
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

26

Object-Oriented Solutions for Information
Storage on RFID Tags

Cristina Turcu, Remus Prodan, Marius Cerlinca and Tudor Cerlinca
Stefan cel Mare University of Suceava

Romania

1. Introduction

Already moving into the real world through a wide variety of applications, Radio
Frequency Identification (RFID) technology uses radio waves to uniquely identify an entity
(object, animal, or person). This data collection technology uses electronic tags to store
identification data and other specific information, and a reader to read and write tags. A tag
is a chip with an antenna. Tags fall into three categories: are active (battery- powered),
passive (the reader signal is used for activation) or semi-passive (battery-assisted, activated
by a signal from the reader). In certain tag types, the information on the tag is
reprogrammable. There are existing and proposed RFID standards that deal with the air
interface protocol (the way tags and readers communicate), data content (the way data is
organized or formatted), conformance (ways to test whether products meet the standard)
and applications (how standards are used on shipping labels, for example).
RFID solutions run at several frequencies:
• Low – from 125 KHz to 134 KHz (LF)
• High – 13.56MHz (HF)
• Ultra High – 860-960 MHz (UHF)

• Micro Wave – 2.45 GHz
The cost of simple RFID tags is likely to fall to roughly $0.05/unit in the next several years
(Sarma, 2001), while tags as small as 0.4mm × 0.4mm, and thin enough to be embedded in
paper are already commercially available (Takaragi et al., 2001). Such improvements in cost
and size will ensure a rapid proliferation of RFID tags in many new areas.
The use of RFID is becoming more and more popular in industry, logistics, retail and other
branches as an alternative to the barcode. In fact RFID tags are expected to replace
conventional barcode labels due to their major benefits: high data storage capacity, read-
write capability, read-speed rate, multiple entity identification, information updating, no-
line-of-sight scanning, durability, and environmental resistance.
But how much data should be placed on RFID tags? There are two schools of thought:
1. as little as possible (just an ID);
2. more in support of efficiency and performance (e.g. item name, security data, etc.).
In the former case, the electronic product code (EPC) is a typical example. While the EPC
standard continues to be adopted in various markets and employed in a wide range of
applications (e.g. the retail supply chain), many RFID users are particularly interested in
high-level functionality features to meet their own requirements. Using the EPC number as O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Development and Implementation of RFID Technology, Book edited by: Cristina TURCU,
 ISBN 978-3-902613-54-7, pp. 554, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Development and Implementation of RFID Technology

474

an identifier certainly provides benefits, but there are many applications that require
additional memory on the tag in order to more fully meet the needs of many users (***,
2008). This paper considers the latter case and focuses on the general methods of data
storage on a passive HF tag operating at 13.56 MHz. The International Organization for
Standardization (ISO) has created standards that define how data is structured on the tag for
specific applications. For example, ISO 11784 and 11785 describe the structure and the
information content of the codes stored in the tag for RF identification of animals. But an
ISO 11784 dedicated application allows only the identification of animals and cannot be
used in other domains such as product identification, for instance. The current memory
capacity for commercially available HF tags is typically 128 bytes, or 256 bytes. But
standards-based ISO tags such as those operating at the high frequency (HF) can now
provide for up to 8 Kilobits of memory. For example, the announcement by Hewlett Packard
(HP) of its memory Spot technology provides for an RFID chip containing 4 Megabits of
storage that can be written to and read multiple times (Greene, 2006). Anyway, by having
over 128-bits of dedicated user memory, the tags allow the storage of additional item
information and opens up new application areas. This available memory can be used to
customize an application and allows users the flexibility that a standard EPC tag or ISO
11784 dedicated applications cannot fulfill.
Furthermore, as more applications make use of the same tag technology, memories of
different capacities could become available. The proposed solution has been designed to
address this particular aspect, so that tags with different memory capacities may be used in
the same system.
The general rule with any memory-based system has always been that no amount of

memory is ever sufficient. Invariably, the response to enlarging the memory capacity of a

system is to increase the scope of the application so that it requires even more memory. But,

there is a strong relationship between price and capacity, larger memory capacities directly

increase the cost per tag and the price of tags with a larger storage capacity is rather high.

