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1. Introduction 

Real world dilemmas, and especially industry related ones, are set apart from academic ones 
from several basic points of views. The difference appears since definition of the “problem’s 
solution” notion. In fact, academic (called also sometime theoretical) approach often begins 
by problem’s constraints simplification in order to obtain a “solvable” model (here, solvable 
model means a set of mathematically solvable relations or equations describing a behavior, 
phenomena, etc…) (Madani, 2008). If the theoretical consideration is a mandatory step to 
study a given problem’s solvability, for a very large number of real world dilemmas, it 
doesn’t lead to a solvable or realistic solution. Difficulty could be related to several issues 
among which: 
- large number of parameters to be taken into account (influencing the behavior) making 

conventional mathematical tools inefficient,   
- strong nonlinearity of the system (or behavior), leading to unsolvable equations, 
- partial or total inaccessibility of system’s relevant features, making the model 

insignificant, 
- subjective nature of relevant features, parameters or data, making the processing of 

such data or parameters difficult in the frame of conventional quantification, 
- necessity of expert’s knowledge, or heuristic information consideration, 
- imprecise information or data leakage. 
Examples illustrating the above-mentioned difficulties are numerous and may concern 
various areas of real world or industrial applications. As first example, one can emphasize 
difficulties related to economical and financial modeling and prediction, where the large 
number of parameters, on the one hand, and human related factors, on the other hand, make 
related real world problems among the most difficult to solve. Another illustrative example 
concerns the delicate class of dilemmas dealing with complex data’s and multifaceted 
information’s processing, especially when processed information (representing patterns, 
signals, images, etc.) are strongly noisy or involve deficient data. In fact, real world and 
industrial applications, comprising system identification, industrial processes control, 
systems and plants safety, manufacturing regulation and optimization, pattern recognition, 
communication networks (complex routing, large communication networks management 
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and optimization, etc.) (Mellouk, 2008a), are often those belonging to such class of 
dilemmas. 
If much is still to discover about how the animal’s brain trains and self-organizes itself in 
order to process so various and so complex information, a number of recent advances in 
“neurobiology” allow already highlighting some of key mechanisms of this marvels 
machine. Among them one can emphasizes brain’s “modular” structure and its “self-
organizing” capabilities. In fact, if our simple and inappropriate binary technology remains 
too primitive to achieve the processing ability of these marvels mechanisms, a number of 
those highlighted points could already be sources of inspiration for designing new machine 
learning approaches leading to higher levels of artificial systems’ intelligence (Madani, 2007).  
In this chapter, we deal with machine learning based modular approaches which could offer 
powerful solutions to overcome processing difficulties in the aforementioned frame. If the 
machine learning capability provides processing system’s adaptability and offers an 
appealing alternative for fashioning the processing technique adequacy, the modularity may 
result on a substantial reduction of treatment’s complexity. In fact, the modularity issued 
complexity reduction may be obtained from several instances: it may result from 
distribution of computational effort on several modules; it can emerge from cooperative or 
concurrent contribution of several processing modules in handling a same task; it may drop 
from the modules’ complementary contribution (e.g. specialization of a module on treating a 
given task to be performed).  
A number of works dealing with modular computing and issued architectures have been 
proposed since 1990. Most of them associate a set of Artificial Neural Networks (ANN) in a 
modular structure in order to process a complex task by dividing it into several simpler sub-
tasks. One can mention active learning approaches (Fahlman & Lebiere, 1990), neural 
networks ensemble concept proposed by (Hanibal, 1993), intelligent hybrid systems (Krogh 
& Vedelsby, 1995), Mixture of experts concept proposed by (Bruske & Sommer, 1995) and 
(Sung & Niyogi, 1995) or structures based on dynamic cells (Lang & Witbrock, 1998). In the 
same years, a number of authors proposed multi-modeling concept for nonlinear systems 
modeling, where a set of simple models is used to sculpt a complex behaviour 
(Goonnatilake & Khebbal, 1996), (Mayoubi et al., 1995), (Murray-Smith & Johansen, 1997), 
(Ernst, 1998)) in order to avoid difficulties (modeling complexity). However, it is important 
to remind that the most of proposed works (except those described in the four latest 
references) remain essentially theoretical and if a relatively consequent number of different 
structures have been proposed, a very few of them have been applied to real-world 
dilemmas solution. 
The present chapter focuses those machine learning based modular approaches which take 
advantage either from modules’ independence (multi-agent approach) or from self-
organizing multi-modeling ("divide and conquer" paradigm). In other words, we will 
expound online and self-organizing approaches which are used when no a priori learning 
information is available. Within this frame, we will present, detail and discuss two 
challenging applicative aspects: the first one dealing with routing optimization in high 
speed communication networks and the other with complex information processing. 
Concerning the network routing optimization problem, we will describe and evaluate an 
adaptive online machine learning based approach, combining multi-agent based modularity 
and neural network based reinforcement learning ((Mellouk, 2007), (Mellouk, 2008b)). On 
the side of complex information processing, we will describe and evaluate a self-organizing 
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modular machine learning approach, combining "divide and conquer" paradigm and 
“complexity estimation” techniques that we called self-organizing “Tree-like Divide To 
Simplify” (T-DTS) approach ((Madani et al., 2003), (Madani et al., 2005), (Bouyoucef et al., 
2005), (Chebira et al., 2006)).  
This chapter is composed by four sections. The second section presents the state of the art of 
modular approaches over three modular paradigms: "divide and conquer" paradigm, 
Committee Machines and Multi Agent systems. In section 3, a neural network based 
reinforcement learning approach dealing with adaptive routing in communication networks 
is presented. In the last section, dealing with complex information processing, we will detail 
the self-organizing Tree divide to simplify approach, including methods and strategies for 
building the modular structure, decomposition of databases and finally processing. A sub-
section will present a number of aspects relating “complexity estimation” that is used in T-
DTS in order to self-organize such modular structure. Evaluating the universality of T-DTS 
approach, by showing its applicability to different classes of problems will concern other 
sub-sections of this fourth section. Global conclusions end this chapter and give further 
perspectives for the future development of proposed approaches. 

2. Modular approaches 

Apart from specialized "one-piece" algorithm as explicit solution of a problem, there exist a 
number of alternative solutions, which promote modular structure. In modular structure, 
units (computational unit or model) could either have some defined and regularized 
connectivity or be more or less randomly linked, ending up at completely independent and 
individual units. The units can communicate with each others. The units’ communication 
may take various forms. It may consist of data exchange. It may consist of orders exchange, 
resulting either on module’s features modification or on its structure. Units may espouse 
cooperative or competitive interaction. A modular structure composed of Artificial Neural 
Networks is called Multi Neural Network (MNN). 
We will present here three modular paradigms that are of particular interest: "Divide and 
Conquer" paradigm, Committee Machines and Multi Agent Systems. "Divide and conquer" 
paradigm is certainly a leading idea for the tree structure described in this section. 
Committee machines are in large part incorporation of this paradigm. For multi-agent 
approach the stress is put on the modules independence. 

2.1 “Divide and Conquer" paradigms 
This approach is based on the principle "Divide et Impera" (Julius Caesar). The main frame 
of the principle can be expressed as: 
- Break up problem into two (or more) smaller sub-problems; 
- Solve sub-problems; 
- Combine results to produce a solution to original problem. 
The ways in which the original problem is split differ as well as the algorithms of solving 
sub-problems and combining the partial solutions. The splitting of the problem can be done 
in recursive way. Very known algorithm using this paradigm is Quicksort (Hoare, 1962), 
which splits recursively data in order to sort them in a defined order. In the Artificial Neural 
Networks area the most known algorithm of similar structure is Mixture of Experts (Bruske 
& Sommer, 1995). 
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Algorithmic paradigms evaluation could be made on the basis of running time. This is 
useful in that it allows computational effort comparisons between the performances of two 
algorithms to be made. For Divide-and-Conquer algorithms the running time is mainly 
affected by: 
- The number of sub-instances into which a problem is split; 
- The ratio of initial problem size to sub-problem size; 
- The number of steps required to divide the initial instance and to combine sub-

solutions; 
- Task complexity; 
- Database size. 

2.2 Committee machines 

The committee machines are based on engineering principle divide and conquer. According 
to that rule, a complex computational task is solved by dividing it into a number of 
computationally simple sub-tasks and then combining the solutions of these sub-tasks. In 
supervised learning, the task is distributed among a number of experts. The combination of 
experts is called committee machine. Committee machine fuses knowledge of experts to 
achieve an overall task, which may be more efficient than that achieved by any of the 
experts alone (Tresp, 2001). 
The taxonomy of committee machines could be as follows: 
- Static structures: Ensemble Averaging and Boosting; 
- Dynamic structures: Mixture of Experts and Hierarchical Mixture of Experts. 
Next several subsections will present the types of committee machines in detail. 

2.2.1 Ensemble averaging 

In ensemble averaging technique (Haykin, 1999), (Arbib, 1989), a number of differently 
trained experts (i.e. neural networks) share a common input and their outputs are combined 
to produce an overall output value y. 
 

 

Fig. 1. Ensemble averaging structure 

The advantage of such structure over a single expert is that the variance of the average 
function is smaller than the variance of single expert. Simultaneously both average 
functions have the same bias. These two facts lead to a training strategy for reducing the 
overall error produced by a committee machine due to varying initial conditions (Naftaly 
et al., 1997): the experts are purposely over-trained, what results in reducing the bias at 
the variance cost. The variance is subsequently reduced by averaging the experts, leaving 
the bias unchanged. 
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2.2.2 Boosting 

In boosting approach (Schapire, 1999) the experts are trained on data sets with entirely 

different distributions; it is a general method which can improve the performance of any 

learning algorithm. Boosting can be implemented in three different ways: Boosting by 

filtering, Boosting by sub-sampling and Boosting by re-weighing. A well known example is 

AdaBoost (Schapire, 1999) algorithm, which runs a given weak learner several times on 

slightly altered training data, and combining the hypotheses to one final hypothesis, in 

order to achieve higher accuracy than the weak learner's hypothesis would have.  

2.2.3 Mixture of experts  

Mixture of experts consists of K supervised models called expert networks and a gating 
network, which performs a function of mediator among expert networks. The output is a 
weighted sum of experts' outputs (Jordan & Jacobs, 2002). 
A typical Mixture of Experts structure is presented by figure 2. One can notice the K experts 
and a gating network that filters the solutions of experts. Finally the weighted outputs are 
combined to produce overall structure output. The gating network consists of K neurons, 
each one is assigned to a specific expert. 
The neurons in gating network are nonlinear with activation function that is a differentiable 

version of "winner-takes-all" operation of picking the maximum value. It is referred as 

"softmax" transfer function (Bridle, 1990). The mixture of experts is an associative Gaussian 

mixture model, which is a generalization of traditional Gaussian mixture model 

(Titterington et al., 1985), (MacLachlan & Basford, 1988). 

