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Abstract

The incredible increase in the volume of data emerging along with recent technological
developments has made the analysis processes which use traditional approaches more
difficult for many organizations. Especially applications involving subjects that require
timely processing and big data such as satellite imagery, sensor data, bank operations,
web servers, and social networks require efficient mechanisms for collecting, storing,
processing, and analyzing these data. At this point, big data analytics, which contains
data mining, machine learning, statistics, and similar techniques, comes to the help of
organizations for end-to-end managing of the data. In this chapter, we introduce a novel
high-performance computing system on the geo-distributed private cloud for remote
sensing applications, which takes advantages of network topology, exploits utilization
and workloads of CPU, storage, and memory resources in a distributed fashion, and
optimizes resource allocation for realizing big data analytics efficiently.

Keywords: big data analytics, high-performance computing, real-time analytics, remote
sensing, distributed computing, geo-distributed cloud, resource allocation

1. Introduction

The extreme increase in the amount of data produced daily by many organizations reveals big

challenges in data storage and extracting information from timely data [1–3]. Many sensors

designed in today’s technology are used in observation centers and on the Earth to create a

continuous stream of data [4]. Real-time, near-real-time geospatial data must be analyzed in a

short time in order to be able to provide time-critical decision support in time-critical applications

[5]. The development of efficient computing techniques for obtaining information from remote

sensing (RS) big data is critical for Earth science [6, 7]. In particular, the recent developments in

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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remote sensing technologies have had a tremendous increase in remote sensor data [8]. The

amount of remote sensing (RS) data collected from a single satellite data center has dramatically

increased and has reached several terabyte values per day [9]. This is because sensors have high

resolution and a large amount of band due to new camera technologies. Thus, RS data reaching

high dimensions is defined as “Big data.”

Large image files which consist of both voluminous pixel and multiple spectral bands (multi-

spectral/hyperspectral) cause great difficulties to read and store in memory. Besides this, data

mining algorithms which extract information from satellite and remote sensing data involve

high computational complexity. With these features, remote sensor applications are both data

intensive [10, 11] and compute intensive [12]. However, the computational complexity of many

data mining algorithms is super linear to the number of samples and the size of the sample.

Hence, optimization of algorithms is not enough to obtain better performance when those two

variables continue to increase.

When talking about big data analysis, the main difficulties in computer architecture are CPU

intensiveness and slow input/output (I/O) operations. According to Moore’s Law, CPU and

driver performance doubles every 18 months. On the other hand, when the trends in I/O

interfaces are examined, the improvement is near-to-network speed improvement but still

behind of it [13]. Although I/O interfaces operate at the same speed as the processor bus, I/O

lags behind because peripheral hardware cards operate at low speeds. PCI cards are being

used to increase I/O performance. Thus I/O performance increases by about 33% annually. In

spite of these improvements in traditional approaches, when collected data exponentially

increases, usage of relatively slow data processing techniques makes real-time analysis diffi-

cult particularly [2]. For this reason, the most important factor determining the performance of

analytical processes is the limited structure of hardware resources inherently [14]. Therefore,

modern technologies and high-performance computing (HPC) techniques, which have parallel

processing capabilities such as multi-core programming, GPU programming, field program-

mable gate arrays (FPGA), cluster computer, and cloud computing are needed to perform

analysis on large volumes of data, which is complex and time-consuming to extract informa-

tion [14–16].

The HPC system usage attracts more attention in remote sensing applications because of a

great deal of data recently [6, 7]. HPC integrates some of the computing environments and

programming techniques to solve large-scale problems in the remote sensing era. Many appli-

cations of remote sensing such as environmental studies, military applications, tracking and

monitoring of hazards, and so on require real-time or near-real-time processing capabilities for

urgent intervention that is timely in the necessary situation. HPC systems such as multi- or

many-integrated core, GPU/GPGPU, FPGA, cluster, and cloud have become inevitable to meet

this requirement. Multi-core, GPU, FPGA, and so on technologies meet parallel computing

needs for onboard image processing particularly. In such technologies, developed algorithms

run on a single node only but with multiple cores. So they could just scale vertically with

hardware upgrades—for example, more CPUs, better graphics cards, more memories [17].

When distributed computing is considered, the most conceivable technology is commercial

off-the-shelf (COTS) computer equipment, which is called cluster [6, 7]. In this approach, a
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cluster is created from a number of computers to work together as a team [18]. These parallel

systems, installed with a large number of CPUs, provide good results for both real-time and

near-real-time applications that use both remote sensing and data streams, but these systems

are both expensive, and scalability cannot exceed a certain capacity. Although much of parallel

systems are homogeneous inherently, the recent trend in HPC systems is the use of heteroge-

neous computing resources, where the heterogeneity is generally the result of technological

advancement in progress of time. With increasing heterogeneity, cloud computing has

emerged as a technology which aimed at facilitating heterogeneous and distributed computing

platforms. Cloud computing is an important choice for efficient distribution and management

of big datasets that cannot be stored in a commodity computer’s memory solitarily.

