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Abstract

TiO2 powders can be employed as both photocatalytic and structural materials, leading to
applications in external coatings or in interior furnishing devices, including cement mor-
tar, tiles, floorings, and glass supports. The technology of photocatalytic building mate-
rials is connected with the widespread production of photocatalytic active tiles. All the
techniques proposed in the study involve the employment of nanosized TiO2: this repre-
sents a new problem to be dealt with, as inhaling nanoparticles exposes workers during
industrial production and people in everyday locations to their dangerousness. Only very
recently the employment of microsized TiO2 has been proposed, and the authors in this
manuscript report the use of micrometric titania materials, but employing a new deposi-
tion technique, which is digital inkjet printing. It represents an improvement of the
classical spray coating methods, as it requires piezoelectric heads to precisely direct the
deposition of the suspension with an electrostatic field. The mixture contains aqueous/
organic components containing micrometric TiO2: to form a suspension, which is printed
onto the surface of porcelain grès, large slabs using a digital printer. Many advantages are
immediately evident, namely rapid and precise deposition, (almost) no waste of raw
materials, thereby highlighting the economy, environmental friendliness, and sustainabil-
ity of the process. All the materials we obtained have been thoroughly characterized by
means of several experimental physico-chemical techniques, such as Raman microspec-
troscopy and scanning electron microscopy coupled with elemental analysis. Two differ-
ent model VOCs, ethanol and toluene, and NOx have been selected to test the
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photocatalytic performances of the abovementioned tiles. Moreover, the antibacterial
properties of the tiles have been determined, using Escherichia coli as example. Life cycle
assessments (LCAs) for the two processes were modeled for 1 m2 of tiles produced in
Modena, Italy. The impact assessments revealed that jet spraying exhibited uniformly
greater impacts than digital inkjet printing and that the principal impacts were in human
toxicity, cancer effects, freshwater ecotoxicity, and climate change. Most of the impacts
were associated with the energy required for the production processes. Further consider-
ations revealed that jet spraying is projected to generate twice as much CO2 and 30%more
NOx than digital inkjet printing.

Keywords: TiO2, titania, digital inkjet printing, jet spraying, VOCs, NOx, E. coli, life cycle
assessment, impact assessments

1. Introduction

1.1. Pollution

The WHO (World Health Organization) estimates that 12.6 million deaths each year are

attributable to unhealthy environments [1], confirming the urgent need for investment in

strategies to reduce environmental risks in cities, homes, and workplaces. Of these deaths, 4.3

million (34%) and 3.7 million (29%) have been linked to exposure to indoor and outdoor

pollution, respectively [2]. More broadly, it is considered that 92% of the population lives in

areas that are exposed to respirable particulate matter of <2.5 μm in diameter (PM2.5) at an

annual mean concentration of >10 μg/m3 (or a 24 h mean of >25 μg/m3), which exceeds the

WHO Air Quality Guidelines (AQG). The worst affected areas are China, the Indian subconti-

nent, the Middle East, and northern Africa.

Particulate and gaseous air pollution results largely from industrial and motor vehicular

sources, although these emissions are exacerbated by those generated by heating [3]. The

combustion of solid biomass and impure liquid fuels is the main source of pollution leading

to health problems, as evidenced by numerous recent studies. For example, in Ethiopia, the

average concentration of respirable particulate matter of diameter of <PM2.5 reaches as high

as a 24-h mean concentration of 280 μg/m3, indoor CO levels are greater than the regulatory

limits for the US, and the average NO2 level is 97 ppb [4]. In Southeast Asia, the large-scale

burning of biomass causes heavy emissions of combustion by-products, which photochem-

ically transform to other more dangerous molecules [5], such as polycyclic aromatic hydro-

carbons (PAHs) [6]. Europe is affected mainly by emissions of nitrogen oxides (NOx) [7].