On the other hand, the RFID application implementation costs must be as small as possible,

so as the costs of the tags be low as well. Although tag prices have considerably lowered

lately, the price of large-memory tags has remained fairly high because added capacity

always pays off. Under the circumstances, solutions are sought in order to increase memory

capacity on the limited space of small and average tags (at an affordable price). There are

needed solutions that could be adapted to a variety of activity domains. We propose a

solution based on templates defined according with any users’ requirements. A template is

used to describe the data format to be applied for writing/reading data into/from tags.

2. Data types

The memory space on tags is entirely dependent on the data type used to store information.

Thus, our solution proposes the use of some fundamental data along with additional data

type defined by the user. The list of fundamental data types includes eight data types that

are presented in Table 1. The data types have variable length. For each data type, both the

occupied space and value ranges are determined.

Let us consider the date type. As this data type allows us to store date values in the YYYY-

MM-DD format, 4 bits will be employed for the data type and 15 bits for the representation

of the date value.

www.intechopen.com

Object-Oriented Solutions for Information Storage on RFID Tags

475

AMOUNT OF
STORAGE (BITS)NO. DATA TYPE

TYPE VALUE

DESCRIPTION, RANGE

1 BIT 4 1 true/false or yes/no;

2 INT4 4 4 non-negative integer values between 0 and 15

3 INT8/CHAR 4 8
non-negative integer values between 0 and
255 /ASCII char

4 INT12 4 12
non-negative integer values between 0 and
4095

5 INT16 4 16
non-negative integer values between 0 and
65535

6 INT32/REAL 4 32
real values or integer values represented on
32 bits

7 DATE_TIME 4 26
date and time values between 1st of January
1969, 0:00 and 31st of December 2031, 23:59

8 DATE 4 15
date values between 1st of January 1969 and
31st of December 2031

Table 1. Fundamental data types

The date value will be represented in accordance with the following specifications:

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

century year MM DD

where the meanings ‘century’ and ‘year’ are indicated by the following formulas:

century = YYYY/100 – 19
YYYY-2000, if century = 1 (e.g. 2006)

year =
2000-YYYY, if century = 0 (e.g. 1999)

The last two formulas may be simplified as follows:

year = (2 * century - 1) * (YYYY - 2000).

Different applications have different requirements and demand different data structures.
Through this fundamental data type, new data type can be defined using list and class
types. Using the list type, one is able to present different other kinds of data, such as strings
(considered as list of characters), bits lists (which can be used in the case of true/false or
yes/no operations), lists of integers, etc.
A user can also define a data type called class to represent a collection of different data
(properties) and functions grouped together under a single name. The instance of class can
be used as data field on a tag or as member object of another class. The proposed solution
enables the definitions of each class to be encoded once at the beginning of the tag; the
values of each data field of class type (instance/object) are encoded subsequently. But, four
bits of memory should be used to encode the data type for each different data element and
they prefix the corresponding values.
The class type is very useful especially if the information to be stored on the tag corresponds
to certain logically grouped information types, and the information types in question are
repeated with the same meaning on the same tag.

www.intechopen.com

 Development and Implementation of RFID Technology

476

Defined data types are meant to compact the data for a more efficient encoding within the
RFID tag memory and to organize the data in the memory. Consequently, a variety of data
may be encoded and some of it may remain permanently locked. Furthermore, data types
should support selective read/write operations, as well tag data updates.
The data fields and data encoding discussed later in this chapter only define, as example, a
class for a particular application. But other classes may be easily defined, depending on
users’ needs.
Each data field should be defined by data type, value and several associated attributes. Thus,
each data field can be associated with some attribute in the following categories:
- empty: indicating whether the associated field has no value;
- read only: data elements can be read, but not updated or erased;
- normal: read-write field;
- codified: on the RFID tag some data elements need to be represented by a value with

certain meaning revealed by the template associated with the tag.
Users can define more than one new class and specify any access privileges (attributes).
The introduction of data types ensures the uniform coding of data, while the use of
templates increases the flexibility of the data to be coded. Furthermore, fixed-length and
variable-length fields may be easily handled simultaneously.