Not only the increasing data volume but also the difficulty of indexing, searching, and trans-

ferring the data exponentially increases depending on data explosion [19, 20]. Effective data

storage, management, distribution, visualization, and especially multi-modal processing in

real/near-real-time applications are challenged as open issues for RS [21].

2. Big data

Big data is characterized as 3 V by many studies: volume, velocity, and variety [22, 23]. Volume

is the most important big data quality that expresses the size of the dataset. The velocity

indicates the rate of production of big data, but the increase in the rate of production also

reveals the need for faster processing of the data. Variety refers to the diversity of different

sources of data.

Given the variety of the data, the majority of the data obtained is unstructured or semi-structured

[21]. Considering the velocity of data, velocity requirements vary according to application areas.

In general, velocity is addressed under the heading of processing at a specific time interval, such

as batch processing, near-real-time requirement, continuous input–output requirement real time,

and stream processing requirements. Application of critical and live analytics-based batches to

improve data and analysis processes requires continuous and real-time analysis, and critical

applications require immediate intervention, depending on the analysis of incoming data streams.

2.1. Remote sensing data

Remote sensing (RS) is defined as the ability to measure the quality of a surface or object from a

distance [9]. RS data are obtained from various data acquisition technologies (lidar, hyperspectral

camera, etc.) in airplanes and unmanned aerial vehicles. With the recent developments in RS

technologies, the amount, production rate, and diversity of remote sensor data have increased

exponentially (Table 1). Thus, the data received from the remote sensors are being treated as RS

“Big Data.”

Diversity and multidimensionality are the greatest factors in the complexity of RS big data. RS

data is used in a variety of geosciences with environmental monitoring, underground, atmo-

spheric, hydrological, and oceanographic content. Due to such different and wide range of
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application areas, the diversity of RS data has increased greatly. There are approximately 7000

different types of RS datasets in NASA archives, as far as is known [9]. Numerous satellites

and sensors with different resolutions have emerged due to higher spatial resolution, temporal

resolution, and even spectral resolution. As remote sensing data continues to increase and

complex, a new architecture has become a necessity for existing algorithms and data manage-

ment [24].

2.2. Remote sensing algorithms

The processing of RS data has an important role in Earth observation systems. The longest RS

workflow starts with data acquisition and ends with a thematic application (Figure 1). There

can be processes which are processed sequentially or concurrently in each step within the

workflow. An RS application typically consists of the following stages, respectively [9]:

• Data Acquisition/Collection: Images obtained from satellite or hyperspectral cameras are

captured on the downlink channel. With high spatial and temporal resolution, data

volume is increasing.

• Data Transmission: The data stream obtained is sent simultaneously to the satellite center.

The high bandwidth of the data transfer is critical for applications requiring real-time

processing. In reality, it is impossible to transmit real-time data because the data increase

due to satellite and camera technologies is faster than the data transmission rate.

• Preprocessing: Preprocessing related to image quality and geographical accuracy such as

decomposition, radiometric verification, and geometric verification is performed.

Table 1. Satellite data centers, data rates, and volumes.
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• Value-added Operations: Value-added operations such as fine-tuning, orthorectification,

fusion, and mosaic are performed. It is possible to say that the mosaic process has a longer

processing time than the others.

• Information Extraction/Thematic Implementation: In this step, classification, attribute extrac-

tion, and quantitative deductions are obtained with images subjected to preprocessing and

value-added operations, for example, extracting information such as leaf area index, surface

temperature, and snowy area on RS images.

2.3. Data access pattern in remote sensing algorithm

The data access patterns in the remote sensing algorithms vary according to the characteristics

of the algorithms. There are four different access patterns for RS data. Depending on the size of

the RS data, the unavoidable I/O load and irregular data access patterns make inapplicable the

traditional cluster-based parallel I/O systems [25].

“Sequential row access pattern” is used by algorithms such as pixel-based processing-based

radiometric verification, support vector machine (SVM) classifier. When algorithms are impleme-

nted in parallel, each processor needs logically multiple consecutive image rows.

“Rectangular block access pattern” is used by algorithms such as convolution filter and

resample which require neighbor-based processing. Non-contiguous I/O patterns are visible

in these algorithms and are not efficiently supported by normal parallel file systems.

“Cross-file access pattern” is used by algorithms like fusion and normalized difference vegetation

index (NDVI) that require inter-band calculations. This data consists of small and non-contiguous

Figure 1. Remote sensing data-processing steps [9].
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fragments in hundreds of image files. Thus, in this type of access, a large number of read/write

operations take place, which is a time-consuming process.