2.2.4 Hierarchical mixture of experts 

Hierarchical mixture of experts (Jordan & Jacobs, 1993) works similarly to ordinary mixture 

of experts, except that multiple levels of gating networks exist. So the outputs of mixture of 

experts are gated in order to produce combined output of several mixtures of expert 

structures. In figure 3 one can see two separate mixture of experts blocks (marked with 

dashed rectangles). The additional gating network is gating the outputs of these two blocks 

in order to produce the global structure output. 

 

Fig. 2. Mixture of Experts 
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Fig. 3. Example of hierarchical mixture of experts 

2.3 Multi agent systems 

Multi agent system is a system that compounds of independent modules called "agents". 
There is no single control structure (designer) which controls all agents. Each of these agents 
can work on different goals, sometimes in cooperative and sometimes in competitive modes. 
Both cooperation and competition modes are possible among agents (Decker et al., 1997). 
There is a great variety of intelligent software agents and structures. The characteristics of 
Multi Agent Systems (Ferber, 1998) are: 
- Each agent has incomplete information or capabilities for solving the problem and, 

thus, has a limited viewpoint; 
- There is no system global control; 
- Data are decentralized; 
- Computation is asynchronous. 
In Multi Agent Systems many intelligent agents interact with each other. The agents can 
share a common goal (e.g. an ant colony), or they can pursue their own interests (as in the 
free market economy). Figure 4 gives the classification of intelligent artificial agents 
considering their origin. 
Agents may also be classified according to the tasks they perform:  
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- Interface Agents - Computer programs using artificial intelligence techniques in order 
to provide assistance to a user dealing with a particular application. The metaphor is 
that of a personal assistant who is collaborating with the user in the same work 
environment (Maes, 1994). 

- Information Agents - An information agent is an agent that has access to at least one, 
and potentially many information sources, and is able to collect and manipulate 
information obtained from these sources to answer to users and other information 
agent’s queries (Wooldridge & Jennings, 1995). 

 

Fig. 4. Classification of intelligent artificial agents considering origin 

- Commerce Agents- A commerce agent is an agent that provides commercial services 
(e.g., selling, buying and prices' advice) for a human user or for another agent.  

- Entertainment Agents - Artistically interesting, highly interactive, simulated worlds to 
give users the experience of living in (not merely watching) dramatically rich worlds 
that include moderately competent, emotional agents (Bate et al., 1992). 

Agents can communicate, cooperate and negotiate with other agents. The basic idea behind 
Multi Agent systems is to build many agents with small areas of action and link them 
together to create a structure which is much more powerful than the single agent itself. 

2.4 Discussion 

If over past decade wide studies have been devoted to theoretical aspects of modular 
structures (and algorithms), very few works have concerned their effective implementation 
and their application to real-world dilemmas. Presenting appealing potential advantages 
over single structures, this kind of processing systems may avoid difficulties inherent to 
large and complicated processing systems by splitting the initial complex task into a set of 
simpler task requiring simpler processing algorithms. The other main advantage is the 
customized nature of the modular design regarding the task under hand. Among the above-
presented structures, the "Divide and Conquer" class of algorithms presents engaging 
faultlessness. Three variants could be distinguished: 
- Each module works with full database aiming a "global" processing. This variant uses a 

combination of the results issued from individual modules to construct the final 
system’s response. 

- Modules work with a part of database (sub-database) aiming a “local” but “not 
exclusive” processing. In this variant, some of the processing data could be shared by 
several modules. However, depending on the amount of shared data this variant could 
be more or less similar to the two others cases. 

 

Autonomous 
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- Modules work with a part of database (sub-database) aiming a “local” and “exclusive” 
processing. In this option, sub-databases are exclusive by meaning that no data is 
shared by modules. The final system’s result could either be a set of responses 
corresponding to different parts of the initial treated problem or be the output of the 
most appropriated module among the available ones. 

Tree-like Divide To Simplify Approach (described later in this chapter) could be classified as 
belonging to "Divide and Conquer" class of algorithms as it breaks up an initially complex 
problem into a set of sub-problems. However, regarding the three aforementioned variants, 
its actually implemented version solves the sub-problems issued from the decomposition 
process according to the last variant. In the next section, we present a first modular 
algorithms which hybridize multi-agents techniques and Q-Neural learning. 

3. Multi-agents approach and Q-neural reinforcement learning hybridization: 
application to QoS complex routing problem  

This section present in detail a Q-routing algorithm optimizing the average packet delivery 
time, based on Neural Network (NN) ensuring the prediction of parameters depending on 
traffic variations. Compared to the approaches based on Q-tables, the Q-value is 
approximated by a reinforcement learning based neural network of a fixed size, allowing 
the learner to incorporate various parameters such as local queue size and time of day, into 
its distance estimation. Indeed, a Neural Network allows the modeling of complex functions 
with a good precision along with a discriminating training and network context 
consideration. Moreover, it can be used to predict non-stationary or irregular traffics. The Q-
Neural Routing algorithm is presented in detail in section 3.2. The performance of Q-
Routing and Q-Neural Routing algorithms are evaluated experimentally in section 3.3 and 
compared to the standard shortest path routing algorithms.  

3.1 Routing problem in communication networks 

Network, such as Internet, has become the most important communication infrastructure of 
today's human society. It enables the world-wide users (individual, group and 
organizational) to access and exchange remote information scattered over the world. 
Currently, due to the growing needs in telecommunications (VoD, Video-Conference, VoIP, 
etc.) and the diversity of transported flows, Internet network does not meet the 
requirements of the future integrated-service networks that carry multimedia data traffic 
with a high Quality of Service (QoS). The main drivers of this evolution are the continuous 
growth of the bandwidth requests, the promise of cost improvements and finally the 
possibility of increasing profits by offering new services. First, it does not support resource 
reservation which is primordial to guarantee an end-to-end Qos (bounded delay, bounded 
delay jitter, and/or bounded loss ratio). Second, data packets may be subjected to 
unpredictable delays and thus may arrive at their destination after the expiration time, 
which is undesirable for continuous real-time media. In this Context, for optimizing the 
financial investment on their networks, operators must use the same support for 
transporting all the flows. Therefore, it is necessary to develop a high quality control 
mechanism to check the network traffic load and ensure QoS requirements. 
A lot of different definitions and parameters for this concept of quality of service can be 
found. For ITU-T E.800 recommendation, QoS is described as “the collective effect of service 
performance which determines the degree of satisfaction of a user of the service”. This 
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definition is completed by the I.350 ITU-T recommendation which defines more precisely 
the differences between QoS and Network Performance. Relating QoS concepts in the 
Internet are focused on a packet-based end-to-end, edge-to-edge or end-to-edge 
communication. QoS parameters which refer to this packet transport at different layers are: 
availability, bandwidth, delay, jitter and loss ratio. It’s clear that the integration of these QoS 
parameters increases the complexity of the used algorithms. Anyway, there will be QoS 
relevant technological challenges in the emerging hybrid networks which mixes several 
networks topologies and technologies (wireless, broadcast, mobile, fixed, etc.). 
In the literature, we can find the usage of QoS in three ways: 
- Deterministic QoS consists in sufficiently resources reserved for a particular flow in 

order to respect the strict temporal constraints for all the packages of flow. No loss of 
package or going beyond of expiries is considered in this type of guarantee. This model 
makes it possible to provide an absolute terminal on the time according to the reserved 
resources. 

- Probabilistic QoS consists in providing a long-term guarantee of the level of service 
required by a flow. For time-reality applications tolerating the loss of a few packages or 
the going beyond of some expiries, the temporal requirements as well as the rates of 
loss are evaluated on average. The probabilistic guarantee makes it possible to provide 
a temporal terminal with a certain probability which is given according to the 
conditions of load of the network. 

- Stochastic QoS which is fixed before by a stochastic distribution.  
Various techniques have been proposed to take into account QoS requirements (Strassner, 
2003). By using in-band or out-band specific control protocols, these techniques may be 
classified as follows: the congestion control (Slow Start (Welzl, 2003), Weighted Random 
Early Detection (Jacobson, 1988)), the traffic shaping (Leaky Bucket (Feng et al., 1997), Token 
Bucket (Turner, 1986)), integrated services architecture, (RSVP (Shenker et al., 1997), (Zhang 
et al., 1993)), the differentiated services (DiffServ (Zhang et al., 1993), (Bernet, 1998)) and 
QoS based routing. In this section, we focus on QoS routing policies.   
A routing algorithm is based on the hop-by-hop shortest-path paradigm. The source of a 
packet specifies the address of the destination, and each router along the route forwards the 
packet to a neighbour located “closest” to the destination. The best optimal path is selected 
according to given criteria. When the network is heavily loaded, some of the routers 
introduce an excessive delay while others are ignored (not expoited). In some cases, this 
non-optimized usage of the network resources may introduce not only excessive delays but 
also high packet loss rate. Among routing algorithms extensively employed in routers, one 
can note: distance vector algorithm such as RIP (Malkin, 1993) and the link state algorithm 
such as OSPF (Moy, 1998). These kinds of algorithms take into account variations of load 
leading to limited performances.  
A lot of study has been conducted in a search for an alternative routing paradigm that 
would address the integration of dynamic criteria. The most popular formulation of the 
optimal distributed routing problem in a data network is based on a multi-commodity flow 
optimization whereby a separable objective function is minimized with respect to the types 
of flow subject to multi-commodity  flow constraints (Gallager, 1977), (Ozdalgar et al., 2003). 
However, due their complexity, increased processing burden, a few proposed routing 
schemes could be accepted for the internet. We listed here some QoS based routing 
algorithms proposed in the literature: QOSPF (Quality Of Service Path First) (Crawley et al., 
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1998), MPLS (Multiprotocol label switching) (Rosen et al., 1999), (Stallings, 2001), (Partridge, 
1992), Traffic Engineering (Strasnner, 2003), (Welzl, 2003), Wang-Crowcroft algorithm 
(Wang & Crowcroft, 1996), Ants routing approach (Subramanian et al., 1997), Cognitive 
Packet Networks based on random neural networks (Gelenbe et al., 2002). 
For a network node to be able to make an optimal routing decision, according to relevant 
performance criteria, it requires not only up-to-date and complete knowledge of the state of 
the entire network but also an accurate prediction of the network dynamics during 
propagation of the message through the network. This, however, is impossible unless the 
routing algorithm is capable of adapting to network state changes in almost real time. So, it 
is necessary to develop a new intelligent and adaptive optimizing routing algorithm. This 
problem is naturally formulated as a dynamic programming problem, which, however, is 
too complex to be solved exactly.  
In our approach, we use the methodology of reinforcement learning (RL) introduced by 
Sutton (Sutton & Barto, 1997) to approximate the value function of dynamic programming. 
One of pioneering works related to this kind of approaches concerns Q-Routing algorithm 
(Boyan & Littman, 1994) based on Q-learning technique (Watkins & Dayan, 1989). In this 
approach, each node makes its routing decision based on the local routing information, 
represented as a table of Q values which estimate the quality of the alternative routes. These 
values are updated each time the node sends a packet to one of its neighbors. However, 
when a Q value is not updated for a long time, it does not necessarily reflect the current 
state of the network and hence a routing decision based on such an unreliable Q value will 
not be accurate. The update rule in Q-Routing does not take into account the reliability of 
the estimated or updated Q value because it’s depending on the traffic pattern, and load 
levels, only a few Q values are current while most of the Q values in the network are 
unreliable. For this purpose, other algorithms have been proposed like Confidence based Q-
Routing (CQ-Routing) (Kumar & Miikkualainen, 1998) or Dual Reinforcement Q-Routing 
(DRQ-Routing) (Kumar & Miikkualainen, 1997), (Goetz et al., 1996). All these routing 
algorithms use a table to estimate Q values. However, the size of the table depends on the 
number of destination nodes existing in the network. Thus, this approach is not well suited 
when we are concerned with a state-space of high dimensionality. 