3. Script language

A user-defined class may contain data and function members. The user can define a
function member as a subroutine (sequence of statements to perform an action) called script.
This section includes the specification of the proposed script language and its instructions
syntax. The defined data types and script language allow the data and the commands to be
specified on a tag in a uniform way, irrespective of any particular application.
Our script language offers 16 distinct instructions presented in Table 2.
Using these instructions, users can easily define a script which can be compiled to byte-code
on a PC or PDA. The code resulting from the compilation is small sized and can be stored on
a tag. Every time the tag is read on a PC/PDA or even on a low-resources embedded device
(station), the code can be interpreted and executed.

4. Data template

We described a solution where the possibility to define both the data type and the script has
been taken into consideration. They may be easily tailored to the template which best suits
the needs of a user for a given application domain. Other templates may be adopted at the
choice of the user to meet any specific requirements.
A data tag is based on a specific template, which makes it unique not only within the
particular domain of an application, but also among all other domains. A template:
- provides guidelines on how data shall be written on the tag;
- defines the desired data classes, based on specific requirements;
- specifies the data fields attributes;
- specifies the commands that are supported for defining the indispensable actions that

must be executed at RF tag reading.
Since all data elements can be easily defined, users are free to use standard RFID tags and,
depending on tag memory capacity, choose which data elements are most appropriate for a
specific application.

