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Abstract

Mitochondrial DNA alterations, including point mutations, deletions, inversions and 
copy number variations, have been widely reported in many age-related degenerative 
diseases and tumors. However, numerous studies investigating their pathogenic role in 
cancer have provided inconsistent evidence. Furthermore, biological impacts of mito-
chondrial DNA variants vary tremendously, depending on the proportion of mutant 
DNA molecules carried by the neoplastic cells (the so-called heteroplasmy). The recent 
discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced 
the role of mitochondrial DNA variants in perturbing this essential signaling pathway 
and thus indirectly targeting nuclear genes involved in tumorigenic and invasive pheno-
type. Therefore, mitochondrial dysfunction is currently considered a crucial hallmark of 
carcinogenesis as well as a promising target for anticancer therapy. This chapter describes 
the role of different types of mitochondrial DNA alterations by mainly considering the 
paradigmatic model of colorectal carcinogenesis and, in particular, it revisits the issue of 
whether mitochondrial mutations are causative cancer drivers or simply genuine pas-
senger events. The advent of high-throughput next-generation sequencing techniques, as 
well as the development of genetic and pharmaceutical interventions for the treatment of 
mitochondrial dysfunction in cancer, are also discussed.

Keywords: mitochondrial DNA variants, heteroplasmy, nuclear-mitochondrial 
crosstalk, oxidative stress, mtDNA copy number alterations, D-loop, cancer therapy, 
mitogenomics

1. Introduction

Mitochondria are highly dynamic organelles whose biogenesis and functions are tightly 

regulated by the nucleus through a constant bidirectional crosstalk. Indeed, only about 1% 
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of mitochondrial proteins are encoded by mitochondrial DNA (mtDNA), with all the oth-

ers encoded by the nuclear genome, including proteins involved in mtDNA replication and 

transcription [1].

The human mtDNA is a small circular double-stranded DNA molecule of approximately 

16.6 kb that encodes for 2 ribosomal RNAs (12S and 16S), 22 transfer RNAs required for 

protein synthesis and 13 essential protein subunits of the oxidative phosphorylation system 

(OXPHOS) (Figure 1) [2]. The electron transport chain, the primary metabolic pathway which 

generates energy in the form of ATP, is composed of five protein complexes (I–V) localized 
in the inner membrane of mitochondria, including complex II that is exclusively coded by 

the nuclear genome. This system includes seven subunits of respiratory enzyme complex I, 
one subunit of complex III, three subunits of complex IV and two subunits of complex V. As 
mentioned before, all other mitochondrial proteins, including those involved in mtDNA rep-

lication, transcription and translation, are encoded by nuclear genes and are targeted to the 

mitochondrion by specific transport systems. The discovery of over 2000 mitochondrial small 
non-coding RNAs (mitosRNAs), playing a pivotal role in the control of normal mitochondrial 

gene expression, revealed an underestimated level of mitochondrial functional complexity [3]. 

Furthermore, studies on antisense anti-termination tRNAs and delRNAs shed new light on 

novel mechanisms expanding the coding potential of mitogenome [4, 5].

Byproducts of the electron transport chain (ETC) constantly generate reactive oxygen spe-

cies (ROS) that may severely damage the mitochondrial DNA. If not efficiently repaired, the 
accumulation of oxidative lesions in the mtDNA molecules lead to gradual mitochondrial 

dysfunction, which is reflected in changes in the number, morphology and functioning of 
mitochondria, as observed in cancer cells [6].

mtDNA is more susceptible to mutations than nuclear DNA, due to the lack of histones and 

chromatin protective structures, paucity of introns, less efficient mtDNA repair mechanisms 
and a higher exposure to deleterious ROS generated during ATP synthesis within the mito-

chondrial compartment [7].