“Irregular access pattern” is used by algorithms such as fast fourier transform (FFT), image distor-

tion, and information extraction, which require scattered access or the entire image. These algo-

rithms use diagonal and polygonal access patterns as irregular access. In these patterns, different

sizedparts can be indifferent nodes, even though theyare small andnon-contiguouspieces of data.

In addition to I/O difficulties, the problem of identifying irregular data areas also arises.

3. Real-time big data architecture

Big data architects often need a distributed system structure for data analysis, which

requires data storage. S. Tehranian et al. proposed an architectural model that provides

performance, reliability, and scalability, consisting of candidate hardware and software for

distributed real-time processing of satellite data at ground stations [26]. The resulting proto-

type system was implemented using the open source adaptive communication environment

(ACE) framework and C ++ and tested on the cluster; real-time systems have achieved

significant performance without sacrificing reliability and high availability. Structures and

mechanisms for parallel programming are needed so that RS data can be analyzed in a

distributed manner. In this context, Y. Ma et al. proposed a generic parallel programming

framework for RS applications on high-performance clusters [27]. The proposed mechanism

has programming templates that provide both distributed and generic parallel program-

ming frameworks for RS algorithms. The proposed magHD for storage, analysis, and visu-

alization of multidimensional data combines Hadoop and MapReduce technologies with

various indexing techniques for use on clusters [28]. Some systems, such as [29], contain all

of the different steps of addition, filtering, load balancing, processing, combining, and

interpreting. In the related work, a real-time approach to continuous feature extraction and

detection aimed at finding rivers, land, and rail from satellite images was proposed using the

Hadoop ecosystem and MapReduce.

At a minimum, the components that the big data architecture should have in order to be able

to perform real-time analysis are as follows: user interface, distributed file system, distributed

database, high-performance computing (Figure 2).

A distributed file system is a virtual file system that allows distributed data to be stored onmultiple

computer clusters. In clusters that may consist of heterogeneous nodes, the application provides a

common interface for accessing the data in isolation from the operating and file systems.

A distributed database consists of separate databases on each node/server in a multi-computer

cluster connected by a computer network. The distributed database management system

allows distribution and management of data on the server.

High-performance computing systems are technologies that provide an infrastructure that

provides a sufficiently fast computing environment for parallel analysis of big data. It is crucial

for the system to respond to the user within the reasonable time.

Data Mining74



The user interface is a component that basically allows the user to query the server-based

application through a visual interface, query, load, delete, update, request analysis, define

workflow. The user interface has not been investigated as a major concern in this chapter.

3.1. Storage

3.1.1. Distributed file system

SSD and PCM devices that are being used instead of HDD as data storage are far from the I/O

performance required for big data. Enterprise storage architectures, such as DAS, NAS, and

SAN, have drawbacks and limitations when used as distributed systems [2].

Distributed File System (DFS) is a virtual file system that spans multiple nodes on the cloud

[15]. It provides the abstraction of heterogeneity of data nodes in different centers. Thus, the

distributed file system provides a common interface for applications to access data on hetero-

geneous nodes that use different operating systems and different file systems on different

nodes individually. There are some capabilities that a distributed file system should generally

provide. Location transparency is where the application can access data such as being held

locally without actually having to hold it. Access transparency is a common interface for access

to data independent of the operating system and the file system. Fault tolerance is the ability to

keep a replica of a replica on more than one node so that in the event of an error the replica is

preserved in the nodes holding the replica. Scalability means that the number of nodes the file

system is running on can be increased to the required amount (without the error system

hanging down) if needed.

The Hadoop distributed file system (HDFS) is an open-source distributed file system distrib-

uted with an Apache license (Figure 3). HDFS is designed especially for big datasets and high

Figure 2. Generalized real-time big data architecture.
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availability, apart from the common abilities. It is also platform independent as it is

implemented in Java. Applications are accessed via the HDFS API, which is maintained by

any filing system. Thus, file access is isolated from local file systems. Compared to other

distributed file systems (IRODS, Luster), it is stated that the performance is different in design

and HDFS is the only DFS with automatic load balancing [15]. At the same time, because it is

platform independent and the availability of MapReduce support makes it easy to use on

many systems, it is the preferred choice.

The Google file system (GFS) is a proprietary distributed file system developed by Google for

its own use [30]. The reason for the development is the need for a scalable distributed file

system that emerges in big data-intensive applications. It is designed to enable reliable, effi-

cient, and fault-tolerant use of data in a multitude of thousands of drives and machines, each

with thousands of simultaneous users.

Storage systems such as amazon simple storage (S3), nirvanix cloud storage, openstack swift,

and windows azure blob that are used in cloud systems do not fully meet the scalability and

replication needs of cloud applications and the concurrency and performance requirements of

analysis applications.