www.intechopen.com

Object-Oriented Solutions for Information Storage on RFID Tags

477

INSTRUCTION PARAMETERS

B
IN

A
R

Y

O
P

C
O

D
E

B
Y

T
E

S

L
E

N
G

T
H

#DEFINE BYTE 00000 0x00 1+1+1 3

 WORD 00001 0x01 1+1+2 4

INC FIELD_NO 00010 0x02 1+1 2

 FIELD_NO_GIVEN_BY_CONSTANT 00010 0x02 1+1 2

DEC FIELD_NO 00011 0x03 1+1 2

 FIELD_NO_GIVEN_BY_CONSTANT 00011 0x03 1+1 2

SETVAL FIELD_NO, FIELD_NO 00100 0x04 1+1+1 3

 FIELD_NO, CONSTANT_VALUE 00100 0x04 1+1+1 3

 FIELD_NO_GIVEN_BY_CONSTANT,
FIELD_NO

00100 0x04
1+1+1

3

 FIELD_NO_GIVEN_BY_CONSTANT,
CONSTANT_VALUE

00100 0x04
1+1+1

3

IF GATE==CONSTANT 00101 0x05 1+1 2

 Variable1 == Variable2 00101 0x05 1+1 2

 Vriable1 != Variable2 00110 0x06 1+1 2

IF GATE != CONSTANT 00110 0x06 1+1 2

 FIELD_NO==CONSTANT 00111 0x07 1+1 2

 FIELD_NO!=CONSTANT 01000 0x08 1+1 2

 FIELD_NO_GIVEN_BY_CONSTANT ==
CONSTANT

00111 0x07
1+1

2

 FIELD_NO_GIVEN_BY_CONSTANT !=
CONSTANT

01000 0x08
1+1

2

EVENTS SERVER_EVENT 01001 0x09 1+1 2

EVENTI INTERNAL_EVENT 01010 0x0A 1+1 2

STOP 01111 0x0F 1 1

SCRIPT SCRIPT_NO 10000 0x10 1+1 2

RETURN - 10001 0x11 1+1 2

CONSTRUCTOR SCRIPT_NO 10010 0x12 1+1 2

DESTRUCTOR SCRIPT_NO 10011 0x13 1+1 2

GOTO LABEL 10100 0x14 1+1 2

CALL LABEL 10101 0x15 1+1 2

 SCRIPT_NO 10110 0x16 1+1 2

SETVAL_STRUCT FIELD_NO0.FIELD_NO1. … VAR
10111 0x17

1+1+1+
…

2+…

SETVAL_STRING FIELD_NO [INDEX] VAR 11000 0x18 1+1+1+1 4

GETVAL_STRUCT VAR FIELD_NO0.FIELD_NO1. …
11001 0x19

1+1+1+
…

3+…

GETVAL_STRING VAR FIELD_NO [INDEX] 11001 0x1A 1+1+1+1 4

SETVAL FIELD_NO, VAR 11010 0x1B 1+1+1 3

GETVAL FIELD_NO, VAR 11011 0x1C 1+1+1 3

ADD Variable CONSTANT 11100 0x1D 1+1+1 3

IF VAR1 == VAR2 11101 0x1E 1+1+1 3

 VAR1 != VAR2 11111 0x1F 1+1+1 3

// COMMENT

Table 2. Instruction set

www.intechopen.com

 Development and Implementation of RFID Technology

478

Once the template has been created, users can specify the desired values for every defined
field. On the other hand, the template is required for a complete understanding of the data
tag in its entirety.
The logical tag content is divided into three sections as shown in Figure 1. Thus, the first
logical section is a header which contains all the information regarding the physical and
logical organization of the data on the tag. In this first section specific fields are included (for
example, the length of the data tag) as well as information regarding the classes structure on
which objects are instantiated in the tag data section. A class encapsulates the properties –
data of the fundamental types (previously defined), and operations/methods of the class -
described by scripts. A script will be considered as a static method that should be associated
with a class rather than an object. Each class can vary in length and content (e.g. the number
of data members, the type of data members, etc.). At the moment the implementation of all
object-oriented programming principles (i.e. encapsulation, inheritance, polymorphism) is
not an option because the tag memory size needed for this operation is considerably larger
than the memory size available on current tags. The purpose of this header organized as a
logical memory map is to provide extensibility for future, unanticipated data requirements.
The second section defined on the tag contains all the desired values. This section is
associated with information encoded on the tag, and is made up of the data members and
instances of the classes defined in the previous section. Whenever data must be encoded on
the tag, the class notion defined in previously allows an optimization of occupied space.
The last section on the tag represents the map of the bits associated with each field or object
on the tag. Within this map, there are 2 bits allocated for each field, and they are required for
the encoding of the following states: normal (read-write), empty, read-only, codified (Figure
1).
Since the template structure is memorized directly on the tag, additional memory space is
required for the definitions of classes and field types. This information is necessary in order
to ensure the independence of tags. Furthermore, the classes and field types could be used
by a low-resources embedded device (station) to interpret and modify the tags read.
When tag independence becomes an optional feature and when an application supports a
large number of templates, there are other solutions to be sought. The solution we have
chosen refers to the identification of each template through a unique number and the
storage of this identification number associated with the template in the header section of
the tag. The stations could memorize these templates and their associated identifiers. If the
hardware resources do not support high memory usage, the template identified through the
identification number on the current tag will be downloaded directly from a server.
Obviously, this operation takes more time because it is necessary for the station to connect
to the server and download the required template. In fact, much tag space is saved if the
template identifier is memorized in the tag header.
If a tag template is unknown, its content cannot be interpreted and thus data privacy is
ensured.
The evolution of the tag market and the demand for RFID-based applications will dictate the
appropriate choice.

5. Security

The capacity of an RFID tag to be secured against unauthorized access, theft or damage is an
issue to be considered. Some users may not wish to share the information and the data types

www.intechopen.com

Object-Oriented Solutions for Information Storage on RFID Tags

479

stored on their RFID tags with their competitors. The data generated and used in our RFID
system represent a valuable asset characterized by confidentiality, integrity and availability.
We have devised a method to verify or authenticate whether the information read from a
tag is genuine; taking into consideration the serial number of the tag, the solution proposed
does not require any database to verify whether a tag is a copy or a fake.

Fig. 1. The logical organization of a tag’s content

One of the RFID privacy principles according to (BISG, 2004) consider that all businesses,
organizations, libraries, educational institutions and non-profits that buy, sell, loan, or
otherwise make available content to the public utilizing RFID technologies shall protect data
by reasonable security safeguards against interpretation by any unauthorized third party.
The template employed to define the data stored on the tag enables the reading of the tag
content by authorized users only. Hence, it is impossible to identify the content of the tag
without the corresponding template.

