state machines, and
other hardware design techniques can be embraced to implement powerful solutions.

Hardware HLA

Evaluation subsystem

Memory

Bank

Hardware BLA

subsystem

id=n

Hardware BLA

subsystem

id=0

O
u

tp
u

t

M
u

ltip
le

xe
r

In
p

u
t d

e
m

u
ltip

le
xe

r

o
r B

u
ffe

rInputs Outputs

System

State

inputs Subsystem

selector

Performance

measuring

Outputs

Fig. 7. basic layout of non reconfigurable hardware architectures

The way this architecture works is as follows: The HLA controls the output multiplexer and
input buffer (or demux) it also must enable the chosen subsystem that will operate over the
inputs and produce the appropriate outputs. This choice is based on the information stored
in the memory bank. The evaluation subsystem is constantly monitoring the system’s state
inputs and the outputs selected to measure the hardware algorithm’s (HA) performance; it
also communicates the results to the HLA which in turn stores that information into the
memory bank.
The hardware HLA, from the hardware design point of view, could be conceived as the
control unit of the system. The evaluation is considered a separate module in this
architecture because based in good hardware design strategies modularity is enforced and

www.intechopen.com

 Machine Learning

66

since its job is so distinctly clear and does not mix with any other process the HLA might be
doing. The input buffer has to be designed so it will present in adequate form the inputs to
the HBLAs, just wiring every system input to the HBLA’s input might encounter fan-in, fan-
out or loading issues. The output multiplexer is pretty straight forward, the only concern is
the signal types, in which case, an appropriate multiplexer has to be designed.
Unfortunately this architecture is the most expensive to implement and the most keen to
present problems do to implementation, i.e. wiring and signal coupling issues. Despite its
cost and arduous construction, it is worth while presenting this architecture as it illustrates
how the HLA can be taken to the must basic level. It also reinforces the following concept:
the importance of basic level modularity, which is going to be presented in more detail in
section 5. In other words, regarding HBLAs inputs and outputs, they all have to talk the
same languages, since they will be connected to the same interfaces; this becomes an
important design restriction.

4.6 Remarks

The presented architectures show some alternatives of how to implement HLA and the
evaluation mechanism, which are necessary for higher level experience. In general, Figure 8
shows a basic hierarchical structure of how to design an architecture that is considered HLA
enabled.

HLA

BLA BLABLA BLA

Input / Output signal coupling

Service ServiceService Service

P
e

rf
o

rm
a

n
ce

 e
va

lu
a

to
r

Fig. 8. general architecture

Service based design is crucial for these types of architectures. This way, each BLA knows
exactly how to talk and listen to a system service. It also allows the execution of multiple
BLA that use independent services at any one time and simplifies the design of the BLA as it
only needs to interface with services it requires.

5. How to design robots with Higher Level Algorithms

This section analyses the design procedure of a mobile robot, it does not design a robot itself
but assumes that there is certain mechanical infrastructure, hardware, and even software at
a service level. The center idea is to structure the general architecture at a high level. For this
we assume that the robot is at an advanced stage, in other words the first elements of the
design process have been taken care of, the basic physical structure, the control system and
electronics of the individual elements like motors, arms, cameras, etc are up and running.

www.intechopen.com

Taking Experience to a Whole New Level

67

5.1 The robot

BoBoT, which is going to be the robot’s name, has three main service subsystems: the first
one consist of a set of four independently driven wheels; second, 2 grippers each mounted
on a arm with 2 sections and 2 degrees of freedom for each joint (3 in total); and third it has
a bundled dual camera system with pan, tilt and zoom capabilities. The brain of the
operation is going to be a laptop system and the database architecture is going to be used.
BoBoT is also equipped with a series of sensors that complement the basic instrumentation
used to achieve control of the service subsystems:
- A three axis accelerometer

- An up down sensor.
- An applied force sensor for the arms.
- A battery charge meter.
- A GPS

Figure 9, Figure 10 and Figure 11 show the black box models of the service subsystems

Engine Subsystem

Electric Engine

power

Actual

RPM

Desired speed

(m/s)

Desired RPM

Direction

Fig. 9. Black box diagram of the engine subsystem

The engine subsystem has two ways of operation: it can turn by specifying an actual desired
speed in meter per second; the engine will turn in the direction implied by the speed’s sign.
The other way is to establishing the RPMs and a direction. To specify which input to listen
to, the unwanted one has to be set to 0. If not, desired speed prevails. In turn, the engine
subsystem’s outputs inform of the power given to the motor and the measured RPM s.