Although low levels of intracellular ROS normally regulate cellular signaling and are essential for 

normal cell survival and proliferation, aberrant ROS production is frequently observed in neo-

plastic cells. In the mitochondrial free radical theory of aging accumulation of damaging mtDNA 

mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of 

antioxidant enzymes results in exponential overproduction of ROS. This elicited condition forms 
a “vicious cycle” that is the basis of a wide range of pathologies, termed as “free radical diseases” 

such as cancer, neurodegeneration, atherosclerosis, diabetes mellitus and chronic inflammation 
[8]. Importantly, besides the obvious induction of oxidative nucleotide damage to mtDNA, ROS 

promotes tumorigenesis through several other mechanisms, including stabilization of hypoxia-
inducible factor (HIF)-α, increased calcium flux, inactivation of key phosphatases, such as Pten 
and PP2A, and activation of both the NRF2 and NF-κB transcription factors [9–11].

Since the Warburg theory of cancer postulated in 1956 [12], mitochondrial dysfunction has 

been regarded as a hallmark of cancer progression and as a promising target for anticancer t 

herapies [13, 14]. For instance, enhancing complex I activity has been demonstrated to inhibit 

tumorigenicity and metastasis of breast cancer cells [15]. More recently, mitochondrial dysfunction  
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has also been associated with a crucial step for tumorigenesis, that is, epithelial-to-mesenchy-

mal transition (EMT), enabling cancer dissemination and metastatic spread [16]. Importantly, 

mtDNA alterations may also disrupt the inter-genomic crosstalk between nucleus and mito-

chondrion and is associated with increased oxidative stress, ROS and cytosolic calcium accu-

mulation, reduction of cell ATP levels and an imbalance in the NADH/NAD+ ratio. Moreover, 

ROS-induced oxidative stress may also affect the expression of nuclear genes involved in 
tumorigenic and invasive phenotypes, as it has been shown in colorectal cancer cells [17].

2. mtDNA alterations: a focus on colorectal carcinogenesis

2.1. Somatic mtDNA variants

Cancer is caused by the accumulation of multiple genetic alterations, such as point mutations, 

copy number variations (CNVs), inversions and epigenetic modifications [18]. This multi-step  

Figure 1. Map of the human mitochondrial DNA and distribution of somatic variants in colorectal cancer. mtDNA 

somatic mutations are mainly represented by homoplasmic alterations (black arrowheads), although rarer heteroplasmic 

substitutions (blue arrowheads) have been detected in the MT-RNR2 (16S) region or mixed homoplasmic/heteroplasmic 

variants (red arrowheads) in the MT-ND5 locus.

Mitochondrial DNA Variations in Tumors: Drivers or Passengers?
http://dx.doi.org/10.5772/intechopen.75188

197



process has been depicted in detail for colorectal cancer, which represents an ideal para-

digm of tumorigenesis. In 1990, Fearon and Vogelstein [19] postulated a multi-step model of 

colorectal carcinogenesis, the long established “adenoma-carcinoma sequence”, in which the 

inactivation of the APC tumor-suppressor gene occurs first in normal colonic epithelial cells, 
followed by activating mutations in the KRAS gene and subsequent additional alterations in 

other tumor-suppressor genes, such as TP53 and TGF-β pathway genes.

Accumulating evidence emphasizes the functional role of mtDNA abnormalities in mitochondrial 
dysfunction and colorectal carcinogenesis. In a whole-genome comparative study of five different 
tumors, it has been demonstrated that the frequencies of deleterious non-synonymous somatic 

variants vary tremendously across tumor types, with the higher frequency (63%) in colorectal 

adenocarcinomas [20]. The vast majority of these mtDNA variants were represented by G > A and 

C > T transitions, the typical molecular fingerprint due to oxidative stress in mtDNA [21].

Thus far, mtDNA variants have been found to affect different regions with an essential role in 
mitochondrial protein synthesis machinery and oxidative phosphorylation (Figure 1) [22–24]. 