General parallel file system (GPFS) is a high-performance clustered file system developed by

IBM. GPFS can be built on shared drives or shared-nothing distributed parallel nodes. Since

it fully supports the POSIX-based file system, it removes the need to learn the new API set

introduced by other storage systems. On the other hand, HDFS and GFS are not completely

POSIX compliant and require new API definitions to provide analysis solutions in the cloud.

In the study conducted by Schmuck et al., it is stated that GPFS is in terms of file-reading

performance of HDFS with a meta-block concept [31]. A meta block is a set of consecutive

Figure 3. HDFS architecture.
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data blocks located on the same disk. In the proposed approach, a trade-off was attempted

between different block sizes.

Parallel virtual file system (PVFS) compared with HDFS [32] shows that PVFS has not shown a

significant improvement in terms of completion time and throughput.

Rasdaman database is a database that supports large multidimensional arrays that conven-

tional databases cannot handle and can store large remote sensing data by nature [33]. The

architecture of Rasdaman is based on the sequence shredding process called “tiling.” The

Rasdaman parallel server architecture feature provides a scalable and distributed environment

for efficient processing of large numbers of concurrent user requests. Thus it is possible to

present distributed datasets over the web. In order to retrieve and process the dataset from

Rasdaman, queries of data retrieval in the query language defined by open geospatial consor-

tium’s (OGC) web coverage processing service (WCPS) standards should be run. The

PetaScope component, developed as a Java Servlet used at this point, provides queries for

multidimensional data retrieval, retrieval filtering, and processing by implementing OGC

standard interfaces. It also adds support for geographic and temporal coordinate systems.

Depending on the size of the RS data in the remote sensing applications, the unavoidable I/O

load and irregular data access patterns are not applicable to traditional cluster-based parallel I/

O systems [25]. In the study conducted by L. Wang et al., an RS file-based parallel file system

for remote sensing applications was proposed and implemented using the OrangeFS file

system. By providing an application-specific data placement policy, efficiency is achieved for

different data access patterns. The improvement in the performance of the proposed system is

seen as an average of 20%.

3.1.2. Distributed database

The classical approaches used in managing structured data have a schema for data storage and

a relational database for retrieving data. Existing database management tools have been

inadequate for processing large volumes that grow rapidly and become complex. Data ware-

house and data-market approaches have gained popularity in systems with more than one

structured data [2]. One of these approaches is the data warehouse, which is used to store,

analyze, and report results to the user. The data market (March) approach is an approach that

improves data access and analysis based on the data warehouse. The enterprise data ware-

house (EDW), which is favored by large organizations, allows the data processing and analysis

capability to be used on a very large and unified enterprise database [21]. Some cloud pro-

viders can offer a petabyte data and more scaling solution with EDW. For example, Amazon

Redshift uses a massively parallel processing (MPP) architecture consisting of a large number

of processors for high-performance interrogation, with columnar storage and data compres-

sion. In addition, the amount of I/O required by queries is reduced using local attached storage

and zone maps.

For storing and managing unstructured or non-relational data, the NoSQL approach is divided

into two independent parts: data storage and management [2]. With the key-value storage

Performance-Aware High-Performance Computing for Remote Sensing Big Data Analytics
http://dx.doi.org/10.5772/intechopen.75934

77



model in storage, NoSQL’s focal point is scalability and high performance of data storage. In

the management section, data management tasks can be performed at the application layer

through the lower-level access mechanism. The most important features of the NoSQL data-

base are the ability to quickly change the data structure by providing schema freedom and the

need to rewrite the data so that the structured data can be stored heterogeneously, providing

flexibility. The most popular NoSQL database is the Cassandra database, which was first used

by Facebook and published as open source in 2008. There are also NoSQL implementations

such as SimpleDB, Google BigTable, MongoDB, and Voldemort. Social networking applica-

tions such as Twitter, LinkedIn, and Netflix also benefited from NoSQL capabilities.

According to the method proposed by L. Wang et al. for the management problem of

conventional remote sensing data, the image data is divided into blocks based on the

GeoSOT global discrete grid system and the data blocks are stored in HBase [34]. In this

method, the data is first recorded in the MetaDataInfo table. The satellite-sensor acquisition

time is used as the row ID. In the DataGridBlock table, the row ID is kept with the

MetaDataInfo row ID as well as the geographic coordinate. HBase tables ensure that blocks

that are geographically close to the ascending order of row numbers will be held in adjacent

rows in the table. When a spatial query arrives, the GeoSOT codes are first calculated and the

DataGridBlock table is filtered by these codes. In addition, a distributed processing method

that uses MapReduce model to deal with image data blocks is also designed. When

MapReduce starts the job, it splits the table into bounds of regions, each region containing a

set of image data blocks. The map function then processes each data block from the region

and sends the resulting results to the reduce function.