3.2 Q-neural routing approach 

In this section, we present an adaptive routing algorithm based on the Q-learning approach, 
the Q-function is approximated by a reinforcement learning based neural network. First, we 
formulate the reinforcement learning process. 

3.2.1 Reinforcement learning 

Algorithms for reinforcement learning face the same issues as traditional distributed 
algorithms, with some additional peculiarities. First, the environment is modelled as 
stochastic (especially links, link costs, traffic, and congestion), so routing algorithms can take 
into account the dynamics of the network. However no model of dynamics is assumed to be 
given. This means that RL algorithms have to sample, estimate, and perhaps build models of 
pertinent aspect of the environment. Second, RL algorithms, unlike other machine learning 
algorithms, do not have an explicit learning phase followed by evaluation. Since there is no 
training signal for a direct evaluation of the policy’s performance before the packet has 
reached its final destination, it is difficult to apply supervised learning techniques to this 
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problem (Haykin, 1998). In addition, it is difficult to determine to what extent a routing 
decision that has been made on a single node may influence the network’s overall 
performance. This fact fits into the temporal credit assignment problem (Watkins, 1989).  
The RL algorithm, called reactive approach, consists of endowing an autonomous agent 
with a correctness behavior guaranteeing the fulfillment of the desired task in the dynamics 
environment. The behavior must be specified in terms of Perception - Decision – Action loop 
(Fig. 5). Each variation of the environment induces stimuli received by the agent, leading to 
the determination of the appropriate action. The reaction is then considered as a punishment 
or a performance function, also called, reinforcement signal.  
 

 

Fig. 5. Reinforcement learning model 

Thus, the agent must integrate this function to modify its future actions in order to reach an 
optimal performance. In other words, a RL Algorithm is a finite-state machine that interacts 
with a stochastic environment, trying to learn the optimal action the environment offers 
through a learning process. At any iteration the automaton’s agent chooses an action, 
according to a probability vector, using an output function. This function stimulates the 
environment, which responds with an answer (reward or penalty). The automaton’s agent 
takes into account this answer and jumps, if necessary, to a new state using a transition 
function. 
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Table. 1. Correspondences between a RL system and network elements 
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supervised learning is that on-line performance is important: the evaluation of the system is 
often concurrent with learning.  
A Reinforcement Learning system thus involves the following elements: an Agent, an 
Environment, a Reinforcement Function, an Action, a State, a Value Function, which is 
obtained from the reinforcement function, and a Policy. In order to obtain a network routing 
useful model, it is possible to associate the network’s elements to the basic elements of a RL 
system, as shown in Table 1. 

3.2.2 Q-learning algorithm for routing 
In our routing algorithm (Mellouk, 2006), the objective is to minimize the average packet 
delivery time. Consequently, the reinforcement signal which is chosen corresponds to the 
estimated time to transfer a packet to its destination. Typically, the packet delivery time 
includes three variables: The packet transmission time, the packet treatment time in the 
router and the latency in the waiting queue. In our case, the packet transmission time is not 
taken into account. In fact, this parameter can be neglected in comparison to the other ones 
and has no effect on the routing process. 
The reinforcement signal T employed in the Q-learning algorithm can be defined as the 
minimum of the sum of the estimated Q (y, x, d) sent by the router x neighbor of router y 
and the latency in waiting queue qy corresponding to router y. 

 { }
neighbor of y
min ( , , )y

x
T q Q y x d

∈
= +  (1) 

Q(s, y, d) denote the estimated time by the router s so that the packet p reaches its 
destination d through the router y. This parameter does not include the latency in the 
waiting queue of the router s.  The packet is sent to the router y which determines the 
optimal path to send this packet (Watkins, 1989). 
 

 

Fig. 6. Updating the reinforcement signal 

Once the choice of the next router made, the router y puts the packet in the waiting queue, 
and sends back the value T as a reinforcement signal to the router s. It can therefore update 
its reinforcement function as: 

 ( , , ) ( ( , , ))Q s y d T Q s y dη αΔ = + −  (2) 

So, the new estimation ),,(' dysQ can be written as follows (fig.6): 

 '( , , )Q s y d = ( , , )Q s y d ( )1 η−  + ( )Tη α+  (3) 

α  and η are respectively, the packet transmission time between s and y, and the learning rate.  
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3.2.2 Q-learning neural net architecture 

The neural network proposed in our study is a Recurrent Multi-Layers Perceptron (MLP) 
with an input, one hidden and an output layer. 
 

 

Fig. 7. Artificial Neural Network Architecture 

The input cells correspond to the destination addresses d and the waiting queue states. The 
outputs are the estimated packet transfer times passing through the neighbors of the 
considered router.  The algorithm derived from this architecture is called Q-Neural Routing 
and can be described according to the following algorithm: 
 

Etiq1 : 
{While (not packet receive) 

Begin 
End 

} 
If (packet = "packet of reinforcement")   

Begin 
1. Neural Network updating using a retro-propagation algorithm based on gradient 

method, 
2. Destroy the reinforcement packet. 

End 
Else 

Begin  
1. Calculate Neural Network outputs, 
2. Select the smallest output value and get an IP address of the associated router, 
3. Send the packet to this router, 
4. Get an IP address of the precedent router, 
5. Create and send the packet as a reinforcement signal. 

End 
End 
Goto Etiq1  
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3.3 Implementation and simulation results 

To show the efficiency and evaluate the performances of our approach, an implementation 
has been performed on OPNET software of MIL3 Company. The proposed approach has 
been compared to that based on standard Q-routing (Boyan & Littman, 1994) and shortest 
path routing policy. OPNET constitutes for telecommunication networks an appropriate 
modeling, scheduling and simulation tool. It allows the visualization of a physical topology 
of a local, metropolitan, distant or on board network. The protocol specification language is 
based on a formal description of a finite state automaton.  
The proposed approaches have been compared to that based on standard Q-routing and 
shortest paths routing policies (such as Routing Internet Protocol RIP). The topology of the 
network used for simulations purpuse, which used in many papers, includes 33 
interconnected nodes, as shown in figure 8. Two kinds of traffic have been studied: low load 
and high load of the network. In the first case, a low rate flow is sent to node destination-1, 
from nodes source-1 and source-4. From the previous case, we have created conditions of 
congestion of the network. Thus, a high rate flow is generated by nodes source-2 and 
source-3. Two possible ways R-1 (router-29 and router-30) and R-2 (router-21 and router-22) 
to route the packets between the left part and the right part of the network.  
 

Routeur 21

     

    

    

     

    

IBM PS/2 IBM PS/2

IBM PS/2

IBM PS/2

Routeur 22

Destination 1Source 1

Source 2 Source 3

R1

R2

Routeur 29 Routeur 30

IBM PS/2Source 4

 

Fig. 8.  Network topology for simulation 

Performances of algorithms are evaluated in terms of average packet delivery time. Figure 9 
and figure 10 illustrates the obtained results when source-2 and source-3 send information 
packets during 10 minutes. From figure 10, one can see clearly, that after an initialization 
period, the Q-routing and Q-Neural routing algorithms, exhibit better performances than 
RIP. Thus, packet average delivery time obtained by Q-routing algorithm and Q-Neural 
routing algorithm is reduced of respectively 23.6% and 27.3% compared to RIP routing 
policy (table 2). These results confirm that classical shortest path routing algorithm like RIP 
lead to weak performances due to packets delayed in the waiting queues of the routers. 
Moreover, this policy does not take into account the load of the network. On the other hand, 
when a way of destination is saturated, Q-routing and Q-Neural routing algorithms allow 
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the selection of a new one to avoid this congestion. In the case of a low load (figure 10), one 
can note that after a period of initialization, performances of these algorithms are 
approximately the same as those obtained with RIP routing policy. 
 

        

Fig. 9. Network with a low load                                Fig. 10. Network with a high load 

 

Computed 
Algorithms 

MAPTT 

Q-routing  42 

Q-neural 
routing 

 40 

RIP 55 

Table 2. Maximum average packet delivery time 

Figure 11 illustrates the average packet delivery time obtained when a congestion of the 
network is generated during 60 minutes. Thus, in the case where the number of packets is 
more important, the Q-Neural routing algorithm gives better results compared to Q-
routing algorithm. For example, after 2 hours of simulation, Q-Neural routing exhibits a 
performance of 20% higher than that of Q-routing. Indeed, the use of waiting queue state 
of the neighboring routers in the routing decision, allows anticipation of routers 
congestion. 
In general, the topology of the neural network must be fixed before the training process. 
The only variables being able to be modified are the values of the weights of connections. 
The specification of this architecture, the number of cells of each layer and of connections, 
remains a crucial problem. If this number is insufficient, the model will not be able to take 
into account all data. A contrario, if it is too significant, the training will be perfect but the 
network generalization ability will be poor (overfitting problem). However, we are 
concerned here by online training, for which the number of examples is not defined a 
priori. For that, we propose an empirical study based on pruning technique to find a 
compromise between a satisfactory estimate of the function Q and an acceptable 
computing time. 
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Fig. 11. Very High load Network 
 

 

Fig. 12. Empirical pruning study for choosing the number of hidden cells over time 

The Neural network structure has been fixed using an empirical pruning strategy (figure 
12). A self-organizing approach is useful for automatic adjustment of the neural network 
parameters as the number of neuron per layer and the hidden layers numbers for example. 
Next section introduces such a concept and present complexity estimation based self 
organizing structure. 