Although outdoor pollution tends to be a focal point, indoor air in the US can be two to five

times more harmful than outdoor air [8]. Almost 96% of houses in North America are

reported to have at least one indoor air quality problem [9]. Cigarette smoke contains more

than 7000 chemicals, of which 69 are known to be carcinogenic and many more to be

poisonous [10]. Household items, such as cleaning products, air fresheners, and sanitation

products, also contribute to indoor pollution by releasing chemicals. Consequently, there

are environmental health imperatives to develop technologies that address these while

satisfying other demands in the areas of energy efficiency, economic efficiency, utility, and

esthetics.
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1.2. Photocatalytic TiO2 and its applications

Semiconductor photocatalysis involves the activation of a photocatalytic material, such as

titania (TiO2), by the action of light to produce charge carriers that undergo redox reactions

with water and oxygen molecules [11]. This property allows these materials to decompose

organic contaminants ideally into CO2 and water, thus allowing applications in self-cleaning,

anti-fogging, corrosion prevention, and air and water purification [12]. Although there are

many scientific and technical requirements for effective photocatalytic performance [13], there

are also numerous practical challenges that must be met. One of these is catalyst immobiliza-

tion [14] because it generally must balance the requirements of achievement of a robust

chemical bond to a substrate, the retention of sufficient exposed surface area, and the minimi-

zation of contamination from the substrate.

There has been an increase in the sales of TiO2-based products for self-cleaning and air and

water purification owing to growing environmental concerns [15]. One of the key product

developments was photocatalytic building materials, which appeared on the market at the

beginning of the 1990s [16]. TiO2 can be applied either in exterior construction or in interior

furnishing materials, including concrete, mortar, tiles, flooring, and glass. In the early 2000s,

the sales of photocatalytic building materials accounted for ~60% of the total market for

photocatalytic materials [17]. Recent market projections to 2020 foreshadow increasing

demand in the construction sector for self-cleaning coatings and other technologies for improv-

ing air quality, leading to a global market for photocatalyst-based products of ~$2.9 billion [18].

At present, TiO2-based photocatalyst products constitute 97.6% of the market, and this domi-

nance is a result of TiO2’s low cost, ready availability, and well-documented performance data.

Many studies have demonstrated the effectiveness of photocatalytic materials for pollution

abatement of the volatile organic compounds (VOCs) and nitrogen oxides (NOx) that represent

widespread risks to health. For example, concrete paving blocks with TiO2 added directly to

the mix were able to remove 4.01 mg/h/m2 of NO [19]. However, similar work demonstrated

that the efficiency of NOx photodegradation varied significantly according to preparation

method and resultant microstructure, with some products achieving 40% photodegradation

while others showed almost no effect [20]. A comparison between pure TiO2 and TiO2 embed-

ded in neat hydrated cement revealed that the photocatalytic activity was three to 10 times

lower for the latter, which was attributed to the agglomeration of the TiO2 powder [21]. TiO2

also has been applied as surface coatings on roofing tiles and corrugated sheet and found to

achieve gaseous toluene removal efficiencies as high as 78 � 2%, although this was limited by

gas concentration and residence time [22].

It is clear that the permanence and performance of TiO2-containing construction products

depend significantly on the method used to immobilize the photocatalyst, whether in the bulk

or on the surface. Other factors of importance include the type of substrate and the method of

TiO2 application [23]. Hence, there has been a commensurate focus on the design of such

building products and their manufacture in order to obtain maximal lifetimes and efficiencies.

An additional consideration is the potential alteration of the photocatalyst by fouling, which

can block the active sites and reduce or prevent photocatalysis [24]. Finally, there are also

potential health issues associated with the formation of chemical intermediates [25] and the

respirability of nanoparticulates [26].
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1.3. TiO2 coatings

One of the most promising areas in photocatalytic building materials is photocatalytically active

tiles, which are self-cleaning but also can decompose air pollutants. The standard approach has

been to apply TiO2-based materials on ceramic surfaces and to attempt to immobilize the TiO2 at

as low a temperature as possible. In the case of spray coating of aqueous dispersions of TiO2 on

clay roofing tiles, the heating temperature was 290�C [27]. Chemical vapor deposition (CVD)

using gaseous precursors, following by heating at 550�C, also has been investigated [28] but

these films suffered from poor adhesion. By contrast, plasma-enhanced chemical vapor deposi-

tion (PECVD), involving reheating at 400�C, yielded high-quality materials [29]. Aerosol flame

synthesis (temperature probably <700�C) has been used to produce ultra-fine TiO2 nanoparticles

that could be deposited directly on supports [30]. Sol-gel TiO2 precursors have been coated on

cement-based materials by dipping and heating at 500�C [31]. TiO2 suspensions in water or

alcohol also have been sprayed on limestone with no subsequent heating since the porous

microstructure immobilized the powder [32]. All of these approaches used nanosized TiO2.