Importantly, it has been shown that mtDNA mutations may generate unprocessed transcripts 

by precluding RNA processing that impair mitochondrial biogenesis and energy maintenance 

[25, 26]. It is noteworthy to mention that mtDNA variants not only affect genes directly involved 
in the ETC, but also genes related to mitochondrial metabolism, such as tRNA genes, in which 

pathogenic mutations are 6.5 times more frequent than in other mitochondrial loci [27, 28].

MUTHY-associated polyposis (MAP) patients carry a significant increase of non-synony-

mous changes in conserved amino acid residues of the MT-CO
2
 gene, particularly the hotspot 

m.7763G > A transition [29]. Nevertheless, there is no compelling evidence in the literature 

propending for a single common coding-region mtDNA variant or haplogroup that may 

strongly influence the risk of developing a colorectal adenocarcinoma. Alternatively, it is 
likely that mtDNA alterations influencing colorectal cancer risk may be in the form of hetero-

plasmic low frequency variants, possibly restricted to specific subsets of patients with colorec-

tal cancer [30]. Curiously, it has been demonstrated that mutations disrupting the respiratory 

complex I in pituitary adenomas are somatic modifiers of tumorigenesis associated with less 
aggressive and genome-stable oncocytic lesions [31].

It is commonly believed that mtDNA variants arise due to positive selection of those “driver” 

variants conferring clonal growth advantage. Accordingly, we observed that likely non-

pathogenic mtDNA variants (“passengers”) reverted to the wild-type homoplasmic status 

during tumor progression in colorectal cancer patients [29]. On the contrary, the mtDNA 

variants that are positively selected during tumor progression might be considered the most 

tolerable alterations for neoplastic cells. However, a deleterious impact of mtDNA passenger 

variants on cancer progression may not be completely excluded, as it has been previously 

evidenced in nuclear DNA passenger alterations [32].

2.2. Mitochondrial DNA heteroplasmy

Mitochondrial DNA heteroplasmy has been involved in a large spectrum of human diseases. 

Beside classical mitochondrial diseases, such as mitochondrial myopathy, myoclonic epilepsy 

with ragged red fibers, and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like 
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episodes (MELAS), mitochondrial heteroplasmy also plays a pivotal role in complex disor-

ders, including type 2 diabetes mellitus, late-onset neurodegenerative diseases and cancer [30].

mtDNA variants are maternally-inherited or arise as de novo somatic mutations in a fraction 

(heteroplasmic) or all (homoplasmic) mitochondrial genomes within each cell containing hun-

dreds of copies of mtDNA molecules. Over time, the proportion of the mutant mtDNA within 

the cell may vary and drift toward predominantly mutant or wild-type form to achieve homo-

plasmy. Accordingly, the biological impact of a mtDNA variant may fluctuate, depending on 
the proportion of mutant mtDNA molecules carried by the neoplastic cell. Moreover, the level 

of heteroplasmy increases significantly with age and may vary between tissues and ethnic 
groups [33, 34]. By using high-throughput sequencing technology, Guo et al. [35] showed 

that very low heteroplasmy variants, down to almost 0.1%, are generally inherited from the 
mother, thus implying their likely neutral effect, and that this inheritance begins to decrease 
at about 0.5%. Accordingly, it has been demonstrated that high heteroplasmic mtDNA muta-

tion loads, generally above 80%, are required to trigger substantial dysfunctions in the oxida-

tive phosphorylation process. For instance, the m.3571insC mutation in the MTND1 gene of 

respiratory complex I is commonly detected in oncocytic tumors, in which it causes a severe 

mitochondrial dysfunction when mutant load is above 83% [36]. Importantly, this mitochon-

drial threshold effect strictly regulates the balance between tumor growth and suppression 
[37]. Interestingly, low-level mitochondrial heteroplasmies are commonly found in healthy 

individuals, and the advent of next-generation sequencing (NGS) technologies revealed that 

25–65% of the general population harbor at least one heteroplasmic variant across the entire 
mitochondrial genome [38, 39]. By studying human colorectal cancer cell lines, Polyak et al. 