4. Self-organizing modular information processing through the Tree-like 
Divide To Simplify approach 

This section presents in detail the “Tree-like-Divide To Simplify” (T-DTS) approach, define 
its structure, and describe the types of modules that are used in the structure. T-DTS is 
based on modular tree-like decomposition structure, which is used amongst others for task 
decomposition. This section will present also in detail procedures and algorithms that are 
used for the creation, execution and modification of the modules. It will discuss also 
advantages and disadvantages of T-DTS approach and compare it with other approaches. 
T-DTS is a self-organizing modular structure including two types of modules: 
Decomposition Unit (DU) and Processing Unit (PU). The purpose is based on the use of a set 
of specialized mapping neural networks (PU), supervised by a set of DU. DU could be a 
prototype based neural network, Markovian decision process, etc. The T-DTS paradigm 
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allows us to build a modular tree structure. In such structure, DU could be seen as “nodes” 
and PU as leaves. At the nodes level, the input space is decomposed into a set of subspaces 
of smaller sizes. At the leaves level, the aim is to learn the relations between inputs and 
outputs of sub-spaces, obtained from splitting. As the modules are based on Artificial 
Neural Networks, they inherit the ANN’s approximation universality as well as their 
learning and generalization abilities. 

4.1 Hybrid Multiple Neural Networks framework - T-DTS 

As it has been mentioned above, in essence, T-DTS is a self-organizing modular structure 
(Madani et Al., 2003). T-DTS paradigm builds a tree-like structure of models (DU and PU). 
Decomposition Units are prototypes based ANNs and Processing Units are specialized 
mapping ANNs. However, in a general frame, PU could be any kind of processing model 
(conventional algorithm or model, ANN based model, etc…). At the nodes level(s) - the 
input space is decomposed into a set of optimal sub-spaces of the smaller size. At the leaves 
level(s) - the aim is to learn the relation between inputs and outputs of sub-spaces obtained 
from splitting. T-DTS acts in two main operational phases: 
Learning: recursive decomposition under DU supervision of the database into sub-sets:  tree 
structure building phase; 
Operational: Activation of the tree structure to compute system output (provided by PU at 
tree leaf’s level). 
General block diagram of T-DTS is described on Figure 13. The proposed schema is open 
software architecture.  It can be adapted to specific problem using the appropriate modeling 
paradigm at PU level: we use mainly Artificial Neural Network computing model in this 
work. In our case the tree structure construction is based on a complexity estimation 
module. This module introduces a feedback in the learning process and control the tree 
building process. The reliability of tree model to sculpt the problem behavior is associated to 
the complexity estimation module. The whole decomposing process is built on the paradigm 
“splitting database into sub-databases - decreasing task complexity”. It means that the 
decomposition process is activated until a low satisfactory complexity ratio is reached. T- DTS 
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Fig. 13. Bloc scheme of T-DTS: Left – Modular concept, Right – Algorithmic concept 



Machine Learning 18

software architecture is depicted on Figure 14. T-DTS software incorporates three databases: 
decomposition methods, ANN models and complexity estimation modules databases. 
 

 

Fig. 14. T-DTS software architecture 

T-DTS software engine is the Control Unit. This core-module controls and activates several 
software packages: normalization of incoming database (if it’s required), splitting and 
building a tree of prototypes using selected decomposition method, sculpting the set of local 
results and generating global result (learning and generalization rates). T-DTS software can 
be seen as a Lego system of decomposition methods, processing methods powered by a 
control engine an accessible by operator thought Graphic User Interface. 
The three databases can be independently developed out of the main frame and more 
important, they can be easily incorporated into T-DTS framework. 
For example, SOM-LSVMDT (Mehmet et al., 2003) algorithm; which is based on the same 
idea of decomposition, can be implement by T-DTS by mean of LSVMDT (Chi & Ersoy, 
2002) (Linear Support Vector Machine Decision Tree) processing method incorporation into 
PU database. 
- The current T-DTS software (version 2.02) includes the following units and methods: 

 Decomposition Units: 
 CN (Competitive Network) 
 SOM (Self Organized Map) 
 LVQ (Learning Vector Quantization) 

- Processing Units: 
 LVQ (Learning Vector Quantization) 
 Perceptrons 
 MLP (Multilayer Perceptron) 
 GRNN (General Regression Neural Network) 
 RBF (Radial basis function network) 
 PNN (Probabilistic Neural Network) 
 LN 

- Complexity estimators (Bouyoucef, 2007), presented in sub-section 4.2.5, are  based on 
the following criteria: 

 MaxStd (Sum of the maximal standard deviations) 
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 Fisher measure. 
 Purity measure 
 Normalized mean distance 
 Divergence measure 
 Jeffries-Matusita distance 
 Bhattacharyya bound 
 Mahalanobis distance 
 Scattered-matrix method based on inter-intra matrix-criteria (Fukunaga, 1972). 
 ZISC© IBM ® based complexity indicator (Budnyk & al. 2007). 

4.2 T-DTS learning and decomposition mechanism 

The decomposition mechanism in T-DTS approach builds a tree structure. The creation of 
decomposition tree is data-driven. It means that the decision to-split-or-not and how-to-split 
is made depending on the properties of the current sub-database. For each database the 
decision to-split-or-not should be made. After a positive decision a Decomposition Unit 
(DU) is created which divides the data and distributes the resulting sub-databases creating 
children in the tree. If the decision is negative the decomposition of this sub-database (and 
tree branch) is over and a Processing Unit should be built for the sub-database. The type of 
the new tree module depends on the result of decomposition decision made for the current 
sub-database (and in some cases also on other parameters, as described later). The tree is 
built beginning from the root which achieves the complete learning database. The process 
results in a tree which has DUs at nodes and Processing Unit models in tree leaves.  
Figure 15 shows decomposition tree structure (in case of binary tree) and its recurrent 
construction in time, while question marks mean decomposition decisions.  
For any database B (including the initial) a splitting decision (if to split and how to split) is 
taken. When the decision is positive then a Decomposition Unit is created, and the database 
is decomposed (clustered) by the new Decomposition Unit. When the decomposition 
decision is negative, a Processing Unit is created in order to process the database (for 
example to create a model).  
The database B incoming to some Decomposition Unit will be split into several sub-
databases b1,b2...bk , depending on the properties of the database B and parameters τ 

obtained from controlling structure. The function S(ψi,τ) assigns any vector ψi from database 

B to an appropriate sub-database j. The procedure is repeated in recursive way i.e. for each 
resulting sub-database a decomposition decision is taken and the process repeats. One chain 
of the process is depicted in figure 16. 

T
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kk
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ξξττs  (4) 

The scheduling vector S(ψi,τk) will activate (select) the K-th Processing Unit, and so the 
processing of an unlearned input data conform to parameter τk and condition ξk will be given 
by the output of the selected Processing Unit: 

 ( ) ( )( )i k k iY Y i FΨ = = Ψ  (5) 

Complexity indicators are used in our approach in order to reach one of the following goals:  
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-  Global decomposition control - estimator which evaluates the difficulty of classification 
of the whole dataset and chooses decomposition strategy and parameters before any 
decomposition has started, 

-  Local decomposition control - estimator which evaluates the difficulty of classification 
of the current sub-database during decomposition of dataset, in particular: 

 Estimator which evaluates the difficulty of classification of the current sub-database, 
to produce decomposition decision (if to divide the current sub-database or not); 

 Estimator which can be used to determine the type of used classifier or its 
properties and parameters. 

-  Mixed approach - use of many techniques mentioned above at once, for example: usage 
of Global decomposition control to determine the parameters of local decomposition 
control. 

One should mention also that estimation of sub-database complexity occurs for each sub-
database dividing decision thus computational complexity of the algorithm should rather be 
small. Thus it doesn't require advanced complexity estimation methods. Considering these 
features, the second option - estimation during decomposition - has been chosen in our 
experiments in order to achieve self adaptation feature of T-DTS structure. 
 

 
Fig. 15. T-DTS decomposition tree creation in time 
 

 
Fig. 16. Decomposition Unit activities 
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4.2.1 Decomposition Unit (DU) 

The purpose of Decomposition Unit is to divide the database into several sub-databases. 
This task is referred in the literature as clustering (Hartgan, 1975). To accomplish this task a 
plenty of methods are known. We are using Vector Quantization unsupervised methods, in 
particular: competitive Neural Networks and Kohonen Self-Organizing Maps (Kohonen, 
1984). These methods are based on prototype, that represent the centre of cluster (cluster = 
group of vectors). In our approach cluster is referred to as sub-database.  

4.2.2 Decomposition of learning database  

The learning database is split into M learning sub-databases by DUs during building of the 
decomposition tree. The learning database decomposition is equivalent to "following the 
decomposition tree" decomposition strategy. The resulting learning sub-databases could be 
used for Processing Unit learning. Each sub-database has then Processing Unit attached. The 
Processing Unit models are trained using the corresponding learning sub-database. 

 
Fig. 17. Decomposition of learning database "following the decomposition tree" strategy 

4.2.3 Training of Processing Units (models) 

For each sub-database T-DTS constructs a neural based model describing the relations 
between inputs and outputs. Training of Processing Unit models is performed using 
standard supervised training techniques, possibly most appropriate for the learning task 
required. In this work only Artificial Neural Networks are used, however there should be no 
difficulty to use other modelling techniques. 
Processing Unit is provided with a sub-database and target data. It is expected to model the 
input/output mapping underlying the subspace as reflected by the sub-database provided. 
The trained model is used later to process data patterns assigned to the Processing Unit by 
assignment rules. 

4.2.4 Processing Units  

Processing Unit models used in our approach can be of any origin. In fact they could be also 
not based on Artificial Neural Networks at all. The structure used depend on the type of 
learning task, we use:  
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- for classification - MLP, LVQ, Probabilistic Networks (Haykin, 1999), RBF, Linear 
Networks; 

- for regression - MLP, RBF; 
- for model identification - MLP.  
Processing Unit models are created and trained in the learning phase of T-DTS algorithm, 
using learning sub-databases assigned by decomposition structure. In the generalization 
phase, they are provided with generalization vectors assigned to them by pattern 
assignment rules. The vectors form generalization sub-databases are processed by 
Processing Unit models. Each Processing Unit produce some set of approximated output 
vectors, and the ensemble of them will compose whole generalization database. 

4.2.5 Complexity estimation techniques  

The goal of complexity estimation techniques is to estimate the processing task’s difficulty. 
The information provided by these techniques is mainly used in a splitting process 
according to a divide and conquer approach. It act’s at three levels:  
- The task decomposition process up to some degree dependant on task or data complexity. 
- The choice of appropriate processing structure (i.e. appropriated model) for each subset 

of decomposed data. 
- The choice of processing architecture (i.e. models parameters).  
The techniques usually used for complexity estimation are sorted out in three main 
categories: those based on Bayes error estimation, those based on space partitioning 
methods and others based on intuitive paradigms. Bayes error estimation may involve two 
classes of approaches, known as: indirect and non-parametric Bayes error estimation methods, 
respectively. This sub-section of the chapter will present a detailed summery of these main 
complexity estimation methods which are used in the T-DTS self-organizing system core, 
focusing mainly on measurements supporting task decomposition aspect.  