Dual camera subsystem

Camera 1 Digital

video stream

Camera 2 Digital

video stream

Panning

position

Tilt position

Zoom aperture

Fig. 10. Black box diagram of de dual camera subsystem

To operate the dual camera subsystem it is sufficient to specify the position in the pan and
tilt axis, and how much zoom is desired, the cameras can not be controlled separately. The
outputs are the two video streams in a mildly compressed digital format.
To use the arm it is important to understand that the grip operation is independent of arm
operation. The grip has two ways of operation: one is by establishing a desired action and a
speed of the action, i.e. “close” “fast” and the other is by establishing the action and the
forced to be applied, i.e. “close” “hard”. In the first example, the grip will close fast and

www.intechopen.com

 Machine Learning

68

apply maximum force, in the second it will close slowly until it reaches the desired applied
force. The system will constantly give out the grip status, i.e. opened, opening, closed,
closing, and the actual force applied.

Arm subsystem

Arm position

Joint position

Joint limit

reached

Grip status

Grip force

Arm position

Joint speed of

movement

Joint direction

Joint position

Grip operation

Grip speed

Grip force
Signal

Signal Array

Fig. 11. Black box diagram of arm subsystem

The arm can be operated in three different ways: In the first one, the grip can be positioned
in a 3D space with origin at the shoulder. The second way, allows positioning each joint
accordingly. And at last, a joint speed and direction can be specified in order to achieve
constant movement. And as outputs there are: the grips position with respect to the
shoulder, joint position in their local coordinates, and an indicator if any of the joint’s limit
sensors was reached.
BoBoT has two arm subsystems, 4 engine subsystems and 1 dual camera subsystem.

5.2 The things BoBoT can do:

As part of the design process it is important to know precisely what it is expected of the
robot. This section assumes that the robot has to carry out the following actions:
- Vision based navigation with global positioning
- Vision based navigation with inertial positioning
- Vision based navigation with visual terrain recognition for positioning
- Wide turns, forward and backwards.
- Rotations around wheel base center
- Pick up and place delicate objects.
- Pick up and place sturdy object.
- Variable speed and direction.
- Movement with the arms
- Swing
- …
These actions also show that there are commonalities between them, and also give the sense
that there is more ways to achieve success, or that they share a common goal, i.e. the first three,
the ones using vision based navigation, share the goal of moving from one point to another.

www.intechopen.com

Taking Experience to a Whole New Level

69

The next step is to identify the possible BLAs, as mentioned before the BLAs have to be

extremely modular, so the expected actions not necessarily become BLAs. For instance, to

pick up an object BoBoT will have to use vision to identify the object’s position and use that

position to place the grip at a gripping distance, regardless if it is delicate or sturdy. Thus,

there are at least three BLAs, one for object location, one for arm movement, and one to

identify if the object is delicate or not so BoBoT can actually grab it.

There can be multiple versions of the BLAs, in the picking up example, moving the arm

could be done by controlling the trajectory in a 3D space assuming the trajectory is clear, or

also assuming a clear trajectory but monitor the arm’s applied force sensor to detect

collision, or use the cameras to check for obstacles. If used the latter, the importance of

modular service design is critical as the camera would be used by two BLAs. When using

HLAs, there’s no need to choose one of these three approaches to the same problem, instead

you can store all three BLAs and have the evaluation subsystem evaluate them under

different circumstances.

To further reassure the importance of modular service design, at least three BLAs can be

designed to use the arm modules, one for each input pair, one for 3d positioning, one that

uses joint positioning, and other one that uses joint movement. In this case it is simple to

develop the BLA, but if instead there were no good service design, each BLA would have to

deal with problems related to the direct control of the arm, and maybe wouldn’t be as easily

interchangeable or their size and complexity would increase.