6. Case study

A selection of date type elements is presented below in order to help us illustrate how data
encoding is performed and to estimate the amount of memory required to store this type of
information. Within the adopted format, the length of these elements is either fixed or
variable. Moreover, we have associated this format to a well-defined class depicted as a set
of data and member functions. Data class members are stored sequentially in the tag memory.
To illustrate the implementation of our solution, we will consider an RFID system to be used
in an automotive service center. The list of fields to be stored on the tag should include:

www.intechopen.com

 Development and Implementation of RFID Technology

480

Minimum data for car identification

 FIELD DATA TYPE

Section 1 1 License number STRING

 2 Brand codified

 3 Car body series STRING

 4 Engine type STRING

 5 Energy source codified

 6 Cylinders [cm3] INTEGER

 7 Owner STRING

 8 Phone number STRING

 9 Insurance company codified

 10 Color code STRING

Section 2 1 Gate 1 INT5

 2 Date and time DATE_TIME

 3 Gate 2 INT5

 4 Date and time DATE_TIME

 5 Gate 3 INT5

 6 Date and time DATE_TIME

 7 Gate 4 INT5

 8 Date and time DATE_TIME

 9 Gate 5 INT5

 10 Date and time DATE_TIME

 11 Gate 6 INT5

 12 Date and time DATE_TIME

 13 Gate 7 INT4

 14 Gate 8 INT4

 15 Gate 9 INT4

 16 Gate 10 INT4

 17 Gate 11 INT4

 18 Gate 12 INT4

Section 3 1 Counselor codified

 2 Date and time of car entry DATE_TIME

1 1 Operation type codified

 2 Recommended operation codified

 3 Scheduled operation DATE

 4 Operator identity codified

 5 Execution date DATE

 6 Execution status 3 bits

 …

10 1 Operation type codified

 2 Recommended operation codified

 3 Scheduled operation DATE

 4 Operator identity codified

 5 Execution date DATE

 6 Execution status 3 bits

Since it is evident that the information contained in section two is repeated six times, a class with
two data members (i.e. gate and date) should be considered. This class may be used to store
more information concerning the gate number and the entry date of any identified vehicle.

www.intechopen.com

Object-Oriented Solutions for Information Storage on RFID Tags

481

Similarly, since the information contained in section three is repeated ten times, the

redundant information may be eliminated if one considers the introduction of a class that

contains data members (i.e. properties) corresponding to various fields of interest, namely

operation type, recommended operation, scheduled operation, operator identity, execution

date, execution status. However, any user may feel free to adopt other classes, templates or

scripts.

If we consider the classes defined above, then we realize that the tag memory capacity

required for all proposed fields is 197 bytes. If a dedicated application is used, namely an

application in which the meaning of the values stored on the tag is predefined, the required

tag memory capacity would be 156 bytes. Therefore, the proposed solution is certain to be

able to optimize the memory space on RFID tags and to offer a high generality degree.

Let us suppose, for instance, that every driver entering the service center is given an RFID

tag as an entry or parking pass. The following script has been defined in order to screen

entry to secure areas in the automotive service center:

Example

DEFINE BYTE FIELD_ENTRIES 0x01
 //First field from tag (how many entries)
DEFINE BYTE FORBIDDEN_BARRIER1 0x02
 //2’nd field from the tag (one forbidden entry)
DEFINE BYTE OPEN_BARRIER 0x0E
 //constant in embedded system (open the barrier)
DEFINE BYTE BEEP_ALARM 0x0D
 //also constant
IF (GATE == FORBIDDEN_BARRIER1)
 EVENTI (BEEP_ALARM)
 //beep if the car tries to enter in a forbidden area
IF (GATE == FORBIDDEN_BARRIER1)
 STOP
 //and then stop if forbidden door
IF (FIELD_ENTRIES == 0x00)
 STOP
 //no more entries allowed
DEC (FIELD_ENTRIES)
 //decrement the number of parking entries
EVENTI (OPEN_BARRIER)
 //open current barrier and let the car go inside parking area
STOP

The RFID tags used with this script should consider the fields presented in Table 3. The
compilation process may be understood by following the information included in Table 4.
Let us consider only the values in the byte-code column for the IF instruction. The values

0x81 and 0x82 refer to the first defined and to the second defined field, respectively. This

convention was adopted in order to help us distinguish between defined fields and integer

values. For a maximum number of 127 of defined fields, the maximum integer number to be

considered in an IF instruction is again 127.

www.intechopen.com

 Development and Implementation of RFID Technology

482

DATA TYPE NAME LENGTH EXPLICATIONS

BYTE FIELD_ENTRIES 1 One byte that will be decremented
every time the car enters to one allowed
area of the parking.