4.2.5.1 Indirect Bayes error estimation  

To avoid the difficulties related to direct estimation of the Bayes error, an alternative 
approach is to estimate a measure directly related to the Bayes error, but easier to compute. 
Usually one assumes that the data distribution is normal (Gaussian). Statistical methods 
grounded in the estimation of probability distributions are most frequently used. The 
drawback of these is that they assume data normality. A number of limitations have been 
documented in literature (Vapnik, 1998):  
- model construction could be time consuming; 
- model checking could be difficult; 
- as data dimensionality increases, a much larger number of samples is needed to 

estimate accurately class conditional probabilities; 
- if sample does not sufficiently represent the problem, the probability distribution 

function cannot be reliably approximated; 
- with a large number of classes, estimating a priori probabilities is quite difficult. This 

can be only partially overcome by assuming equal class probabilities (Fukunaga, 1990), 
(Ho & Basu, 2002). 

- we normally do not know the density form (distribution function); 
- most distributions in practice are multimodal, while models are unimodal; 
- approximating a multimodal distributions as a product of univariate distributions do 

not work well in practice.  
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4.2.5.1.1 Normalized mean distance  

Normalized mean distance is a very simple complexity measure for Gaussian unimodal 
distribution. It raises when the distributions are distant and not overlapping. 

 1 2

1 2

normd
μ μ
σ σ

−
=

+
 (6) 

The main drawback of that estimator is that it is inadequate (as a measure of separability) 
when both classes have the same mean values. 

4.2.5.1.2 Chernoff bound  

The Bayes error for the two class case can be expressed as: 

 ( )min ( ) |k k
i
P c p x c dxε = ⎡ ⎤⎣ ⎦∫  (7) 

Through modifications, we can obtain a Chernoff bound εu, which is an upper bound on ε for 
the two class case: 

 1 1

1 2 1 2( ) ( ) ( | ) ( | )s s s s

u P c P c p x c p x c dxε − −= ∫  for 0≤s≤1 (8) 

The tightness of bound varies with s. 

4.2.5.1.3 Bhattacharyya bound  

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical evidence 
indicates that optimal value for Chernoff bound is close to 1/2 when the majority of 
separation comes from the difference in class means. Under a Gaussian assumption, the 
expression of the Bhattacharyya bound is: 
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and μi and Σi are respectively the means and classes covariance’s (i in {1,2}). 

4.2.5.1.4 Mahalanobis distance  

Mahalanobis distance (Takeshita et al., 1987) is defined as follows: 

 ( ) ( )1

2 1 2 1

T

DM μ μ μ μ−= − Σ −  (11) 

MD is the Mahalanobis distance between two classes. The classes' means are μ1 and μ2 and Σ 
is the covariance matrix. Mahalanobis distance is used in statistics to measure the similarity 
of two data distributions. It is sensitive to distribution of points in both samples. The 
Mahalanobis distance is measured in units of standard deviation, so it is possible to assign 
statistical probabilities (that the data comes from the same class) to the specific measure 
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values. Mahalanobis distance greater than 3 is considered as a signal that data are not 
homogenous (does not come from the same distribution). 

4.2.5.1.5 Jeffries-Matusita distance  

Jeffries-Matusita (Matusita ,1967) distance between class’s c1 and c2 is defined as: 

 ( ) ( ){ }2

2 1| |D
x

JM p X c p X c dx= −∫  (12) 

If class’s distributions are normal Jeffries-Matusita distance reduces to: 

 ( )2 1DJM e α−= − , where (13) 
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Matusita distance is bounded within range [0, 2] where high values signify high separation 
between c1 and c2 classes. 

4.2.5.2 Non-Parametric Bayes error estimation and bounds  

Non-parametric Bayes error estimation methods make no assumptions about the specific 

distributions involved. They use some intuitive methods and then prove the relation to 

Bayes error. Non-parametric techniques do not suffer from problems with parametric 

techniques. 

4.2.5.2.1 Error of the classifier itself  

This is the most intuitive measure. However it varies much depending on the type of 

classifier used and, as such, it is not very reliable unless one uses many classification 

methods and averages the results. The last solution is certainly not computationally 

efficient. 

4.2.5.2.2 k-Nearest Neighbours, (k-NN)  

K- Nearest Neighbours (Cove & Hart, 1967) technique relays on the concept of setting a local 

region Γ(x) around each sample x and examining the ratio of the number of samples 

enclosed k to the total number of samples N, normalized with respect to region volume v: 
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K-NN technique fixes the number of samples enclosed by the local region (k becomes 
constant). The density estimation Equation for k-NN becomes: 
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where p(x) represent probability of specific class appearance and v(x) represent local region 

volume. K-NN is used to estimate Bayes error by either providing an asymptotic bound or 

through direct estimation.  K-NN estimation is computationally complex. 



Neural Machine Learning Approaches:  
Q-Learning and Complexity Estimation Based Information Processing System 25 

4.2.5.2.3 Paren Estimation  

Parzen techniques relay on the same concept as k-NN: setting a local region Γ(x) around 
each sample x and examining the ratio of the samples enclosed k, to the total number of 
samples N, normalized with respect to region volume v:    

 ( )
k

p x
vN

=  (17)    

The difference according to k-NN is that Parzen fixes the volume of local region v. Then the 
density estimation equation becomes: 

 ( )
( )

k x
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vN
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where p(x) represents density and k(x) represents number of samples enclosed in volume. 
Estimating the Bayes error using the Parzen estimate is done by forming the log likelihood 
ratio functions based upon the Parzen density estimates and then using resubstitution and 
leave-one-out methodologies to find an optimistic and pessimistic value for error estimate. 
Parzen estimates are however not known to bound the Bayes error. Parzen estimation is 
computationally complex. 

4.2.5.2.4 Boundary methods  

The boundary methods are described in the work of Pierson (Pierson, 1998). Data from each 
class is enclosed within a boundary of specified shape according to some criteria. The 
boundaries can be generated using general shapes like: ellipses, convex hulls, splines and 
others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it is 
a natural representation of those. The boundaries may be made compact by excluding 
outlying observations. Since most decision boundaries pass through overlap regions, a 
count of these samples may give a measure related to misclassification rate. Collapsing 
boundaries iteratively in a structured manner and counting the measure again lead to a 
series of decreasing values related to misclassification error. The rate of overlap region 
decay provides information about the separability of classes. Pierson discuses in his work a 
way in which the process from two classes in two dimensions can be expanded to higher 
dimension with more classes. Pierson has demonstrated that the measure of separability 
called the Overlap Sum is directly related to Bayes error with a much more simple 
computational complexity. It does not require any exact knowledge of the a posteriori 
distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to 
progressive collapsing iterations: 
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where to is the step size, m is the maximum number of iteration (collapsing boundaries), N is 
the number of data points in whole dataset and Δs(kt0) is the number of points in the 
differential overlap. 

4.2.5.3 Measures related to space partitioning  

Measures related to space partitioning are connected to space partitioning algorithms. Space 
partitioning algorithms divide the feature space into sub-spaces. That allows obtaining some 
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advantages, like information about the distribution of class instances in the sub-spaces. Then 
the local information is globalized in some manner to obtain information about the whole 
database, not only the parts of it. 

4.2.5.3.1 Class Discriminability Measures 

Class Discriminability Measure (CDM) (Kohn et al., 1996) is based on the idea of 
inhomogeneous buckets. The idea here is to divide the feature space into a number of 
hypercuboids. Each of those hypercuboids is called a "box". The dividing process stops 
when any of following criteria is fulfilled:  
- box contains data from only one class; 
- box is non-homogenous but linearly separable; 
- number of samples in a box is lower that N0.375, where N is the total number of samples 

in dataset.  
If the stopping criteria are not satisfied, the box is partitioned into two boxes along the axis 
that has the highest range in terms of samples, as a point of division using among others 
median of the data. 
Final result will be a number of boxes which can be:  
- homogenous terminal boxes (HTB); 
- non-linearly separable terminal boxes (NLSTB); 
- non-homogenous non-linearly separable terminal boxes (NNLSTB). 
In order to measure complexity, CDM uses only Not Linearly Separable Terminal Boxes, as, 
according to author (Kohn et al., 1996), only these contribute to Bayes error. That is however 
not true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors 
of the boxes - partitioning (and in fact nothing) cannot by itself diminish the Bayes error of 
the whole dataset; however it can help classifiers in approaching the Bayes error optimum. 
So given enough partitions we arrive to have only homogenous terminal boxes, so the Bayes 
error is supposed to be zero, that is not true. 
 The formula for CDM is: 
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where k(i) is the total number of samples in the i-th NNLSTB, k(j|i) is the number of samples 
from class j in the i-th NNLSTB and N is the total number of samples. For task that lead to 
only non-homogenous but linearly separable boxes, this measure equals zero. 

4.2.5.3.2 Purity measure 

Purity measure (Sing, 2003) is developed by Singh and it is presented with connection to his 
idea based on feature space partitioning called PRISM (Pattern Recognition using 
Information Slicing Method). PRISM divides the space into cells within defined resolution B. 
Then for each cell probability of class i in cell l is: 
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where njl is the number of points of class j in cell l, nil is the number of points of class i in cell 
l and Kl is the total number of classes.  
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Degree of separability in cell l is given by:    
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These values are averaged for all classes, obtaining overall degree of separability: 
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where Nl signifies the number of points in the l-th cell, and N signifies total number of 

points. If this value was computed at resolution B then it is weighted by factor 
Bw

2

1=  for 

B=(0,1,...31). Considering the curve (SH versus normalized resolution) as a closed polygon 

with vertices (xi,yi), the area under the curve called purity for a total of n vertices is given as:  
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The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing 
process maximum possible value is 0.702, thus the value is rescaled once again to be 
between [0, 1] range. 
The main drawback of purity measure is that if in a given cell, the number of points from 

each class is equal, then the purity measure is zero despite that in fact the distribution may 

be linearly separable. Purity measure does not depend on the distribution of data in space of 

single cell, but the distribution of data into the cells is obviously associated with data 

distribution. 