The analysis of ultra-big databases has attracted many researchers’ interest, as traditional

databases are inefficient for storing and analyzing large digital data. Apache HBase, the

NoSQL distributed database developed on HDFS, is one of the results of these researches. A

study by M.N. Vora evaluated a hybrid approach in which HDFS retains data such as non-

textual images and HBase retains these data [35]. This hybrid architecture makes it possible to

search and retrieve data faster.

3.2. HPC systems

When data analysis is considered, the most important difficulty is scalability, depending on the

volume of data. In recent years, researchers have focused more on accelerating their analysis

algorithms. However, the amount of data is much faster than CPU speed. This has led pro-

cessors to come to a position to support parallel computing as multi-core. Timeliness for real-

time applications comes first. Thus, many difficulties arise not only in hardware development

but also in the direction of development of software architects. The most important trend at

this point is to make distributed computing improvements using cloud computing technology.

The technologies used in remote sensing applications have difficulties in delivering, processing,

and responding in time [36]. Web technologies, grid computing, data mining, and parallel

computation on remote sensing data generated by R. Patrick and J. Karpjoo have been scanned.

The size of the data volume, the data formats, and the download time are general difficulties.
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With the combination of betting technologies, the processing time in some applications can be

reduced to as short a time as can be decided by the helpers in a timely manner. Although it is

reasonable to process the remote sensing data as soon as possible, it does not seem possible to

perform real-time processing automatically.

3.2.1. Onboard architecture

3.2.1.1. Multi-core processor

The multi-core processor is an integrated circuit which has two and more processors to process

multiple tasks efficiently. After the frequency of processors reached limits due to the heating

problem, processing capabilities of new CPUs continue to increase by multiplying the number

of cores [37]. Recently new CPUs could handle 8–12 simultaneous threads. To benefit from the

multi-core CPUs, the problem should be divided into partitions which can be processed

simultaneously. Multi-core programming is needed to achieve this benefit and rewriting of

application is needed affordably. Multi-core programming is the implementation of algorithms

using a multi-core processor on a single computer to improve performance. Some APIs and

standards such as OpenMP and MPI are needed to implement algorithms which could be run

simultaneously on multi-core processors.

3.2.1.2. Graphic processing units

GPU is a specialized circuit dedicated to graphical processing preliminarily. After it has had a

brilliant rise in manipulating computer graphics and image processing in recent years, this

technology gets used for developing parallel algorithms on RS image data widely [38–40]. RS

complex algorithms should be rewritten to benefit from GPU parallelism by using thousands

of simultaneous threads.

3.2.1.3. Field programmable gate arrays

Some onboard remote sensing data processing scenarios require components that can operate

with low weight and low power, especially in systems where air vehicles such as unmanned

air vehicle and satellite are used. While these components reduce the amount of payload, they

can produce real/near-real-time analysis results at the same time as data is being obtained from

the sensor. For this purpose, programmable hardware devices such as FPGAs can be used

[41, 42]. FPGAs are the digital integrated circuits which consist of an array of programmable

logic blocks and reconfigurable interconnects that allow the blocks to be connected simply. But

the need for FPGA programming and learning a new set of APIs is emerging.

3.2.2. Distributed architecture

3.2.2.1. Cluster

One of the most used approaches when considering hardware-based improvements is commer-

cial off-the-shelf (COTS)-based computer-based solutions. In this approach, a cluster is created

from a number of computers to work together as a team [43]. These parallel systems, installed

with a large number of CPUs, provide good results for both real-time and near-real-time
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applications using both remote sensors and data streams, but these systems are both expensive,

and scalability does not exceed a certain capacity.

Cavallaro et al. have addressed the classification of land cover types over an image-based

dataset as a concrete big data problem in their work [44]. In the scope of the study, PiSVM, an

implementation based on LibSVM, was used for classification. The PiSVM code is stale and

stable despite the I/O limits. While PiSVM is used in parallel, MPI is used for communication

on multiple nodes. For the parallel analysis, the JUDGE cluster in Jülich Supercomputing

Center in Germany was used. The training period has been reduced significantly in the PiSVM,

which runs parallel to the running of the series MATLAB. In parallel operation, the accuracy of

SVM remains the same as in serial operation (97%).

3.2.2.2. Cloud

Cloud computing is one of the most powerful big data techniques [45]. The ability to provide

flexible processing, memory, and drivers by virtualizing computing resources on a physical

computer made the supercomputing concept more affordable and easily accessible [46]. The

use of the cloud concept, which provides a multi-computer infrastructure for data manage-

ment and analysis, provides great ease in terms of high scalability and usability, fault toler-

ance, and performance. Especially considering the critical applications that need to extract

information from the data that the next-generation remote sensors can produce near real time,

it is very important to use cloud computing technologies for high-performance computing [21].

In addition, the cloud computing infrastructure has the ability to create an efficient platform

for the storage of big data as well as for the performance of the analysis process. Thus, together

with the use of this technology, expensive computing hardware such as cluster systems,

allocated space and software requirements can be eliminated [22].