BYTE FORBIDDEN_BARRIER
1

1 One byte that contains the value of one
restricted area. This value will never
change.

Table 3. Allowed data types

INSTRUCTION BYTECODES

#DEFINE BYTE FIELD_ENTRIES 0x01 0x00, 0x00, 0x01

#DEFINE BYTE FORBIDDEN_BARRIER1 0x02 0x00, 0x01, 0x02

#DEFINE BYTE OPEN_BARRIER 0x0E 0x00, 0x02, 0x0E

#DEFINE BYTE BEEP_ALARM 0x0D 0x00, 0x03, 0x0F

IF (GATE == FORBIDDEN_BARRIER1) 0x05, 0x81

EVENTI (BEEP_ALARM) 0x0A, 0x82

IF (GATE == FORBIDDEN_BARRIER1) 0x05, 0x81

STOP 0x0F

IF (FIELD_ENTRIES == 0x00) 0x07, 0x80, 0x00,

STOP 0x0F

DEC (FIELD_ENTRIES) 0x03, 0x80

EVENTI (OPEN_BARRIER) 0x0A, 0x83

STOP 0x0F

Table 4. Compiling script to byte-code

If we want higher values, then we must use the #DEFINE instruction.
Whenever an RFID-tagged car approaches a barrier with an RFID embedded system,
- the content of the tag is read;
- the script, if any, will be executed and tag values may be modified;
- the embedded device will decide upon opening the barrier, sending an event, running

an internal event, etc.
We have implemented 2 versions of the ScriptCompile() function: one for the PC and another
one for the PDA. We have also employed an ExecuteScript() function for every type of
embedded device to be used. Our source code implementation of script language functions
is compatible with ANSI C standard in order to be used with different compilers:
- MS Visual C++ and Borland C++ Builder at PC level;
- Embedded Visual C++ and .NET for Windows CE devices (PDA);
- Keil Compiler for 8051 compatible uC’s;
- gcc for MicroBlaze soft processor.
The first version of the ScriptCompile() function source code for the PC was created using
Microsoft VC++. The same source was successfully used with Borland C++ Builder. For
Windows CE devices we have used either Embedded Visual C++, or EVC++ (for .NET
programming).
Furthermore, the ExecuteScript() function was tested with Keil and gcc compilers. No
malfunctions were reported at the level of the embedded system. Irrespective of the micro-
controller used, the whole functioning was speedy and accurate.

www.intechopen.com

Object-Oriented Solutions for Information Storage on RFID Tags

483

7. Advantages and disadvantages

The presented specifications represent a flexible and multi-purpose solution which may be
easily customized for a variety of purposes. Its major advantage, following the introduction
of templates and class types, is that the amount of data on the tag may be increased upon
request and there is no need to change the application. Secondly, depending on the
application involved, users may select the relevant data to be encoded into the RFID tag
memory.
Thirdly, the embedded devices support any type of microcontroller and no large memory
capacity is required. As this solution proposes the implementation of processing logic on RFID
tags, there is no need to modify the software of the embedded system to allow the same device
to be used in different applications (e.g. security, parking, supply chain, etc.). Furthermore, this
solution enables the provision of high-quality services with high additional values in
numerous domains such as supply chain, security systems, or product tracking.
However, a series of disadvantages have been also identified:
- the execution of the script from the tag may take too long, depending on the length of

the script, but also on the frequency of the processing device;
- if, through the commands of the script, a change in the value of a tag field is required,

the processing time increases because several tag fields need to be written;
- after the script is stored on the tag, there is less storage space left for other interest

information;
- the higher the amount of data on the tag, the longer the data reading time. Nevertheless

new solutions have already been found: a high capacity, high-speed LSI for RFID tags
complying with ISO/IEC15693.

8. Future developments

The most efficient encoding of tag information (e.g. the encoding of a character string
presented as a field value) may be obtained by applying data compaction algorithms.
If codification and several security elements are considered, it is possible for the same value

to be stored differently on two tags belonging to two different applications. In this way

users may create personalized applications that will ensure a higher level of security. The

implementation of such system requires a unique key for encryption/decryption, namely a

combination between the tag ID and the key of some application. If the security standards

are not met, there is no guarantee for data consistency when it is copied from one tag to

another.