Although spray coating remains the simplest and least expensive coating technique, recent

work [33] reports the functionalization of commercial glazed ceramic tiles with pigment-grade,

microsized, anatase (Kronos 1001) using an industrial-type process. This method offers a

reduction in the risk of inhalation as it does not involve the use of nanosized TiO2 powders.

The TiO2 powder was deposited by airless jet spraying aqueous suspensions containing a

silica-based commercial product as binder. The tiles were dried and then fired at 680�C in an

industrial kiln for 80 min (cold-to-cold cycle).

This work reports a new deposition technique, which is digital inkjet printing. Despite the

advantages of conventional spray coating methods, digital inkjet printing offers an advanta-

geous, precise, coating technique that utilizes piezoelectric heads to effect directional deposition

of an aqueous/organic ink suspension within an electrostatic field [34]. The suspension contained

pigment grade, microsized anatase (Kronos 1077), and this was printed on the surface of porce-

lain grès (viz., stoneware) tiles using a digital printer. This process has several advantages,

including rapid and precise and more uniform deposition and essentially no waste of raw

materials, which are favorable for both the economics of the process and the environment.

Moreover, with this technique, slabs of large size up to 120 � 360 cm can also be activated. The

data for the thin films deposited by digital inkjet printing are contrasted with those for the more

conventional method of jet spraying.

2. Materials and methods

2.1. Microsize TiO2 and porcelain grès tiles

The TiO2 powder was Kronos 1077, which is ≥98.5% anatase and has a particle size range of

110–130 nm, a BET surface area of 12 m2/g, a true density of 3800 kg/m3, and an optical indirect

band gap of 3.15 eV [35, 36].
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The TiO2 was deposited on porcelain grès tiles that were manufactured by GranitiFiandre S.p.

A. These are dry-pressed tiles fired at 1200–1300�C. The phase assemblage as such consists of

glass, mullite, and quartz.

2.2. Digital inkjet printing and airless jet spraying procedures

Conventional, industrial-scale, airless, jet spray deposition was used for the deposition of

coatings, as described in brief previously by the authors [37]. However, with the new, innova-

tive, automated decoration of ceramic surfaces by digital instruments, it has become possible

to manufacture products of considerably superior quality. Consequently, this work also reports

an investigation of the deposition of coatings of photocatalytic TiO2 by digital inkjet printing

using a proprietary ink containing suspended microsized TiO2 particles.

A prototype digital printer manufactured by Projecta S.p.A. was used to apply the suspen-

sions. Following deposition, the tiles were calcined at 680�C for 80 min using an industrial-

scale kiln designed to avoid thermal shock. The cooled tiles then were washed with water,

brushed vigorously to remove loose particles, and air jet dried. The process is summarized in

Figure 1. The water used for degreasing was recovered and purified prior to recycling; any

damaged tiles were recycled.

Figure 1. Summary of digital inkjet printing process.
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2.3. Characterization

Mineralogical analyses were done by laser Raman microspectroscopy (Raman; inVia Raman

Microscope, green laser, 514 nm, 20�, 1.5-μm beam diameter, Renishaw, Wotton-under-Edge,

Gloucestershire, UK). Microstructural analyses were done by field emission gun scanning elec-

tron microscopy (Field emission gun scanning electron microscopy (FEG-SEM); LEO 1525, 15, or

20 kV accelerating voltage, LEO Electron Microscopy Inc., Thornwood, NY, USA). Elemental

analyses were done by paired energy dispersive spectroscopy (EDS; Bruker Quantax, Bruker

Italia S.r.l., Milan, Italy).

2.4. Photocatalysis testing

2.4.1. Volatile organic compounds

VOC photodegradation reactions were conducted in a Pyrex glass cylindrical reactor with a

diameter of 200 mm and an effective volume of 5 L [38]. A 100-cm2 digital inkjet-printed

sample or jet-sprayed sample was placed at the bottom of the reactor and exposed to a 500-W

iron halogen lamp (HG 500, 315–400 nm, UV-A, Jelosil, Milan, Italy). The reactor had two

entrances, one for VOC loading and the other for sampling by a gas chromatograph (490 Micro

GC System, Agilent Technologies Italia S.p.A, Milan, Italy).