Once identified all the BLAs with their different versions, the next step is to write them,

compile them and individually test them. Also the BLAs have to be tested in group as the

way they are expected to be used and correct any interfacing problem that might result from

things like resource sharing.

5.3 The storage strategy

Having tested all the BLAs, it is needed to gather the following information:
- Excluding BLAs, those that perform different tasks but can not run at the same time.
- BLAs that perform the same task but in different versions
- Qualifiers of BLA performance
- Environment status variables in which each BLA out performs the others in the same

task.
- BLA parameters if any.
- BLAs needed to perform each action
- Qualifiers of action’s performance; how efficient was BoBoT to perform the task.
- Switching task times, it is easier to manage system stability at a HLA level, but it only

matters when switching times are really critical.
- Which subsystems are used by each BLA
If at this point some incongruence is found among the BLAs they must be corrected before

continuing because they might induce critical changes that force to repeat the previews

steps.

With this information the database tables can be created; it is recommended but not strictly

necessary to: 1 BLA table, 1 BLA parameters table, 1BLA evaluation table, 1 action table, 1

action evaluation table. For the action table it is recommended to use a code, if space is

sufficient an extra table could be used to store that code, but it would only be useful for the

www.intechopen.com

 Machine Learning

70

developer or generating reports, it wouldn’t have any effect on the HLA. Figure 12 shows a

possible table setup.

Exclussion

Task

Source_code

Binary_code

Name

ID

BLAs

type

value

BLA

Name

ID

BLAs_Parameters

Env_Sta_Var n

Env_Sta_Var …

Env_Sta_Var 1

Qualifier …

Qualifier n

Qualifier …

Qualifier 1

BLA

BLAs_evaluation

Sequence

Action_ID

BLA

Action_BLA

Env_Sta_Var 1

Env_Sta_Var …

Env_Sta_Var n

Env_Sta_Var …

Qualifier 1

Qualifier …

Qualifier n

Qualifier …

Action_ID

Action_Eval

Group

Name

ID

Actions

Fig. 12. Table reference diagram

In this setup, there’s the Actions table that stores the coding but the additional field of group

allows identifying which actions are the same, so they can be evaluated and associate

different, but equivalent, BLAs. Also the Actions_Eval table stores information about the

Environment Status variables so the HLA can track which combination of BLAs worked best

for those conditions of the environment.

In case of using other HLA architecture, the same steps can be followed, only the storage

structuring has to be adequate to the choice.

5.6 Finally the HLA

The HLA could have several roles in BoBoT, it could be in charge of fulfilling a mission,

deciding the best way to successfully complete it. In this role the HLA would work with the

Action tables evaluating and calculating constantly course of action, and how far it is to

completion.

Other role the HLA could assume is to take a course of action from a user, and follow it; in

this case the HLA would work closely with the BLA_Evaluation table to choose the best BLA

for the given conditions and course of action. A course of action can be expressed in terms of

the Actions table, the corresponding BLA retrieved from the Action_BLA table and the best

www.intechopen.com

Taking Experience to a Whole New Level

71

BLA from the BLA_evaluation searching among the algorithms that share the same value in

the task field and are none excluding.

It is important to keep clear the role the HLA is going to take and how is going to take

advantage of the tables, if several roles are detected it is a clear sign that the HLA has to be

broken into modules, one for each role, and each module assume the appropriate hierarchy.

If it turns out that there’s something on top of the HLA, those on top could be considered

next level HLAs.

Once the HLA’s role is established, the type has to be chosen, and there are two types HLA:

Those that have programmatic responses, and those that have learnt responses. HLAs with

programmatic responses are those algorithms that have transfer function or some

mathematical equation that relates the inputs to the outputs and are programmed. In the

second type, the HLA learns from experience, it tries actions, evaluates performance and

start to mix accordingly to achieve better results. Thus, this type of HLA could be any of

several machine learning algorithms, working with other algorithms and a sub set of inputs.