4.2.5.3.3 Neighborhood Separability 

Neighborhood Separability (Singh, 2003) measure is developed by Singh. Similarly to 

purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest 

neighbors are found. Then one measure a proportion pk of nearest neighbors that come from 

the same class to total number of nearest neighbors. For each number of neighbors k, 

1<=k<=λil calculate the area under the curve that plots pk against k as φj. Then compute the 

average proportion for cell Hl as: 
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Overall separability of data is given as:   
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One compute the SNN measure for each resolution B=(0, 1, … ,31). Finally, the area ASNN 

under the curve SNN versus resolution gives the measure of neighborhood separability for a 

given data set.  
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4.2.5.3.4 Collective entropy  

Collective entropy (Singh & Galton, 2002), (Singh, 2003) measure the degree of uncertainty. 
High values of entropy represent disordered systems. The measure is connected to data 
partitioning algorithm called PRISM. 
Calculate the entropy measure for each cell Hl: 
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Estimate overall entropy of data as weighted by the number of data in each cell:    
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Collective entropy for data at given partition resolution is defined as: 

 1 - CE E=  (29) 

This is to keep consistency with other measures: maximal value of 1 signifies complete 
certainty and minimum value of 0 uncertainty and disorder. 
Collective entropy is measured at multiple partition resolutions B=(0,…31) and scaled by 
factor Bw 2/1=  to promote lower resolution. Area under the curve of Collective Entropy 
versus resolution gives a measure of uncertainty for a given data set. That measure should 
be scaled as 

702.0
E

E

AS
AS =  to keep the values in [0,1] range. 

4.2.5.4 Other Measures 

The measures described here are difficult to classify as they are very different in idea and it's 
difficult to distinguish common properties. 

4.2.5.4.1 Correlation-based approach 

Correlation-based approach (Rahman & Fairhurst, 1998) is described by Rahman and 
Fairhust. In their work, databases are ranked by the complexity of images within them. The 
degree of similarity in database is measured as the correlation between a given image and 
the remaining images in database. It indicates how homogenous the database is. For 
separable data, the correlation between data of different classes should be low.  

4.2.5.4.2 Fisher discriminant ratio 

 Fisher discriminant ratio (Fisher, 2000) originates from Linear Discriminant Analysis (LDA). 
The idea of linear discriminant approach is to seek a linear combination of the variables 
which separates two classes in best way. The Fisher discriminant ratio is given as:    
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where μ1, μ2, σ1, σ2 are the means and variances of two classes respectively. The measure is 
calculated in each dimension separately and afterwards the maximum of the values is taken. 
It takes values from [0,+∞] ; high value signifies high class separability. To use it for multi 
class problem it is necessary however to compute Fisher discriminant ratios for each two-
element combination of classes and later average the values. 
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Important feature of the measurement is that it is strongly related to data structure. The 
main drawback is that it acts more like a detector of linearly separable classes than 
complexity measure. The advantage is very low computational complexity. 

4.2.5.4.3 Interclass distance measures 

The interclass distance measures (Fukunaga, 1990) are founded upon the idea that class 
separability increases as class means separate and class covariance’s become tighter. We 
define: 
Within-class scatter matrix:      
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Between-class scatter matrix:     
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Mixture (total) scatter matrix: 
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where μi are class means, P(ci) are the class probabilities, Σi are class covariance matrices, 

and ∑
1=0 )(=

L

i ii μωPμ  is the mean of all classes. 

Many intuitive measures of class separability come from manipulating these matrices which 
are formulated to capture the separation of class means and class covariance compactness. 
Some of the popular measures are: 

 -1

1 2 1( )J tr S S= , -1

2 2 1lnJ S S= , 1
3

2

( )

( )

tr S
J

tr S
=

 (34)

 

where S1, S2 are a tuple from among { Sb, Sw, Sm}, and tr signifies matrix trace. Frequently 
many of these combinations and criteria result in the same optimal features. 

4.2.5.4.4 Volume of the overlap region 

We can find volume of the overlap region (Ho & Baird, 1998) by finding the lengths of 
overlapping of two classes' combination across all dimensions. The lengths are then divided 
by overall range of values in the dimension (normalized), where do represents length of 
overlapping region, dmax and dmin represent consequently maximum and minimum feature 
values in specified dimension: 
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Resulting ratios are multiplied across all dimensions dim to achieve volume of overlapping 
ratio for the 2-class case (normalized with respect to feature space) 
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It should be noted that the value is zero as long as there is at least one dimension in which 
the classes don't overlap.  
 

Technique 
Relation to 
Bayes error 

Computing 
cost 

Probability density 
functions 

Number of 
classes 

Chernoff bound Yes High needed 2 

Bhattacharyya bound Yes Medium needed 2 

Divergence Yes High needed 2 

Mahalanobis distance Yes Medium not needed 2 

Matusita distance Yes High needed 2 

Entropy measures No High needed >2 

Classifier error Potential Depends on the classifier used 

k-Nearest Neighbours Yes High not needed >2 

Parzen estimation No High not needed >2 

Boundary methods Yes Medium not needed 2 

Class Discriminability 
Measures 

No High not needed 2 

Purity No High not needed >2 

Neighbourhood separability No High not needed >2 

Collective entropy No High not needed 2 

Correlation based approach No High not needed >2 

Fisher discriminant ratio No very low not needed 2 

Interclass distance measures No Low not needed >2 

Volume of the overlap region No Low not needed 2 

Feature efficiency No Medium not needed 2 

Minimum Spanning Tree No High not needed >2 

Inter-intra cluster distance No High not needed 2 

Space covered by epsilon 
neighbourhoods 

No High not needed >2 

Ensemble of estimators Potential High depends Depends 

Table 3. Comparison of Classification Complexity Techniques 

4.2.6 Discussion 
Classification complexity estimation methods present great variability. The methods which 
are derived from Bayes error are most reliable in terms of performance, as they are 
theoretically stated. The most obvious drawback is that they have to do assumptions about a 
priori probability distributions. If the advantage of the methods designed using 
experimental (empirical) basis is that they are based uniquely on experimental data and do 
not need probability density estimates of distributions, these methods are as various as 
those relating the Bayes error’s estimation and their performance are difficult to predict. 
Some methods are designed only for two-class problems, and as such they need special 
procedures to accommodate them to multi-class problem (like counting the average of 
complexities of all two-class combinations). The table 3, comparing complexity estimation 
methods, is aimed at several specific aspects which are:  
- Relation with Bayes error which could be seen as a proof of estimator's accuracy up to 

some point; 
- Computational Cost, this is especially important when the measurements are taken 

many times during the processing of problem, as in T-DTS case; 
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- Need for probability density function estimates;  
- Number of classes in classification problem for which the method can be applied 

directly. 
Recently, a number of investigations pushed forward the idea to combine several 
complexity estimation methods: for example by using a weighted average of them 
(Bouyoucef, 2007). It is possible that a single measure of complexity be not suitable for 
practical applications; instead, a hierarchy of estimators may be more appropriate (Maddox, 
1990).  
Using complexity estimation techniques based splitting regulation, T-DTS is able to reduce 
complexity on both data and processing chain levels (Madani et Al., 2003). It constructs a 
treelike evolutionary architecture of models, where nodes (DU) are decision units and leaves 
correspond to Neural Network - based Models (Processing Unit). That results in splitting 
the learning database into set of sub-databases. For each sub-database a separate model is 
built. 
This approach presents numerous advantages among which are:  
- simplification of the treated problem - by using a set of simpler local models; 
- parallel processing capability - after decomposition, the sub-databases can be processed 

independently and joined together after processing; 
- task decomposition is useful in cases when information about system is distributed 

locally and the models used are limited in strength in terms of computational difficulty 
or processing (modeling) power; 

- modular structure gives universality: it allows using of specialized processing 
structures as well as replacing Decomposition Units with another clustering techniques; 

- classification complexity estimation and other statistical techniques may influence the 
parameters to automate processing, i.e., decompose automatically; 

- automatic learning. 
However, our approach is not free of some disadvantages: 
- if the problem doesn't require simplification (problem is solved efficiently with single 

model) then Task Decomposition may decrease the time performance, as learning or 
executing of some problems divided into sub-problems is slower than learning or 
executing of not split problem; especially if using sequential processing (in opposition 
to parallel processing); 

- some problems may be naturally suited to solve by one-piece model - in this case 
splitting process should detect that and do not divide the problem; 

- too much decomposition leads to very small learning sub-databases. Then they may 
loss of generalization properties. In extreme case leading to problem solution based 
only on distance to learning examples, so equal to nearest-neighbor classification 
method. 

In the following section, we study the efficiency of T-DTS approach when dealing with 
classification problems. 

4.2.7 Implementation and validation results 

In order to validate the T-DTS self-organizing approach, we present in this section the 
application of such a paradigm to three complex problems. The first one concerns a pattern 
recognition problem. The second and third one are picked from the well know UCI 
repository: a toy problem (Tic-Tac-Toe) for validation purpose and a DNA classification one. 
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4.2.7.1 Application to UCI Reprository 

Complexity estimating plays key-role in decomposition and tree-building process. In order to 
evaluate and validate T-DTS approach, we use two benchmarks from the UCI Machine 
Learning Repository (Bouyoucef, 2007). These two benchmarks are: 
1. Tic-tac-toe end-game problem. The problem is to predict whether each of 958 legal 

endgame boards for tic-tac-toe is won for `x'. The 958 instances encode the complete set 
of possible board configurations at the end of tic-tac-toe. This problem is hard for the 
covering family algorithm, because of multi-overlapping. 

2. Splice-junction DNA Sequences classification problem. The problem posed in this 
dataset is to recognize, given a sequence of DNA, the boundaries between exons (the 
parts of the DNA sequence retained after splicing) and introns (the parts of the DNA 
sequence that are spliced out). This problem consists of two subtasks: recognizing 
exon/intron boundaries (referred to as EI sites), and recognizing intron/exon 
boundaries (IE sites). There are 3190 numbers of instances from Genbank 64.1, each of 
them compound 62 attributes which defines DNA sequences (ftp-site: 
ftp://ftp.genbank.bio.net) problem. 

Next subsections include description of experimental protocol. 

4.2.7.2 Experimental protocol 

In the first case, Tic-tac-toe end game, we have used 50% of database for learning purpose 
and 50% for generalization purpose. At the node level (DU), competitive networks perform 
the decomposition. The following complexity estimation methods have been used: 
Mahalanobis, ZISC and Normalized mean. At T-DTS leaf level we have applied PU - LVQ. 
 