Ethanol and toluene were selected as model pollutants, and the initial concentration for both

was 400 ppm for each test. The photodegradation tests were conducted for 6 h.

2.4.2. Nitrogen oxides

Two different setups were used—one under static conditions [39] and the other under flowing

conditions [40]. A chemiluminescence NOx monitor (Teledyne API, Model 200E, San Diego,

CA, USA) provided online detection of NO and NO2 concentrations. The batch reactor

consisted of a Pyrex glass cylinder of volume of 25 L; this is described elsewhere [39]. The tile

(2 � 20 cm) was located at the bottom of the cylinder and an overhead 500-W iron halogenide

lamp (HG 500, 315–400 nm, UV-A, Jelosil, Milan, Italy) provided irradiation of 20 W/m2. The

inlet gas consisted of NO2 (0.6% in N2) mixed with air of relative humidity (RH) 40%, which

allowed equilibration between NO and NO2 to be reached quickly. The NO2 concentration was

set at 1000 ppb (static) or 250 ppb (flowing) and tests lasted 6 h each. The continuous flow

reactor allowed testing of larger tiles (60 � 60 cm) [40]. A Thermo-Hygro Meter (HT-3006A,

Metravi, Calcutta, India) measured both temperature and relative humidity, which ranged

between 40 and 50%. Two iron halogen lamps (Jelosil, model HG 500), at 770-mm center-to-

center distance, which was designed to irradiate the sample surface with the same 20 W/m2

light intensity, were used. The total NOx gas flow was in the range of 140–180 NL/h, which is in

accordance with the standard concentration based on the limiting values specified in Directive

2008/50/EC of the European Parliament and of the Council on Ambient Air Quality and Cleaner Air

for Europe (range 100–200 ppb).
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2.5. Antibacterial effects

The photocatalytic tiles were tested using Escherichia coli (E. coli, ATCC 8739) according to

ISO 27447:2009 Fine Ceramics—Test Method for Antibacterial Activity of Semiconducting

Photocatalytic Materials. Each strain was inoculated into a nutrient agar slant, incubated for

16–24 h at 37 � 1�C, and then transferred to a new nutrient agar slant and again held at

37 � 1�C for 16–24 h. An appropriate quantity of bacteria was dispersed in 1/500 nutrient

broth (NB) to obtain a count of 6.7 � 105 to 2.6 � 106 cells/mL. Tile samples of dimensions

50 � 50 mm were rinsed with distilled water and autoclaved at 121�C for 30 min prior to

testing in order to remove any organic residue on the surfaces. For each strain, six tile

samples without (controls) and six with photocatalytic coating were investigated. A volume

of 0.15 mL of bacterium suspension was placed on each specimen and covered with an inert

and non-water adsorbent film of dimensions 40 � 40 mm; the film transmitted >85% of

radiation in the range of 340–380 nm. Each specimen was placed in a 100-mm diameter

Pyrex Petri dish containing a moistened paper filter to prevent drying of the suspension

and covered with a 1-mm thickness borosilicate glass slide, also with radiation transmission

of >85% in the range of 340–380 nm.

A fluorescent UV lamp (18 W, Royal Philips, Amsterdam, Netherlands) was used for the testing

at an intensity of 0.25 mW/cm2 for 8 h. A viability count was performed by dilution and plating

on nutrient agar incubated at 37�C for 48 h. More details are reported elsewhere [37].

3. Results and discussion

3.1. Characterization

3.1.1. Field emission gun scanning electron microscopy

The FEG-SEM images shown in Figure 2 reveal a relatively widespread, homogeneous, and

thick deposition of TiO2 on the digital inkjet-printed tile surface in comparison to the jet-

sprayed tile surface, which shows that voids are present. The EDS data confirmed a greater

areal extent of coverage by TiO2 for digital inkjet printing. However, it is significant that the

digital inkjet-printed coating exhibits a considerably lower degree of agglomeration than does

the jet-sprayed coating. The former can be expected to provide a greater surface area and

associated density of photocatalytically active sites. The reason for this difference is the supe-

rior dispersion of the TiO2 powder by the inclusion of a dispersant in the ink, which reduced

the formation of soft agglomerates. Further, it is likely that the included organic phases played

a key role in the development of this microstructure through separation of the particles and

consequent surface exposure during pyrolysis. Consequently, digital inkjet printing can be

expected to exhibit a superior photocatalytic performance owing to the greater volume of

deposited TiO2, the extent of areal coverage of the tile, and exposed surface area.
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3.1.2. Laser Raman microspectroscopy