Into what BoBoT is concerned, BLA of al sorts could be written, i.e. to use the four engines
individually, in pairs or all together, to use each hand separately or gracefully coordinated,
visually inspect the world surrounding him and use vision for a diversity of tasks. He
‘would be able to successfully complete hundreds of mission of all sorts.
The level of success can be associated to the complexity or smartness of the HLA, for

instance, a very programmatic HLA that was designed for a very specific and stable

environment would certainly fail on dynamic environments. However, an adaptive HLA

that takes record of how the environment affects its BLA’s performance is more likely to

succeed.

One of the advantages of using HLAs is that they force the design to be so modular that new

BLA could be introduced and the previous work wouldn’t be wasted, it will let the HLA

evaluate and choose and optimize procedures, and user machine interfacing is done at a

more natural way since it could be done by describing actions.

The storage strategy is open for the designer to best choose the tables or structures he needs,

and allows to be as sophisticated as to have several levels of associations, or as simple as a

few register in the memory bank of a microcontroller.

6. Being practical, final remarks.

In this chapter the discussion has focused on the how to and the what, but it is important to

reflect on the “if we should” or the “is it worth it”.

A NASA rover sent to mars, even though it seems a promising scenario, is not the best

candidate for HLA, at the first glance, because putting it on mars cost a lot of money; and

just to have it start trying stuff that won’t work and that might cause an unpredictable

failure it would be too risky. However, if once the rover has acquired the relevant

information materials pictures etc. putting it to try out BLA becomes interesting, at least

more interesting than letting it rot there.

The horse gait problem proposed in (Lopera, 2007) which is actually an energy optimization

problem is a good example of the power of modularity since each leg is driven differently

on each gate, but is worth the trouble of installing an HLA? There’s a trick to this problem,

and that is that depending on the terrain, especially on its slope, the gait has to be modified

www.intechopen.com

 Machine Learning

72

drastically thus its energy consumption. Furthermore, if the gait algorithm (BLA) can be

parameterized in order to adjust leg position and rhythm, the HLA becomes a powerful tool

since it will start evaluating and adjusting those parameters so the horse would be able to

keep doing the gate. But as far as the optimization problem, there would be the need to

generate an additional level in which to operate in terms of the speed achieved by each gate,

the energy it consumes and the track’s layout.

In an industrial application, there’s no need to have HLA, because once the process is

optimized it would operate like such. The process sequence is usually determined by its

nature and there are optimization techniques and algorithms that do this type of process

fine tuning rather well.

In multiprocessor/multicore architectures HLAs could be used to supervise the execution of

several learning algorithms in parallel to find optimums in highly complex functions. Since

it can analyze the topology of the function, it could use the best optimization algorithm for

the area of search. In that way, it could also be used to automatically evaluate classifying

algorithms.

The appropriate scenarios for HLA are those that present high environment variability, or

are highly unstructured, have several possible BLAs, and there’s good computational power

and memory availability.

The use of HLAs serves as implementation to the problem presented by (Van de Velde 1995)

as to how internalize representations. As he puts it in his child example, the walk by holding

a hand is an infant BLA that the HLA will perfect until it has a walking by own means BLA,

thus constituting the internalization.

7. Future research

There’s an interesting discussion, which this chapter purposely avoided getting in to, about

if these architectures could be considered as epistemological. It would be interesting to

compare what experts in this area have to say.

One line of research that emerges naturally from this proposed architectures, is the

involvement of other natural concepts that participate in the experience process, for

instance: What use would have concepts like pain or tiredness for a system that has the

capacity to choose the way to solve a problem? How could they be implemented and

interconnected with the presented architectures?

The presented architectures have a strong hardware based, reality measuring and affecting
feeling to it, since they where thought out for physical systems as mobile robots and such.
However, it would be interesting to measure the effect of the architecture in purely virtual
systems. How would it affect performance compared to more traditional implementations?
And the last couple of question that emerges from this line of reasoning are: How to code
creativity? And would we be able to create a HLA that has creativity as one of it biggest
traits?