[40] showed that the vast majority of mutations were ROS-related homoplasmic transitions, 

indicating that mtDNA molecules could rapidly become homogeneous under high clonal 

selection conditions. Nevertheless, several other in vivo studies demonstrated that mtDNA 

heteroplasmy is far more common in colorectal neoplasms [41–43]. As occasionally observed 

in the case of revertant mosaicism, a naturally occurring phenomenon involving spontaneous 

correction of a pathogenic mutation in a somatic cell, heteroplasmic somatic variants may also 

naturally revert to wild-type homoplasmy [44, 45].

2.3. mtDNA copy number alterations

Epidemiological studies have indicated significant association of leukocyte mtDNA copy 
number with risk of several malignancies, including glioma, colorectal and breast tumors, 

and its use has been proposed as a potential biomarker to select patients who benefit from 
adjuvant chemotherapy [46–50]. A reduced mtDNA content has also been correlated with 

lymph node metastasis and lower survival rates in patients with colorectal cancer [51].

In the past years, it has been demonstrated that mtDNA depletion leads to tumorigenesis by 

inducing changes in the redox status, membrane potential, ATP levels, gene expression, nucleo-

tide pools, and increased chromosomal instability (e.g. translocations) [52, 53]. However, other 

findings reported a gain of mtDNA copy number, thus suggesting that mtDNA replication could 
be increased to compensate for detrimental metabolic effects caused by mtDNA variations and/
or oxidative stress [54]. These conflicting data may be partly explained by the non-homogeneous 
timing of blood DNA analyses for mtDNA copy number determination. Interestingly, depletion 
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of mtDNA results in significant changes in methylation patterns of a number of nuclear-encoded 
genes, and these epigenetic modifications are reversed by the restoration of mtDNA content [55].

The molecular mechanism altering mtDNA copy number is still under investigation. In a 

study of 65 colorectal cancers, it has been suggested that hypomethylation of specific sites on 
CpG islands of the D-loop promoter may be involved in the regulation of mtDNA copy num-

bers [56]. Moreover, it has been reported that polymorphisms within the nuclear-encoded 

polymerase gamma gene (POLG), which codifies for a key component of the mitochondrial 
genome maintenance machinery, may lead to a decrease in mtDNA content and mitochon-

drial dysfunction [57]. Curiously, a homozygous polymorphic insertion (AluYb8MUTYH) in 
the 15th intron of the MUTYH base excision repair gene has been associated with a significant 
reduction of the type 1 MUTYH protein that localizes to mitochondria as well as lowered 
mtDNA content in age-related diseases [58]. Since biallelic mutations of MUTYH are associ-

ated with the MAP syndrome, it might be speculated that homozygous or compound het-
erozygous MUTYH variants may correlate with the mtDNA content in colorectal cancer [30].

2.4. D-loop and mitochondrial instability

The non-coding D-loop region contains essential transcription and replication elements and is 

formed by two hypervariable regions, namely HV-I (nt. 16,024–16,383) and HV-II (nt. 57–333) 
[59]. The latter includes the D310 sequence, a polycytidine repeat (nt. 303–309), which is essen-

tial for mtDNA replication in virtue of the H-strand replication origin. Replication of the lead-

ing strand initiates at the origin of H-strand synthesis and proceeds unidirectionally, displacing 

the parental H-strand as single-stranded DNA [60]. The D-loop is a well-known hotspot for 

somatic mutations in many types of cancer, with a mutation rate 100- to 200-fold higher than 
nuclear DNA. This finding may be partly explained by considering the direct relationship 
between mutational frequency and single-strandedness during mitochondrial replication [61].

mtDNA variants in the D-loop region have been repeatedly associated with risk and survival 

rates in cancer patients and, thus, they have been proposed as valuable prognostic markers. 