In the optical micrographs taken by Raman, shown in Figure 3, the lighter rougher regions

consist of TiO2 and the darker regions are the exposed porcelain grès substrates. These images

confirm that the TiO2 deposited by digital inkjet printing is more widespread than that by jet

spraying. Figure 4 shows that the Raman spectra of the digital inkjet-printed and the jet-

sprayed coatings are significantly different. The intensities of the peaks and the slopes of the

baselines indicate the TiO2 content of the coating and the glass content, respectively, for each

sample. That is, lower peak intensities indicate a low amount of TiO2 and/or a low degree of

crystallinity and the sloped baseline indicates a high glass content in the vitreous tile. The

greater peak intensities and flat baseline for the digital inkjet-printed coating confirm the

greater extent of coverage of the tile by TiO2, whereas the low peak intensities and sloped

baseline for the jet-sprayed coating confirm the low areal distribution of TiO2. Since laser

Raman microspectroscopy does not analyze amorphous materials accurately, the peak at

510 cm�1 is attributed to albite feldspar and the peak at 610 cm�1 to α-quartz. The two other

small but relatively sharp peaks at 439 and 356 cm�1 could not be identified.

Figure 2. FEG-SEM micrographs digital inkjet-printed coating at (A) low magnification and (B) high magnification and

jet-sprayed coating at (C) low magnification and (D) high magnification.
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3.2. Photocatalytic testing

3.2.1. VOC photodegradation

Figure 5 shows the UV photodegradation of ethanol and toluene. Both sets of data demon-

strate the superior photocatalytic performance of the digital inkjet-printed coating. While

similar testing of Kronos 1077 bulk powder has been shown to decompose ethanol completely

in 1 h [37], this work for the deposition of this TiO2 powder as a digital inkjet-printed coating

shows that nearly complete decomposition (~97%) requires 6 h. By contrast, the jet-sprayed

coating decomposes only ~47% of the ethanol after 6 h. Interestingly, both coatings outperform

the powder when decomposing the more stable aromatic toluene ring. While Kronos 1077 bulk

Figure 3. Optical micrographs of (A) digital inkjet-printed coating and (B) jet-sprayed coating.

Figure 4. Laser Raman microspectra of (A) digital inkjet-printed coating and (B) jet-sprayed coating.
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powder decomposed only ~43% of toluene after 6 h, the digital inkjet-printed coating decom-

poses ~84% and the jet-sprayed coating decomposes ~75%. It is probable that the difference in

results for ethanol and toluene is that while both involved decomposition by photocatalysis,

the latter also included a contribution from direct photolysis, which was enhanced by the

greater surface area of the coating exposed to UV in comparison to that of a powder bed. This

component may be significant because the difference between the two coating techniques is

less than that for ethanol photodegradation.

These data confirm that the photocatalytic performance of the digital inkjet-printed coating is

superior to that of the jet-sprayed coating for VOC decomposition. This is a result of the

greater extent of coverage, more even areal distribution, a reduced agglomeration, a greater

extent of exposed particle surface area, and a greater crystallinity of the TiO2 in the digital

inkjet-printed coating.

3.2.2. NOx photodegradation

Figure 5 also shows the UV photodegradation of NOx in both batch and continuous-flow

reactors. Again, the digital inkjet-printed coating outperforms the jet-sprayed coating. After

6 h under static conditions, the digital inkjet-printed coating decomposes ~90% of the NOx

Figure 5. Photodegradation over time by digital inkjet-printed and jet-sprayed coatings of (A) ethanol, (B) toluene, (C)

static NOx, and (D) flowing NOx.
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while the jet-sprayed coating decomposes only ~56%. After 6 h under flowing conditions, the

performances were closer, with the digital inkjet-printed and jet-sprayed coatings decomposing

~80 and ~74% of the NOx, respectively. It is clear that the maximal levels of decomposition were

attained relatively quickly and they were maintained such that no deactivation was observed.