One major concern would be the design and development of a mechanism that will allow
users to concatenate more tags (even with different classes) into a single one, without
modifying the data class that already exists on the destination tag. This mechanism is
suitable for the applications designed to assemble a small number of components into a final
product. In this case, the tag associated with the final product will store information about
the traceability of each component.

9. Conclusions

In this paper, we summarize our approach and our research. The discussion of different
methods of data storage on a passive HF tag operating at 13.56 MHz has been the major

www.intechopen.com

 Development and Implementation of RFID Technology

484

focus of the present paper. The HF tags features that include different form factors, different
memory sizes (over 128 bits) and different read ranges allow users to design customized
RFID systems according to their specific application requirements. We described a novel
solution for the structural optimization of information storage on RFID tags. The method
proposed is designed to reduce the cost of RFID-based applications by increasing the
memory capacity on limited space of small and average tags. The solution devised and
presented in this paper ensures the introduction of used-defined types to memorize any
kind of information. Users may develop their own templates to describe information
formatting, content and specifications after defining a set of classes to represent their own
data. Furthermore, they are entitled to define a script to determine what the code should be
executed in certain conditions. Through the use of user-defined templates and scripts, the
presented system can be easily adapted to meet future needs of the user just as well as it
meets today’s needs. The created templates are used in order to write some product tags
with specific information. This feature enables reading of the tag content for authorized user
only. Hence, it is impossible to identify the contents of the tag without the corresponding
template. Thus, these specifications define the security mechanism that deals with anti-theft.
The proposed solution ensures a flexible and intelligent handling of tag information
processing. This solution is expected to allow the development of an RFID-based
generalized system that can be easily implemented in various domains (such as supply
chain, security systems or product tracking) without any modifications in the structural
level of software applications.

8. References

BISG (2004), BISG Policy Statement POL-002, Radio Frequency Identification, Available at:
http://www.bisg.org/docs/BISG_Policy_002.pdf

Greene, K. (2006). Wireless Wonder Chip, MIT Technology Review, July 2006, Available at:
http://www.technologyreview.com/read_article.aspx?id=17182&ch=infotech&a=f

Sarma, S.E. (2001). Towards the five-cent tag, Technical Report MIT-AUTOID-WH-006, MIT
Auto ID Center, Available at: http://www.autoidcenter.org.

Takaragi, K.; Usami, M.; Imura, R.; Itsuki, R. & Satoh, T. (2001). An ultra small individual
recognition security chip, IEEE Micro, Vol. 21, No. 6, pp. 43–49, November 2001,
ISSN 0272-1732.

*** (2008), Capturing the Value of EPC Gen 2 Custom Commands, NXP Semiconductors and
Sirit Inc, Available at: http://www.rfidproductnews.com/whitepapers/
files/Custom_Commands.pdf

www.intechopen.com

Development and Implementation of RFID Technology

Edited by Cristina Turcu

ISBN 978-3-902613-54-7

Hard cover, 450 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book generously covers a wide range of aspects and issues related to RFID systems, namely the design

of RFID antennas, RFID readers and the variety of tags (e.g. UHF tags for sensing applications, surface

acoustic wave RFID tags, smart RFID tags), complex RFID systems, security and privacy issues in RFID

applications, as well as the selection of encryption algorithms. The book offers new insights, solutions and

ideas for the design of efficient RFID architectures and applications. While not pretending to be

comprehensive, its wide coverage may be appropriate not only for RFID novices but also for experienced

technical professionals and RFID aficionados.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Cristina Turcu, Remus Prodan, Marius Cerlinca and Tudor Cerlinca (2009). Object-Oriented Solutions for

Information Storage on RFID Tags, Development and Implementation of RFID Technology, Cristina Turcu

(Ed.), ISBN: 978-3-902613-54-7, InTech, Available from:

http://www.intechopen.com/books/development_and_implementation_of_rfid_technology/object-

oriented_solutions_for_information_storage_on_rfid_tags

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