However, it has been argued that most of these studies could be biased due to artifacts related 

to genotyping errors or inadequate experimental design [62]. Mitochondrial microsatellite 

instability (mtMSI), that is a change in length in the repetitive sequences of the D-loop seg-

ment between normal and tumor tissues, has been described as a frequent molecular event 

in different cancers, but its prognostic value is still debated [63]. The variation of the homo-

polymeric tract length mainly arises through replication slippage of mitochondrial DNA 

polymerase and, importantly, this process may affect mtDNA replication and transcription. 
Intriguingly, the oxidative damage to mitochondrial polymerase γ may also contribute to the 
alteration in the length of the polycytidine repeat by impacting on mtDNA replication [64].

Instability of the D-loop hypervariable region-II (HV-II) has been associated with variants 
specifically grouped inside the MT-CO

2
 gene in MAP patients, thus suggesting that genome 

instability might contribute to drive non-random accumulation of MT-CO
2
 variants in the 

early stages of MAP colorectal tumorigenesis [29]. Therefore, D-loop mutations probably do 

not directly drive carcinogenesis but are more likely an epiphenomenon, used as a universal 

clonal marker (“molecular clock”) to estimate the relative mitotic history of tumors [65, 66].
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3. Mitochondrial-nuclear crosstalk

Tight coordination between the nucleus and mitochondria is required for proper mitochon-

drial functioning and includes both anterograde (nucleus to mitochondria) and retrograde 

(mitochondria to nucleus) signals. This crosstalk is critical for the maintenance of cellular 

homeostasis, and accumulated mtDNA variants may perturb this subtle pathway [67]. It 

has been demonstrated that somatically acquired mitochondrial-nuclear genome fusion 

sequences are present in human cancer cells [68]. Although most of the genes encoding pro-

teins of the OXPHOS machinery are transcribed in the nucleus (anterograde signaling), mito-

chondria may also exert retrograde regulatory control over the nucleus in terms of nuclear 

gene expression modulation [69]. This phenomenon suggests a strong association between 

nuclear and mitochondrial DNA alterations in driving tumor development and progression. 

Variants in nuclear-encoded mitochondrial genes, such as fumarate hydratase, iso-citrate 
dehydrogenase and succinate dehydrogenase) have been associated with a wide variety of 

human cancers, such as paragangliomas, uterine leiomyomas, renal carcinomas, breast can-

cers, gastrointestinal stromal cancers, leukemia, prostate cancer, glioblastomas and colorectal 

carcinomas [70–78]. Furthermore, it has been demonstrated that mtDNA changes and MAPK 

pathway alterations synergize to drive colorectal malignant transformation [79].

In a study on colorectal adenoma and adenocarcinoma samples, an increased number of muta-

tions in nuclear genes encoding proteins involved in critical mitochondrial processes, such as 

fusion, fission and localization were found [80]. It has also been suggested that mtDNA depletion 

may disrupt crucial nuclear processes, leading to centrosome amplification and mitotic spindle 
multipolarity, both participating in cancer cell transformation [81, 82]. mtDNA variants have 

the potential to induce molecular signals through the mitochondrial-nuclear crosstalk mecha-

nism, thereby promoting nuclear compensation in response to mitochondrial malfunction [67]. 

Interestingly, some typical nuclear transcription factors, such as the tumor-suppressor p53 and 

estrogen receptor (ER), are localized within mitochondria, where they exert various transcription-
independent functions [83]. By using transmitochondrial cybrid systems (“cybrids”), Kaipparettu 
et al. [69] elegantly demonstrated that mitochondria derived from the non-transformed breast epi-

thelial cell line MCF10A reverse the tumorigenic properties of osteosarcoma metastatic cells (e.g. 
cell proliferation and viability under hypoxic conditions, anchorage-independent cell growth, 

resistance to anticancer drugs) by suppressing several oncogenic pathways involving HER2, SRC, 

RAS and TP53; on the other hand, some of the tumor-suppressor genes including VHL, PTEN 
and RB1 were overexpressed in cytoplasmic hybrids (cybrids) with non-cancerous mitochondria.