The Hadoop ecosystem has emerged as one of the most successful infrastructures for cloud and

big data analysis [23, 45]. The platform brings together several tools for various purposes, with

two major services: HDFS, a distributed file system, and MapReduce, a high-performance

parallel-data processing engine. The MapReduce model is an open-source implementation of

the Apache Hadoop framework. This model allows big datasets to be distributed concurrently

on multiple computers. Remote sensing applications using the MapReduce model have

become a research topic in order to improve the performance of the analysis process as a result

of exponential growth within the latest developments in sensor technologies [15, 16]. The

processing services on the cloud are accessed via the distributed file system. In order to reduce

data access, it is reasonable to process the data in the central computer where the data is stored.

4. Performance-aware HPC

Processing of big geospatial data is vital for time-critical applications such as natural disasters,

climate changes, and military/national security systems. Its challenges are related to not only

massive data volume but also intrinsic complexity and high dimensions of the geospatial

datasets [47]. Hadoop and similar technologies have attracted increasingly in geosciences
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communities for handling big geospatial data. Many investigations were carried out for

adopting those technologies to processing big geospatial data, but there are very few studies

for optimizing the computing resources to handle the dynamic geo-processing workload

efficiently.

In existing software systems, computing is seen as the most expensive part. After daily col-

lected data amount is grown exponentially with recent technologies, data movement has a

deep impact on performance with a bigger cost than computing which is cheap and massively

parallel [48]. At that point, new high-performance systems need to update themselves to adapt

to the data-centric paradigm. New systems must use data locality to succeed that adaptation.

Current systems ignore the incurred cost of communication and rely on the hardware cache

coherency to virtualize data movement. Increasing amount of data reveals more communica-

tion between the processing elements and that situation requires supporting data locality and

affinity. With the upcoming new model, data locality should be succeeded with recent tech-

nologies which contain tiling, data layout, array views, task and thread affinity, and topology-

aware communication libraries. Combination of the best of these technologies can help us

develop a comprehensive model for managing data locality on a high-performance computing

system [49].

4.1. Data partition strategy

Domain decomposition is an important subject in high-performance modeling and numerical

simulations in the area such as intelligence and military, meteorology, agriculture, urbanism,

and search and rescue [50]. It makes possible parallel computing by dividing a large computa-

tional task into smaller parts and distributing them to different computing resources. To

increase the performance, high-performance computing is extensively used by dividing the

entire problem into multiple subdomains and distributing each one to different computing

nodes in a parallel fashion. Inconvenient allocation of resources induces imbalanced task loads

and redundant communications among computing nodes. Hereby, resource allocation is a

vital part which has a deep impact on the efficiency of the parallel process. Resource allocation

algorithm should minimize total execution time by taking into consideration the communica-

tion and computing cost for each computing node and reduce total communication cost for the

entire processing. In this chapter, a new data partitioning strategy is proposed to benefit from

the current situation of resources on the cloud. At this new strategy, RS data should be

partitioned based on performance metrics which is formulated by a combination of available

resources of network, memory, CPU, and storage. After appropriate cloud site and resource

nodes are found by stage 1 and 2 as described in Sections 6.2 and 6.3, the receiving data is

divided into the selected resource nodes according to the number of available resources on that

cloud. For this dividing operation, the system should determine which portion of data will be

allocated to found nodes based on some performance metrics such as the below heuristic

function:

pi ¼
tithroughput þ tiprocessing
Pn

j¼1

t
j
throughput þ t

j
processing

(1)
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pi is the portion of node i and tithroughput are the transfer time needed for data with network

throughput of i and processing time needed for data with CPU frequency of i.
Pn

j¼1 t
j
throughput

þt
j
processing is the total sum of transfer and processing time for selected nodes. In the formula,

transfer time can be computed with tithroughput ¼ data_size=bandwidthi and processing time can

be computed with tiprocessing ¼ data_size=CPU_frequencyi.

4.2. Geo-distributed cloud

Geo-distributed cloud is the application of cloud computing technologies which consist of

multiple cloud sites distributed in different geographic locations to interconnect data and appli-

cations [51]. Cloud providers prefer the distributed cloud systems to enable lower latency and

provide better performance for cloud consumers. Recently, most of the large online services have

been geo-distributed toward the exponential increase in data [52]. The most important reason for

realizing the services as geo-distributed is latency. Geo-distributed clouds provide a point of

presence nearby clients with reference to reduce latency. In this chapter, we introduce a novel

resource allocation technique for managing RS big data in the geo-distributed private cloud. This

new approach will select the most appropriate cloud site which has minimum latency. It also

finds efficient data layout for data which gives a higher performance for selected data nodes in

the related cloud site. Within this context, resource management should match instantaneous

application requirements with optimal CPU, storage, memory, and network resources [53].