The larger dimensions (60 � 60 cm) of the tiles and the lower NOx concentration used during

the testing under flowing conditions provide a better simulation of real environmental condi-

tions [40]. It may be noted that this digital inkjet-printing technology is capable of coating

dimensions as large as 150 by 300 cm.

3.3. Antibacterial testing

Table 1 summarizes the results of the antibacterial testing, which reveals that both types of

coatings were highly effective in destroying E. coli (gram-negative), which is part of the

bacterial flora of human and animal intestines and hence a suitable indicator of potential

contamination of drinking water and food. These data show that UV irradiation alone is

capable of destroying ~45–72% of the bacteria while both photocatalytic coatings destroy

essentially all of the bacteria. After photocatalysis (RL), the digital inkjet-printed and jet-

sprayed coatings are essentially equivalent. However, with photocatalysis (ΔR), the digital

inkjet-printed coating clearly outperforms the jet-sprayed coating. Hence, these data are in

basic agreement with those for the photodegradation of ethanol and toluene. However, they

must be interpreted in light of the different surface topographies, where Figures 2 and 3 show

that the jet-sprayed coating provides less homogeneous coverage and hence presents a more

Antibacterial activity of photocatalytic coatings using E. coli ATCC 8739

Symbol Parameter Units Uncoated tile 1 Uncoated tile 2

Uncoated porcelain grès tile controls

N Number of live bacteria Cells 1,900,000 1,100,000

A Number of live bacteria after inoculation Cells/mL 280,000 160,000

BD Number of live bacteria before UV irradiation Cells/mL 220,000 600,000

BL Number of live bacteria after UV irradiation Cells/mL 120,000 170,000

— Reduction in bacterial count after UV irradiation % 45.45 71.67

TiO2-coated porcelain grès tiles

Symbol Parameter Units Digital inkjet-printed tile Jet-sprayed tile

CD Number of live bacteria before photocatalysis Cells/mL 180,000 130,000

CL Number of live bacteria after photocatalysis Cells/mL 10 10

— Reduction in bacterial count after photocatalysis % 99.99 99.99

RL Antibacterial activity after photocatalysis — 4.1 4.2

ΔR Antibacterial activity with photocatalysis — 4.1 3.6

Table 1. Summary of the antibacterial testing results on sprayed and digital printed tiles.
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uneven surface that is likely to be more amenable to cell attachment and proliferation [41]. A

second factor is the sizes of the species that were examined, where Table 2 [42, 43] contextual-

izes the view that the photocatalytic performance is correlated through size similarities

between the photocatalyst and the species [42].

RL ¼ log 10 BL=CLð Þ (1)

ΔR ¼ log 10 BL=CLð Þ– log 10 BD=CDð Þ (2)

3.4. Life cycle assessment

In 1993, the Society of Environmental Toxicology and Chemistry (SETAC) standardized the

process for life cycle assessment (LCA) to include four components: (1) goal and scope, (2)

inventory, (3) impact assessment, and (4) data interpretation [44]. LCA normally is applied to

early-stage plants in order to investigate environmental hot spots arising from new technolo-

gies [45] or to establish industrial-scale processes for the comparison of divergent designs and

optimization of environmental profiles [46]. In this work, the LCA has been modeled for the

production of photocatalytic ceramic tiles by digital inkjet printing and jet spraying.

The approach applies gate-to-gate boundaries using a functional unit of 1 m2 of tiles produced

in Modena, Italy. SimaPro (Version 8.3.0.0) extracted the secondary data from the Ecoinvent 3

database. ILCD 2011 Midpoint + (Version 1.08) and IPCC 2013 GWP 100amethods were used to

calculate the impacts, which are given in terms of micro-eco-points (μPt). An eco-point is

defined as one thousandth of the total environmental impact caused by a statistical European

citizen per year [47]. The LCA was done in accordance with the ISO/TC 207/SC 5 Life Cycle

Assessment methodologies for the principles and framework as well as the requirements and

guidelines. For the inventory phase, these two processes were divided into substeps.

In order to highlight the differences between the two production processes, LCA comparison

calculations were performed using the ILCD 2011 Midpoint +method, weighting the results for

the 16 impact categories that were considered. Figure 6 shows the results graphically and

Table 3 lists them numerically.