Other studies suggested that mitochondrial dysfunction may induce epigenetic modifica-

tions within the nuclear genome, such as aberrant methylation patterns in CpG-rich regions 
[84, 85]. These epigenetic alterations, including DNA and chromatin modifications and sig-

naling through small RNAs, may contribute to the maintenance of mitochondria-mediated 

oncogenic transformation. However, the mitochondrial signals that potentially might trigger 

these epigenetic changes in the nucleus remain still largely unknown [30].

ROS-induced mitochondrial deregulation has been reported to trigger a survival response by 

inducing the nuclear factor NF-κB pathway and stimulating the synthesis of anti-apoptotic 
molecules (such as Bcl-xL/Bcl-2), which in turn promote cell survival and proliferation [86]. 
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Moreover, oxidative stress may also affect the expression of nuclear genes involved in tumori-
genic and invasive phenotypes [87]. Altogether these findings suggest that targeting the retro-

grade signaling could be a successful therapeutic strategy for cancer.

4. Targeting mitochondria for cancer therapy

Numerous studies suggested that mtDNA alterations may contribute to chemotherapy resis-

tance and affect radiotherapy outcome. For instance, Guerra et al. [88] showed that mutations 

in the NADH dehydrogenase subunit 4 (MT-ND4) lead to acquired chemoresistance during 

treatment with paclitaxel carboplatin.

In the last few years, spindle transfer, a promising emerging strategy aimed at generating 

clinical germline gene therapy against inherited mitochondrial disorders, has supported the 

idea of a possible gene therapy approach for the editing of somatic mtDNA alterations [89]. 

Ideally, repairing the mutated mtDNA sequence would also restore the normal mitochon-

drial function and likely induce tumor regression. Taylor et al. [90] proposed a strategy that 

aimed to specifically block the replication of the mutant mtDNA by peptide nucleic acid 
(PNA), thereby allowing the selective propagation of the wild-type DNA. Moreover, mito-

chondrial dysfunction might also be restored by stimulating the mitophagy process in order 

to eliminate the deleterious mtDNA variants [91]. Targeting DNA repair enzymes to mito-

chondria may be a suitable strategy to correct mtDNA mutations. For instance, cell transfec-

tion with an expression vector containing the gene coding the DNA repair enzyme human 
8-oxoguanine DNA glycosylase/apurinic lyase (hOGG1) has been used to reduce free fatty 
acids (FFAs)-induced mtDNA damage [92]. Furthermore, overexpression of hOGG1 in mito-

chondria has been shown to attenuate breast cancer progression and metastasis in transgenic 
mice [93]. Although hOGG1 has been the most frequently employed enzyme to enhance 
mtDNA repair, alternative strategies targeting other proteins transferred to mitochondria, 

such as endonuclease III (EndoIII) and endonuclease VIII (EndoVIII), have been proposed in 
the last years [94–96]. Other therapeutic approaches for patients carrying mtDNA mutations 

are based on allotopic gene expression, as preliminary demonstrated in different mitochon-

drial disorders [97], and targeted restriction endonucleases. In this regard, SmaI and PstI 

have been used as a powerful tool for treatment of mitochondrial dysfunction, resulting in 

the elimination of the mutant mtDNA and restoration of normal mitochondrial functionality 

[98]. In the last decade, many other approaches and compounds targeting dysfunctional mito-

chondria have been experienced, such as signal peptides. Lipophilic cations, cell-penetrating 

peptides and nanoparticles. A promising approach is based on the reprogramming of energy 

metabolism in colorectal cancer cells, through specific mitochondria-targeting agents, such as 
the second-generation rosamine analogs that target complex II and ATP synthase activities of 

the mitochondrial oxidative phosphorylation pathway [99]. More recently, it has been argued 

that mitochondria of tumor-initiating cells (TICs), which play a prominent role in cancer ini-

tiation, metastasis and resistance to therapy, may be targeted by mitocan vitamin E succinate 

in a complex II-dependent manner [100]. Another original approach has been developed to 

trigger cell death signaling pathways in colorectal cancer cells [101], such as ROS-dependent 

apoptosis and autophagy [102]. The recent improvement of high-throughput drug-screening 

platforms allowed the identification of novel non-toxic mitochondrial inhibitors, as in the 