Method type Max Gr (± Std. Dev.) (%) 

IB3-CI 99.1 

CN2 standard 98.33 (± 0.08) 

IB1 98.1 

Decision Tree (DT)+FICUS 96.45 (± 1.68) 

3-Nearest neighbor algorithm+FICUS 96.14 (± 2.03) 

MBRTalk 88.4 

Decision Tree (DT) Learning Concept 85.38 (± 2.18) 

T-DTS&Mahalanobis com. est. 84.551 (± 4.592) 

NewID 84.0 

CN2-SD (add. weight.) 83.92 (± 0.39) 

T-DTS&ZISC based com. est. 82.087 (± 2.455) 

IB3 82.0 

Back propagation +FICUS 81.66 (± 14.46) 

T-DTS&Normalized mean com. est. 81.002 (±1.753) 

7-Nearest neighbor 76.36 (± 1.87) 

CN2-WRAcc 70.56 (± 0.42) 

3-Nearest neighbor 67.95 (± 1.82) 

Back propagation 62.90 (± 3.88) 

Perceptron+FICUS 37.69 (± 3.98) 

Perceptron 34.66 (± 1.84) 

Table 4. Tic-tac-toe endgame problem 
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Method type Max Gr (± Std. Dev.) (%) 

3-Nearest neighbor algorithm+FICUS 86.30 (± 4.96) 

Perceptron+FICUS 83.96 (± 6.22) 

Decision Tree (DT)+FICUS 83.78 (± 4.61) 

Back propagation algorithm+FICUS 83.42 (± 7.73) 

T-DTS&ZISC based com. Est 80.084 (± 3.176) 

3-Nearest neighbor algorithm 79.18 (± 6.32) 

T-DTS&Mahalanobis based com. Est 78.672 (± 4.998) 

Perceptron 76.34 (± 6.71) 

T-DTS & Jeffries-Matusita based c.e. 75.647 (±8.665) 

Decision Tree (DT) Learning Concept 73.55 (± 5.88) 

Table 5. Splice-junction DNA sequences classification test 

For DNA Benchmark, we have used 20% of database for learning purpose and 80% for 
generalization purpose. At the node level competitive networks perform the decomposition. 
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya, 
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP. 
For DNA Benchmark, we have used 20% of database for learning purpose and 80% for 
generalization purpose. At the node level competitive networks perform the decomposition. 
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya, 
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP. 
For both cases, a manual optimization has been performed. We have selected the 
decomposition units, the complexity estimation methods and the processing units that allow 
us to reach the highest performances in terms of generalization rate. In the next subsection, 
we present the results and compare them to those obtained by other approaches, mainly 
based on decision tree algorithms. 

4.2.7.3 Results presentation and discussion 

Various experiments have been conducted according to the experimental protocol described 
previously. Table 4 and Table 5 consolidate the results of our experiments and the results 
obtained by other classification approaches (Lavrac et al,. 2002), (Aha,  1991), (Markovitch & 
Rosenstein, 2002). As it is shown, we have resolved Tic-tac-toe endgame classification task 
with respectively 84.55%, 82.09% and 81.00% of generalization rates using Mahalanobis, ZISC 
and Normalized mean complexity estimators with a standard deviation of 4.59%, 2.46% and 
1.75%. Taking into account standard deviation ratio, we can state that these results are 
equivalent as they are in the same range. 
IB3-CI, CN2, IB1, DT and MBRTalk algorithms are rely on the instances extracting and their 
extrapolation. So, they are well adapted to board game problems. They also use domain 
knowledge to reach very high generalization rates (around 95%). Methods associated to 
FICUS use hypothesis driven construction strategies and especially FICUS algorithms 
allows to enhance the learning data base size. 
In our case, T-DTS uses only data driven strategy. So, as we can see in Table 5, for Splice-
junction DNA Sequences benchmark, taking into account the generalization rate standard 
deviation, the leading algorithms exhibit the same performances (3-Nearest 
neighbor+FICUS, Perceptron+FICUS, DT+FICUS, Back propagation +FICUS and T-
DTS&ZISC). So, without using specific domain knowledge, T-DTS reaches a high 
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generalization rate. The T-DTS strength is its ability to solve hard classification problems 
without need of domain specific knowledge. In the experiments described in this paper, T-
DTS structure optimization has been conducted manually (by the user). This is the main 
drawback. 

5. Conclusion 

Due the complexity of the actual systems based on heterogeneous methods, artificial neural 
networks approaches can reduce this complexity by modeling the environment as 
stochastic. Algorithms based on Neural Networks can take into account the dynamics of 
these environments with no model of dynamics to be given. Main idea of the approaches 
developed in this chapter is to take advantage from distributed processing and task 
simplification by dividing an initially complex processing task into a set of simpler subtasks 
using complexity estimation based loop to control the splitting process. An appealing 
consequence of combining complexity estimation based splitting and artificial neural 
networks based processing techniques is decreasing of user’s intervention in specifying 
processing parameters. A first modular structure is proposed. We have focused our 
attention in some special kind of Constrained Based Routing in wired networks which we 
called QoS self-optimization Routing. In a second part, we study the use of T-DTS self-
organizing and task adaptive abilities. Beside complexity estimation based self-organization 
and adaptation abilities of our approach, the neural nature of generated models leads to 
additional attractive features which are modularity and some universality of the issued 
processing system, opening new dimensions in bio-inspired artificial intelligence. Moreover, 
the distributed nature of T-DTS makes the processing phase potentially realizable using 
either parallel machine or network of sequential machines. Very promising results, obtained 
from experimental validation, involving either the presented set of classification 
benchmarks (problems) or the reported pattern recognition dilemma, show efficiency of 
such self-organizing multiple models’ generator to enhance global and local processing 
capabilities by reducing complexity on both processing and data levels.  

6. Acknowlegments 

The present work has been partially supported by French Ministry of High Education and 
Research. A part of this project has also benefit from the French Eiffel Excellence Program of 
EGIDE. 

7. References 

Aha. D. W. (1991). Incremental Constructive Induction: An Instance-Based Approach, 
Proceedings of the Eight International Workshop on Machine Learning, Morgan 
Kaufmann. 

Arbib (1989). The Metaphorical Brain, 2nd Edition, New York: Wiley. 
Bates. J., Bryan Loyall A. & Scott Reilly W. (1989). Integrating reactivity, goals and emotion 

in a broad agent. Technical Report CMU-CS-92-142, School of Computer Science, 
Carnegie-Mellon University, Pittsburgh, PA. 

Bernet Y. (1998). Requirements of Diff-serv Boundary Routers, IETF Internet Draft. 



Neural Machine Learning Approaches:  
Q-Learning and Complexity Estimation Based Information Processing System 35 

Bouyoucef E. (2007). Contribution à l’étude et la mise en œuvre d’indicateurs quantitatifs et 
qualitatifs d’estimation de la complexité pour la régulation du processus d’auto 
organisation d’une structure neuronale modulaire de traitement d’information, 
PhD Thesis, LISSI, University Paris XII. 

Bouyoucef E., Chebira A., Rybnik M., Madani K. (2005). Multiple Neural Network Model 
Generator with Complexity Estimation and self Organization Abilities”, 
International Scientific Journal of Computing, vol.4, issue 3, pp.20-29. 

Boyan J. A. and Littman M. L., Packet Routing in Dynamically Changing Networks: A 
Reinforcement Learning Approach, Advances in Neural Information Processing 
Systems 6, Cowan, Tesauro and Alspector (eds). 

Bridle, J.S. (1990). Probabilistic interpretation of feedforward classification network outputs, 
with relationships to statistical pattern recognition, Neurocomputing: Algorithms, 
architectures and applications, F.Foulgelman-Soulie and J Hérault, eds., New York: 
Springer-Verlag. 

Bruske J., Sommer G. (1995). Dynamic Cell Structure, Advances in Neural Information 
Processing Systems 7, The MIT Press, Ed by G. Tesauro, pp.497-504. 

Budnyk I., Chebira A., Madani K. (2008). Estimating Complexity of Classification Tasks 
Using Neurocomputers Technology, International Scientific Journal of Computing, 
under press.  

Chebira A., Bouyoucef E., Rybnik M., Madani K. (2006). ATNS: An Adaptive Tree Neural 
Structure, International Journal of Information Technology and Intelligent Computing, 
IEEE Computational Intelligence Society, Vol. 1, N°3, pp.463-476. 

Chi H., Ersoy O.K. (2002). Support Vector Machine Decision Trees with Rare Event 
Detection, International Journal for Smart Engineering System Design, Vol. 4, 225-242. 

Cover T. M., Hart P. E. (1967). Nearest neighbour pattern classification. IEEE Transactions on 
information theory, Vol IT-13, pp 21-27.  

Crawley E., Nair R., Rajagopalan B., Sandick H. (1998). A Framework for QoS-based Routing 
in the Internet, RFC2386, IETF, August. 

Decker, K., Sycara, K., Williamson, M. (1997). Middle-Agents for the Internet “, Proceedings of 
the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan. 

Ernst S. (1998). “Hinging hyper-plane trees for approximation and identification, 37th IEEE 
Conf. on Decision and Control, Tampa, Florida, USA. 

Fahlman S. E., Lebiere C. (1990). The Cascaded-Correlation Learning Architecture, Advances 
in Neural Information Processing Systems 2, Morgan Kauffman, San Mateo, pp.524-
534. 

Feng W., Kandlur D., Saha D., Shin K. (1997). Understanding TCP Dynamics in an 
Integrated Services Internet", Proceedings of NOSSDAV. 

Ferber J. (1998). Multi-Agent Systems: Towards a Collective Intelligence, Reading, MA: 
Addison-Wesley. 

Fisher A. (2000). The mathematical theory of probabilities, John Wiley ed. 
Fukunaga K. (1972). Introduction to statistical pattern recognition, School of Electrical 

Engineering, Purdue University, Lafayette, Indiana, Academic Press, New York and 
London. 

Fukunaga K. (1990). Introduction to statistical pattern recognition, Academic Press, New York, 
2nd edition. 

Gallager R. G.(1997). A minimum delay routing algorithm using distributed computations, 
IEEE Transactions on Communications, Vol. COM-25. 



Machine Learning 36

Gelenbe E.,  Lent R., Xu Z. (2002). Networking with Cognitive Packets, Proc. ICANN 2002, 
Madrid, Spain, August 27-30. 

Goetz P., Kumar S., Miikkulainen R. (1996). On-Line Adaptation of a Signal Predistorter 
through Dual Reinforcement Learning, Proc. of the 13th Annual Conference 
Machine Learning, Bari, Italy. 

Goonatilake S., Khebbal S. (1996). Intelligent Hybrid Systems: Issues, Classification and 
Future Directions, Intelligent Hybrid Systems, John Wiley & Sons Ed., pp.1-20. 

Hannibal A. (1993). VLSI Building Block for Neural Networks with on chip Back Learning, 
Neurocomputing, n°5, pp.25-37. 

Hartigan J. (1975). Clustering Algorithms. John Wiley and Sons Ed., New York. 
Haykin S (1988). Neural Networks– A Comprehensive Foundation, Mcmillan College Publishing. 
Haykin S. (1999). Neural Networks – a Comprehensive foundation, Prentice Hall Int. 
Ho T.K., Basu M (2000). Measuring the complexity of classification problems, Proceedings of 

the 15th Intenational Conference on Pattern Recognition, Barcelona, Spain, pp. 43-47, 
September 3-8. 