Species Size (nm) Reference

Ethanol 0.437 [43]

Toluene 0.564 [43]

E. coli 1000 � 3000* [42]

Viruses 10–300 [42]

Bacteria 500–5000 [42]

Fungi 5000–15,000 [42]

*Rod-like shape.

Table 2. Sizes of tested and other relevant species.
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Figure 6. Graphical data for impact (μPt) assessments of digital inkjet-printed and jet-sprayed coatings.

Impact category Jet sprayed Digital inkjet printed Difference (%)

Human toxicity, cancer effects 83.83 42.49 49.31

Freshwater ecotoxicity 48.74 27.41 43.76

Climate change 24.68 11.82 52.11

Human toxicity, non-cancer effects 19.35 10.62 45.10

Mineral, fossil and resource depletion 14.44 3.69 74.41

Freshwater eutrophication 12.99 8.36 35.62

Acidification 12.14 6.13 49.50

Particulate matter 10.70 5.40 49.56

Photochemical ozone formation 9.17 5.04 45.03

Ionizing radiation, human health 7.44 5.85 21.42

Water resource depletion 4.38 2.76 36.90

Marine eutrophication 3.52 2.77 21.36

Terrestrial eutrophication 3.48 2.75 20.95

Land use 2.04 1.18 42.40

Ozone depletion 1.16 0.70 39.99

Ionizing radiation, ecosystems (interim) 0.00 0.00 0.00

Table 3. Numerical data for impact (μPt) assessments of digital inkjet-printed and jet-sprayed coatings.
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These data show that jet spraying makes consistently greater impacts than digital inkjet

printing does, with the most significant impacts being on human toxicity, cancer effects,

freshwater ecotoxicity, and climate change. The first two of these categories have been exam-

ined in more detail using USEtox calculations and the third category also has been examined

using IPCC 110a calculations. These analyses reveal that their impacts derive almost entirely

from the energy required by the production processes. This explains why jet spraying projects

very high impact values since this process also is relatively energy-intensive. It is notable that

the impacts of climate change and mineral, fossil and resource depletion reveal differences of

>50% between the two production methods. Again, these significant differences are attributed

to energy requirements. Three other categories (human toxicity, cancer effects, acidification,

and particulate matter) also show nearly the same differential of ~50%. The single-score

analysis, which is the average of all values in the 16 categories, shows that digital inkjet

printing is ~46% lower than jet spraying.

Further, the calculation of the CO2 equivalents, carried out by the IPCC 100a method, demon-

strates that jet spraying has a greater impact than digital inkjet printing by a difference of

3.42 kg CO2 versus 1.63 kg CO2. A final point of difference is that the application of the ILCD

method reveals that NOx production demonstrates the same trend, with 2.10 g NOx from jet

spraying and 1.65 g NOx from digital inkjet printing.

The preceding LCA data suggest that the traditional method of jet spraying is considerably

inferior to that of digital inkjet printing and that further detailed analysis of each step of the

process is likely to improve the process and its outcomes commercially, environmentally, and

performatively.

4. Conclusions

This work reports design, synthesis, and characterization of photocatalytic TiO2-coated tiles

fabricated by the conventional jet spraying technique and the new technique of digital inkjet

printing. The latter represents a significant improvement over the former, in that (1) it provides

a more precise deposition as it utilizes piezoelectric heads to direct the suspension within an

electrostatic field, (2) the microsized TiO2 powder strikes a medium that balances the small

size advantageous for photocatalytic performance and the ability to resist solubility in the

glass bonding to the tile against the large size that inhibits respirability, and (3) the topography

of the digital inkjet-printed coating is less amenable to cell attachment and proliferation than

those of the jet-sprayed coating.

The performance data show that the digital inkjet-printed coating was significantly more

effective than the jet-sprayed coating in ethanol photodegradation. While the same trend was

observed for toluene photodegradation, the difference was not as significant owing to direct

photolysis of this aromatic compound. Both coatings were highly effective in destroying E. coli

but the antibacterial activity with photocatalysis (ΔR) of the digital inkjet-printed coating was

significantly superior to that of the jet-sprayed coating. Similarly, the LCA analysis of the

impact assessments reveals the multifarious advantages of the digital inkjet-printed tile.
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