Mitochondrial DNA - New Insights202



case of diphenyleneiodonium chloride (DPI), a strong inhibitor of mitochondrial complex I 

and II flavin-containing enzymes, which effectively depletes cancer stem-like cells (CSCs), 
one of the main drivers of poor clinical outcome in a wide variety of tumor types and espe-

cially in advanced disease states [103]. Interestingly, mitochondrial inhibition with VLX600 
has also been proposed in combination with imatinib in the treatment of drug-resistant gas-

trointestinal stromal tumors (GISTs) [104].

Recently, morphological and ultrastructural changes in the mitochondrial cristae structure 

(cristae remodeling), for example, through the optic atrophy 1 (OPA1) pathway, represent an 

important step in apoptosis and autophagy, and a potential target for future pharmacological 

modulation in cancer [105].

Chromosomal translocations generating in-frame oncogenic gene fusions also represent suc-

cessful examples of targeted cancer therapies, and recently it has been shown that the FGFR3-

TACC3 (F3–T3) gene fusion—initially discovered in human glioblastoma and then reported in 
many other cancers—promotes oxidative phosphorylation, mitochondrial biogenesis and tumor 
growth [106–108].

5. Ultra-sensitive next-generation sequencing techniques and 

mitogenomics

Whole mitochondrial genome analysis by high-throughput next-generation sequencing 

(NGS) techniques enables the detection of low-level heteroplasmic mtDNA variants and 

completely revolutionized mitogenomics in the last few years [109]. This approach has been 

extensively applied to different mitochondrial disorders to carefully investigate the transmis-

sion dynamics of low-level maternal germline mtDNA variants across generations [110–112]. 

In a comparative analysis, it has been demonstrated that Sanger sequencing is valid for quan-

tification of heteroplasmies with more than 10% of cells/mitochondria carrying the mutation, 
whereas NGS is capable of reliably detecting and quantifying heteroplasmic variants down 

to the 1% level [113]. Recently, a massive parallel sequencing (MPS) protocol reliably quanti-

fied low frequency, large mtDNA deletions in single cells with a lower detection limit of 0.5% 
[114]. mtDNA NGS has been also suggested as a useful quality check of pluripotent stem cells 

for drug discovery and regenerative medicine purposes [115].

Conventionally, DNA variants detected in a tumor sample but not in the germline counter-

part (such as peripheral blood, buccal swab or saliva) are scored as somatic (likely pathogenic) 

mtDNA variants, otherwise they are considered as germinal variants (likely polymorphic/

benign). High-throughput NGS approaches may unveil low-level germinal heteroplasmies 

having a tumoral tissue counterpart with higher heteroplasmy simply because of increased 

cell replication rate or random genetic drift phenomena and, therefore, without any delete-

rious oncogenic effect. The ultra-sensitive detection rate of NGS methods may be used to 
monitor even subtle shifts in the heteroplasmy levels of the tumor during time and potentially 

correlate them with tumor evolution [116]. Moreover, the possibility to easily analyze the 
circulating cell-free mtDNA isolated from plasma/serum (“liquid biopsy”) or urine [117–119], 

may allow non-invasive serial sampling from the same patient.
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6. Conclusions

In the last decades, evidence on the contribution of mtDNA variants to tumorigenesis has incred-

ibly grown. Therefore, mitochondria are actually considered one of the most promising targets 

for novel anticancer therapies. Accordingly, mtDNA variants can be regarded as useful tumor 

biomarkers for clinical practice, whereas the tight communication between nuclear and mitochon-

drial genomes sheds new light on the molecular and functional mechanisms underlying the onset 

and progression of complex human diseases, such as cancer and neurodegenerative diseases.
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