8. Conclusion

This chapter described a few architectures that support a higher level of experience;

however they are not the only architectures possible. Any architecture that evaluates and

www.intechopen.com

Taking Experience to a Whole New Level

73

records the performance of basic modules and uses that information to decide which

module to use or how to adjust the module’s parameters is considered an architecture that

supports higher level experience.

It is clear that the intricate relationship between knowledge and experience can be

constructed on an artificial system. Furthermore, it can be generated by the system if its

architecture and available resources allow it. Unfortunately, the power of the relationship

between knowledge and experience and how the system embraces that power is only as

good as the HLA allows it to be. In other words, a lookup table HLA would never be

able to undertake tasks for which the environment parameters are not within the lookup

table.

The architecture has to be carefully chosen for the resources available and the complexity

level of the system. As mentioned before, their use in invariant environments, invariant

systems and where no learning is involved, becomes a waste of resource and could

compromise development time. But, in the other hand, there is little or no knowledge

about the environment and it is desired to maximize mission scope, then architectures

that support next level experience could simplify the problem dramatically. This

simplification occurs in part because the designers do not have to resolve all the possible

problems the system could encounter. Instead they solve basic issues, and leave problem

solving to the system.

This type of architecture meets the definition by (Van de Velde 1995) of intelligent systems.

As it has cognitive knowledge of its environment as evaluation criteria for the BLAs

obtained through the inputs subsystems, and uses that knowledge to determine appropriate

course of action, establishing a behavior in its environment.

9. References

Josh Bongard, Victor Zykov, Hod Lipson, (2006) “Resilient machines through Continuous

self-modeling”, Science 17 November 2006: Vol. 314. no. 5802, pp. 1118 – 1121, DOI:

10.1126/science.1133687

Hani Hagras, Martin Colley, Victor Callaghan, (2001) “Life Long Learning and Adaptation

for Embedded agents operating in unstructured Environments”, IFSA World

Congress and 20th NAFIPS International Conference, 2001. Joint 9th Volume

3, Page(s):1547 - 1552 vol.3.

Carl G. Looney (1997), Pattern Recognition Using Neural Networks, oxford university press.

Luis I. Lopera, (2005) “S.N.A.P.A. ‘Supervision, navigation and planning architecture’:

arquitectura de navegación, planificación y navegación para un dirigible no

tripulado, Tesis de maestría, Universidad de los Andes, Bogotá Colombia, 2005.

Lopera, L.I.; (2007) “Algorithms Storage System”, Electronics, Robotics and Automotive

Mechanics Conference, 2007. CERMA 2007 25-28 Sept. 2007 Page(s):370 – 375

Digital Object Identifier 10.1109/CERMA.2007.4367715

Anderson M, (2008) “Buckyballs to boost flash memory”, IEEE Spectrum, June 2008, Page 15

Daniel Stick, Jonathan D. Sterk, and Christopher Monroe, (2007) “The trap technique toward

a chip based quantum computer”, IEEE Spectrum ONLINE, First Published August

2007.

www.intechopen.com

 Machine Learning

74

Van de Velde W, (1995) “Cognitive Architectures - From Knowledge Level To Structural

Coupling”, L. Steelss (Ed.) The biology and technology of intelligent Autonomous

Agents. NATO ASI Series, Series F: Computer and systems Sciences, Vol. 144, pp.

197-221. Springer, Berlin

www.intechopen.com

Machine Learning

Edited by Abdelhamid Mellouk and Abdennacer Chebira

ISBN 978-953-7619-56-1

Hard cover, 450 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Machine Learning can be defined in various ways related to a scientific domain concerned with the design and

development of theoretical and implementation tools that allow building systems with some Human Like

intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through

experience.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luis Ignacio Lopera (2009). Taking Experience to a Whole New Level, Machine Learning, Abdelhamid Mellouk

and Abdennacer Chebira (Ed.), ISBN: 978-953-7619-56-1, InTech, Available from:

http://www.intechopen.com/books/machine_learning/taking_experience_to_a_whole_new_level

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