Putting the data into a more appropriate node with enough resources and providing an efficient

layout of the dependent data partitions on the nodes with minimum latency on the network

should decrease processing time of algorithms and also minimize transferring time of dependent

data which is needed by algorithm processing on different nodes.

In the proposed approach, acquired RS data should be stored on geo-distributed cloud within

two stages (Figure 4). In the first stage, each cloud site determines a score based on latency,

bandwidth capacity, CPU, memory, and storage workloads. At that point, each cloud site has a

multi-criteria decision-making (MCDM) process. MCDM is a subdiscipline of operation research

that evaluates multiple criteria in decision-making problems [54]. As a criteria value for the

resource, workloads of resources could be computed by dividing the used amount of the

resource to the total capacity of it. For CPU workload, the equation is given as follows:

Wi
CPU ¼

Pn
j¼1 cij

� �

tiCPU
(2)

Let tiCPU be the total number of physical CPU threads in the cloud site i and cij be the number of

virtual CPUs that are allocated for virtual machines (VMs) in the cloud site. For storage

workload, the equation is given as follows:

Wi
STR ¼

Pn
j¼1 sij

� �

tiSTR
(3)
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Let tiSTR be the total size of storage in the cloud site i and sij be the size of storage that is used for

coming data in the cloud site. For memory workload, the equation is given as follows:

Wi
MEM ¼

Pn
j¼1 mij

� �

tiMEM

(4)

Let tiMEM be the total size of memory in the cloud site i and mij be the size of storage that is used

for coming data in the cloud site.

Time of transferring data between consumer and cloud site is described as latencyLi, band-

width between them is Bi.

After determining criteria for decision-making, a processing method is needed to compute

numerical values using the relative importance of the criteria to determine a ranking of each

alternative [54]. Some of the well-known MCDM processing models are weighted sum model

(WSP), weighted product model (WPM), and analytic hierarchy process (AHP). If we define

the solution with AHP which is based on decomposing a complex problem into a system of

hierarchies, the best alternative could be defined as the below relationship:

AAHP ¼ mini

X

N

j¼1

wijCj, for i ¼ 1, 2, 3,…,M: (5)

Figure 4. Geo-distributed cloud hierarchy and scene on earth.
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where
PN

j¼1 wij ¼ 1, N is criteria amount, and i cloud site. If we write the model for earlier five

criteria:

AAHP ¼ mini w1Li þw2
1

Bi
þw3W

i
CPU þw4W

i
STR þw5W

i
MEM

� �

for i ¼ 1, 2, 3,…,M (6)

Although AHP is similar to WSM, it uses related values instead of actual values. This makes it

possible to use the AHP in multidimensional decision-making problems by removing the prob-

lem of combining different dimensions in various units (similar to adding oranges and apples).

After the minimum valued alternative cloud site is found, the second stage takes place for

evaluating which resources should be used optimally in the related cloud site and finding an

optimal layout in the network for RS big data.

4.3. Resource optimization in cloud network with performance metrics

Large-scale networks and its applications lack centralized access to information [55]. When we

interpret RS big data on the cloud as a large-scale network, optimization of resource allocation

depends on local observation and information of each node. At this point, control and optimi-

zation algorithms should be deployed in a distributed manner for finding optimum resource

allocation in such a network. Optimization algorithm should be robust against link or node

failures and scalable horizontally.

To succeed distributed optimization of the system, each node should run the optimization algo-

rithm locally which can be called as an agent. At this system which consists of multi-agents

connected over a network, each agent has a local objective function and local constraint set which

are known by just this agent. The agents try to decide on a global decision vector cooperatively

based on their objective function and constraints (Figure 5).

Figure 5. Multi-agent optimization problem for resource allocation on a network. fi(x): Local objective function where f:

ℝ
n
! ℝ. Xi: Local constraint set where Xi ⊂ ℝ

n. x: Global decision vector which agents collectively try to decide on, where

x ∈ ℝ
n.
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The agents cooperatively optimize a global objective function denoted by f(x), which is a

combination of the local objective functions, that is:

f xð Þ ¼ T f1 xð Þ;…; fi xð Þð Þ (7)

where T : R
n ! R and decision vector x is bounded by a constraint set, where x ∈ C, which

consists of local constraints and global constraints that may be imposed by the network

structure, that is:

C ¼ ⋂
n

i¼1

Xi

� �

∩Cg (8)

where Cg represent global constraints. This model leads to following optimization problem:

minimize f xð Þ subject to x∈C (9)

where f : R
n ! R and the set C is constraint set. The decision vector in Eq. (9) can be considered

as resource vector whose component corresponds to resources allocated to each node or global

decision vector which is estimated by the nodes on the network using local information.