Ho T.K., Baird H.S. (1998). Pattern classification with compact distribution maps, Computer 
Vision and Image Understanding, vol. 70, no.1, pp.101-110. 

Ho T.K., Basu M. (2002). Complexity measures of supervised classification problems, IEEE 
Transactions on pattern Analysis and Machine Intelligence, vol. 24, issue 3, March, 
pp.289-300. 

Hoare C.A.R. (1962). Quicksort, Computer Journal, 5(1), pp.10-15. 
Jacobson V. (1988). Congestion Avoidance of Network Traffic, Computer Communication" 

Review, vol. 18, no. 4, pp.314-329. 
Jordan M.I., Jacobs R.A. (1993). Hierarchical mixtures of experts and the EM algorithm, 

Technical Report AIM-1440. 
Jordan M.I., Jacobs R.A (2002). Learning in Modular and hierarchical systems, The 

Handbook of Brain Theory and Neural Networks, 2nd edition. Cambridge, MA: 
MIT Press, 2002. 

Kohonen T. (1984). Self-Organization and Associative Memory, Springer-Verlag. 
Kohn A., Nakano L. G., and Mani V. (1996). A class discriminability measure based on 

feature space partitioning, Pattern Recognition, 29(5), pp.873-887. 
Krogh A., Vedelsby J. (1995). Neural Network Ensembles, Cross Validation, and Active 

Learning, Advances in Neural Information Processing Systems 7, The MIT Press, Ed by 
G. Tesauro, pp. 231-238. 

Kumar S. and Miikkualainen R. (1998). Confidence-based Q-routing: an on-queue adaptive 
routing algorithm, Proceedings of Symp. of Neural Networks in Engineering. 

Kumar S. and Miikkualainen R. (1997). Dual reinforcement Q-routing: an on-queue adaptive 
routing algorithm, Proceedings of Symp. of Neural Networks in Engineering.  

Lang K. J. and Witbrock M. J. (1998). Learning to tell two spirals apart, Proc. of the 
Connectionist Models Summer School, Morgan Kauffman Ed., pp. 52-59. 

Lavrac N., Flach P., Kavsek B., Todorovski L. (2002). Rule induction for subgroup discovery 
with CN2-SD, Proc. Of IEEE ICDM, pp. 266-273.  

McLachlan, G.J., Basford, K.E. (1988). Mixture Models: Interference and Applications to 
Clustering”, New York: Marcel Dekker. 

Madani K., Chebira A., Rybnik M. (2003). Data Driven Multiple Neural Network Models 
Generator Based on a Tree-like Scheduler, Lecture Notes in Computer Science n°2686, 
SI on Computational Methods in Neural Modelling, (Jose Mira, Jose R. Alvarez Ed.) 
- Springer Verlag Berlin Heidelberg, ISBN 3-540-40210-1, pp.382-389. 



Neural Machine Learning Approaches:  
Q-Learning and Complexity Estimation Based Information Processing System 37 

Madani K., Thiaw L., Malti R., Sow G. (2005). Multi-Modeling: a Different Way to Design 
Intelligent Predictors, LNCS 3512, Ed.: J. Cabestany, A. Prieto, and F. Sandoval, 
Springer Verlag Berlin Heidelberg, pp.976 – 984. 

Madani K. (2007). Toward Higher Level Intelligent Systems, (Key-Note Paper), proceedings of 
IEEE- 6th International conference on Computer Information Systems and Industrial 
Management Applications (IEEE-CISIM’07), IEEE Computer Society, Elk, Poland, 
June, 28-30, pp.31-36. 

Madani K. (2008). Artificial Neural Networks Based Image Processing & Pattern 
Recognition: From Concepts to Real-World Applications, (Plenary Tutorial Talk, 
Key-Note Paper), proceedings of IEEE- 1st International workshop on Image Processing 
Theory, Tools and Applications (IEEE-IPTA’08), IEEE Computer Society, Sousse, 
Tunisia, November 23-26, pp. 19-27. 

Maddox J. (1990). Complicated measure of complexity, Nature, vol. 344, pp. 705. 
Maes, P. (1994). Social interface agents: Acquiring competence by learning from users and 

other agents, Spring Symposium on Software Agents (Technical Report SS-94-03), O. 
Etzioni (ed.), AAAI Press. pp.71-78.  

Malkin G. (1998). RIP version2,  Carrying Additional Information, IETF RFC 1388 RFC 1993. 
Moy J. (1998). OSPF Version 2, IETF RFC2328. 
Markovitch S., Rosenstein D. (2002). Feature Generation Using General Constructor 

Functions, Machine Learning, Springer Ed., Volume 45, N°. 1, pp.59-98. 
Matusita K. (1967). On the notion of anity of several distributions and some of its 

applications. Annals Inst. Statistical Mathematics, Vol., 19, pp.181-192. 
Mayoubi M., Schafer M., Sinsel S. (1995). Dynamic Neural Units for Non-linear Dynamic 

Systems Identification, LNCS Vol. 930, Springer Verlag, pp.1045-1051. 
Mehmet I. S., Bingul Y., Okan K. E. (2003). Classification of Satellite Images by Using Self-

organizing Map and Linear Support Vector Machine Decision Tree, 2nd Annual 
Asian Conference and Exhibition in the field of GIS. 

Mellouk A. (2008a). End to End Quality of Service Engineering in Next Generation Heteregenous 
Networks, ISTE/Wiley Ed. 

Mellouk A., Hoceini S., Cheurfa M. (2008b). Reinforcing Probabilistic Selective Quality of 
service Routes in Dynamic Heterogeneous Networks, Journal of Computer 
Communication, Elsevier Ed., Vol 31, n°11, pp. 2706-2715. 

Mellouk A., Lorenz P., Boukerche A., Lee M. H. (2007). Quality of Service Based Routing 
Algorithms for heterogeneous networks, IEEE Communication Magazine, Vol. 45, 
n°2, pp.65-66.  

Mellouk A., Hoceini S., Amirat Y. (2006). Adaptive Quality of Service Based Routing 
Approaches: Development of a Neuro-Dynamic State-Dependent Reinforcement 
Learning Algorithm, International Journal of Communication Systems, Ed. Wiley 
InterSciences, Vol 20, n°10, pp.1113-1130.  

Murray-Smith R. and Johansen T.A. (1997). Multiple Model Approaches to Modeling and 
Control, ed. Murray-Smith R. and T.A. Johansen, Taylor & Francis Publishers. 

Naftaly, U., Intrator, N., Horn, D. (1997). Optimal ensemble averaging of neural networks, 
Network, vol.8, pp.283-296. 

Ozdaglar A.E., Bertsekas D. P. (2003). Optimal Solution of Integer Multicommodity Flow 
Problem with Application in Optical Networks, Proc. Of Symposium on Global 
Optimisation. 

Partridge C. (1992). A proposed flow specification, IETF RFC1363. 



Machine Learning 38

Pierson W.E. (1998). Using boundary methods for estimating class separability, PhD thesis, 
Department of Electrical Engineering, Oho State University. 

Rahman A. F. R., Fairhurst M. (1998). Measuring classification complexity of image 
databases : a novel approach, Proceedings of International Conference on Image 
Analysis and Processing, pp.893-897. 

Rosen E., Viswanathan A., Callon R. (1999). Multiprotocol Label Switching Architecture, 
IETF Internet Draft draft-ietf-mpls-arch-06.txt. 

Saeed K., Tabedzki M., Adamski M. (2003). A View-Based Approach for Object Recognition, 
Conradi Research Review Finland, Vol. 2, Issue 1, pp.85-95. 

Schapire R. E. (1999). A Brief Introduction to Boosting, Proc. Of IJCAI, pp.1401-1406. 
Shenker S., Partridge C., Guerin R. (1997). Specification of guaranteed quality of service, 

IETF RFC2212. 
Singh S. (2003). Multiresolution Estimates of classification complexity, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Volume 25 ,  Issue 12, pp 1534 – 1539. 
Singh S., A.P. Galton (2002). Pattern Recognition using Information Slicing Model (PRISM), 

Proc. 15th International Conference on Pattern Recognition (ICPR2002), Quebec. 
Stallings W. (2001). MPLS , Internet Protocol Journal, Vol. 4, n° 3, pp.34-46. 
Strassner J. (2003), Policy-Based Network Management: Solutions for the Next Generation, 

Morgan-Kaufmann Ed. 
Subramanian D.,  Druschel P., and  Chen J. (1997).  Ants and reinforcement learning: A case 

study in routing in dynamic networks, Proc. of the Fifteenth International Joint 
Conference on Artificial Intelligence, vol. 2, pp.832-839. 

Sung K. K., Niyogi P. (1995). Active Learning for Function Approximation, Advances in 
Neural Information Processing Systems7, pp.593-600. 

Sutton R. S. and Barto A. G.  (1994). Reinforcement Learning, MIT Press. 
Takeshita, T., Kimura, F., Miyake, Y. (1987). On the Estimation Error of Mahalanobis 

Distanc, Trans. IEICE Journal, 70-D, pp.567-573. 
Titterington D. M., Smith A.F., Makov V.E. (1985). Statistical Analysis of Finite Mixture 

Distributions, Wiley New York. 
Tresp V. (2001). Handbook for Neural Network Signal Processing, CRC Press. 
Turner J. (1986). New directions in communications (or which way to the information age), 

IEEE Communications Magazine, vol. 24(10), pp.8-15. 
Vapnik V.N. (1998). Statistical Learning Theory, New York Wiley Ed. 
Wasserman P. D. (1993)., Advanced Methods in Neural Computing, New York: Van Nostrand 

Reinhold, pp.35-55. 
Wang Z. and Crowcroft J. (1996). QoS Routing for Supporting Resource Reservation, IEEE 

Journal on Selected Areas in Communications, 17 (8), pp. 1488-1504. 
Watkins C. J.,  Dayan P. (1989). Q-Learning, Machine Learning, Vol.8, pp.279–292. 
Watkins C. J. (1989). Learning from Delayed Rewards, Ph.D. thesis, University of Cambridge, 

England.  
Welzl M. (2003). Scalable Performance Signalling and Congestion Avoidance, Kluwer Academic 

Publishers. 
Wooldridge M., Jennings N. (1995). Intelligent agents: theory and practice, The Knowledge 

Engineering Review, Vol.10:2, pp.115-152. 
Zhang L., Deering S., Estrin D. et Zappala D. (1993). RSVP : A New Resource ReSerVation 

Protocol, IEEE Network, vol. 7, No 5, pp.8–18. 
 



© 2009 The Author(s). Licensee IntechOpen. This chapter is

distributed under the terms of the Creative Commons Attribution-

NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes,

provided the original is properly cited and derivative works building

on this content are distributed under the same license.