After defining some basic notation and terminology for optimization of a function, continue

with where we left off. The cloud site should decide which resources will be used for coming

RS data when it is determined to receive it. Each node in the cloud site evaluates network

latency and bandwidth between other nodes for optimum network communications. In addi-

tion to that, current amounts of CPU, memory, and storage are also taken into account together

for finding the best-fitted solution to store and process RS data. Hence each node solves the

defined formula:

min fi xð Þ ¼
X

n

j¼1

xj w1Lij þw2
1

Bij
þw3Hij þw4W

j
CPU þw5W

j
STR þw6W

j
MEM

� �� �

for i ¼ 1, 2, 3,…,N

subject to

X

n

j¼1

xjA
j
MEM ≥ Isize

X

n

j¼1

xjA
j
STR ≥ Isize

Hij ≤Hopmax

Bij ≤Cmax

xi, j ∈ 0; 1f g∀i, j

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(10)

where xj indicates that the jth node would be in the data-receiving group together with node i or

not, Lij is latency between i and j, Bij is bandwidth between i and j, Hij is hop count between i and

j, and W
j
CPU, W

j
STR, and W

j
MEM are CPU, storage, and memory resources in node j. Each node

should solve f i xð Þ to minimize decision vector with AHP model in a decentralized manner. The
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individual optimization problem is a mix integer program for each node. Lagrangian relaxation

is a heuristic method that stands for solving mix integer problemswith decomposing constraints.

The idea of the method is to decompose constraints which complicated the problem by adding

them to the objective function with the associated vector μ called the Lagrange multiplier. After

applying it to our problem, we derive the dual problem of Eq. (9) for an efficient solution by

adding complicated constraints 1 and 2.

min L x;μ;λð Þ ¼
X

n

j¼1

xjUij þ μj Isize �
X

n

j¼1

xjA
j
MEM

0

@

1

Aþ λj Isize �
X

n

j¼1

xjA
j
STR

0

@

1

A

subject to

Hij ≤Hopmax

Bij ≤Cmax

xi, j ∈ 0; 1f g∀i, j

8

>

>

<

>

>

:

(11)

where utilization function for node:

Uij ¼ w1Lij þw2
1

Bij
þw3Hij þw4W

j
CPU þw5W

j
STR þw6W

j
MEM

� �� �

and μj ≥ 0∀j and λj ≥ 0∀j are the dual variables.

After obtaining above optimization problem, it could be separable in the variables xi and it

also decomposes into sub-problems for each node i. Thus each node needs to solve the one-

dimensional optimization problem Eq. (11). This optimization problem consists of its own

utility function and Lagrangian multipliers which are available for node i. Generally, the

subgradient method is used to solve the obtained dual problem because of simplicity of

computations per iteration. First-order methods such as subgradient have slower convergence

rate for high accuracy but they are very effective in large-scale multi-agent optimization

problems where the aim is to find near-optimal approximate solutions [55].

When one optimal approximate solution is found, RS data should be divided into partitions

and proportionally distributed to found nodes in the solution according to performance heu-

ristic (Eq. (1)) which is given in Section 6.1.

5. Conclusion

As a result of technological developments, the amount of data produced bymany organizations on

a daily basis has increased to terabyte levels. Remotely sensed data, which is spatially and spec-

trally amplified and heterogeneous bymeans of different sensing techniques, causes great difficul-

ties in storing, transferring, and analyzingwith conventional methods. It has become a necessity to

implement distributed approaches instead of conventional methods that are inadequate in critical

applications when real/near-real-time analysis of relevant big data is needed. Existing distributed

file systems, databases, and high-performance computing systems are experiencing difficulties in
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optimizing workflows for analysis, in the storage, and retrieval of spatial big data of remote
sensing and data streams.

According to investigated researches in this chapter, it is observed that existing techniques and
systems cannot find a solution that covers the existing problems when analyzing the real and
near-real-time big data analysis in remote sensing. Hadoop and similar technologies have
attracted increasingly in geosciences communities for handling big geospatial data. Many
investigations were carried out for adopting those technologies to processing big geospatial
data, but there are very few studies for optimizing the computing resources to handle the
dynamic geo-processing workload efficiently.

In this chapter, a two-stage innovative approach has been proposed to store RS big data on a
suitable cloud site and to process them with optimizing resource allocation on a geo-distributed
cloud. In the first stage, each cloud site determines a score based on latency, bandwidth capacity,
CPU, memory, and storage workloads with an MCDM process. After minimum valued alterna-
tive cloud site is found, the second stage takes place for evaluating which resources should be
used optimally in related cloud site and finding an optimal layout in the network for RS big data
with respect to latency, bandwidth capacity, CPU, memory, and storage amount. Lastly, data
should be divided into partitions based on a performance metric which could be computed with
available network and processing resources of selected nodes in the cloud site.

As future work, optimal replication methods will be searched for preventing failure situations
when transferring and processing RS data in a distributed manner. For succeeding that, a
performance-based approach is considered to maintain high-performance computing.
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