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Abstract

The thermally activated changes in crystal structure in nickel-titanium shape memory
alloy (SMA) material, which produces transformation strains of an order of magnitude
higher than and opposite to the thermal strains, have been described using different
models. Some of these models are defined by cyclic functions (trigonometric functions)
which they become complex to control when they are subjected to a wide range of
transformation temperatures. This chapter presents an alternative model to better describe
the behavior of SMA for a more general temperature range, which an SMA-powered
actuator might be subjected to. The proposed model is then implemented to the analysis
of one-dimensional (1D) problem oriented to the two-dimensional (2D) space. The simu-
lation results were then graphically compared to the experiment.

Keywords: shape memory alloy, finite element analysis, shape memory effect, phase
transformation

1. Introduction

Shape memory alloys (SMAs) are being described as smart materials due to their ability of

memorizing shape. Their ability in memorizing shapes requires some training suitable for

user’s application. The trained SMA exhibits two behaviors, that is, superelasticity and shape

memory effect depending on the temperature. Those behaviors are triggered by the phenom-

enon occurring at the microstructural level called phase transformation. Phase transformation

can be induced by stress or temperature. When SMA is mechanically loaded at room temper-

ature (or at a temperature below thermal transition), the twinned martensite transforms to

detwinned martensite [1]. When the detwinned martensite is subjected to heat, the detwinned

martensite transforms to austenite phase. When the fully austenite SMA is cooled down, there

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



will be a temperature range where austenite will transform back to twinned martensite. This

whole process is called shape memory effect. When a mechanical load is applied on SMAwhich

is subjected to temperature above austenitic finish temperature, the deformation will take place.

The deformation will be reversed completely upon the removal of mechanical load. This phe-

nomenon is called superelasticity. These two physical behaviors are the ones that make SMA a

good candidate for actuation applications. There are a number of models reported in the study

which aremeant to describe the phase transformation kinetics [1]. The first model was developed

by Tanaka and Nagaki [2, 3] which was later improved by Boyd and Lagoudas [4]. The firstly

developed model was based on exponential functions. Boyd and Lagoudas redefined the mate-

rial constants so as to suit their application. Later, a model based on cosine functions was

developed by Liang and Rogers [5]. Liang and Rogers developed their model with the purpose

of applying it to the analysis of acoustic vibrations control [5–7]. The common factor in these

models is the calculation material constants which are calculated based on transformation

temperatures. Brinson [8] developed another alternative phase transformation model, where the

internal variable measuring the evolution of martensite phase was split into two.

The first internal variable is induced by temperature and the second one is induced by stress.

This work proposed that the elastic modulus should be split into austenitic and martensitic

modulus. It should be noted that these models developed by the previously listed authors are

functions of transformation temperature (martensite start temperature, martensite finish tem-

perature, austenite start temperature and austenite finish temperature). These temperatures

are crucial since they are used to calculate certain material constants. More work has been done

in improving the already existing models [9, 12–15]. This chapter proposes a one-dimensional

(1D) new model to describe the physical behavior of SMA for all transformation ranges. The

proposed model is then used to simulate 1D structural deflection which is orientated in two-

dimensional (2D) space. The simulated results are compared to the experimental results.

2. Phase transformation models

This section shows the already available phase transformation models. It should be noted that

the law adopted for the proposed model is based on the one adopted by Liang and Rogers [5]

with the difference on the phase transformation estimation. The first phase transformation

model based on exponential functions was developed by Tanaka et al. [2, 3]. The transforma-

tion from martensite to austenite is given by

ξ ¼ ξ0 exp aA T � Asð Þ � bAσ½ � (1)

And the transformation from austenite to martensite is given by

ξ ¼ 1� exp aM T �Msð Þ � bMσ½ � þ ξ0 (2)

where ξ0, aM and bM, Ms, σ, aA, bA and As are internal variables measuring martensite volume

fraction evolution, martensitic material constants, martensite start temperature, austenitic
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material constants and austenite start temperature, respectively. Boyd and Lagoudas [11]

developed the calculation of material constants (aM, bM, aA and bA) as follows:

aM ¼
2ln10

Ms �Mf
, bM ¼

aM
CM

, aA ¼
2ln10

Af � As
, bA ¼

aA
CA

(3)

Later, Liang and Rogers [5] presented another alternative model for martensite volume frac-

tion calculation. Their model was based on trigonometric functions (cyclic functions), that is,

cosine functions. The following equation describes the phase transformation during heating

(martensite transforms to austenite):

ξ ¼
ξ0

2
1þ cos AA T � As �

σ

CA

� �� �� �

(4)

This transformation occurs between the stress ranges described as follows:

CA T � Af

� 	

< σ < CA T � Asð Þ (5)

The transformation occurs during cooling (austenite transforms to martensite) and is given by

ξ ¼
1� ξ0

2
cos AM T �Mf �

σ

CM

� �� �

þ
1þ ξ0

2
(6)

The stress restriction is described as follows:

CM T �Msð Þ < σ < CM T �Mf

� 	

(7)

The material constants involved in Liang and Rogers [5] are the same as those used in Tanaka’s

model [2]. The difference comes with the calculation of the two constants which are given as

follows:

AM ¼
π

Ms �Mf
; AA ¼

π

Af � As
(8)

It should be noted that the calculation of the two material constants, AA and AM, involves the

difference in transformation temperatures. It was noticed that the previously mentioned

models were not compatible with our application due to the size of our temperature range.

The new non-cyclic model had to be developed. The proposed phase transformation model is

based on the hyperbolic functions. The phase transformation during heating (martensite trans-

forms to austenite) is given by the following equation:

ξ ¼ ξ0 1� tanh AA T � Asð Þ þ ϑA½ �f g (9)

The phase transformation during cooling (austenite transforms to martensite) is described by

the following equation:

ξ ¼ ξ0 1� tanh AM T �Mf

� 	

þ ϑM


 �� 


(10)
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The calculation of material constants AA and AM is similar to that of Eq. (8). The phase trans-

formation constants (As and Ms) are those described previously. The constants ϑA and ϑM are

given by

ϑA ¼ �

AA

CA

σ;ϑM ¼ �

AM

CM

σ (11)

The constants CA and CM are the same as those used by Liang and Rogers. The developed

phase transformation model was then used in performing the 2D analysis on a steel beam

deflection explained in the next section. Prior to the performance of simulation analysis, an

experiment was performed with the purpose of obtaining simulation parameters and verifica-

tion of numerical results.

3. Beam deflection test experiment

The experiment was performed using the following equipment:

1. Explorer GLX Data logger

2. Nickel titanium shape memory alloy wire of 0.5-mm diameter

3. ISO-TECH IPS 2303 Laboratory DC Power Supply

4. Linear variable differential transformer (LVDT)

5. Fluke 190C Scope meter

6. Rectangular steel beam

7. Rectangular steel frame

The steel beam used in the performance of this experiment was 300-mm long with a 25-mm

breadth and 1.2-mm thickness. Both ends of the steel beam were fixed on top of the vertical

rectangular steel frame. The effective length for the steel beam after installation to the vertical

rectangular steel frame was 243 mm. Figure 1 shows the complete experimental setup.

A 184-mm long NiTi SMA wire with a 0.5-mm diameter was attached with one end at the

center of the steel beam and the other end at the center foot of the steel frame. The attachment

of the NiTi SMA wire to the frame and to the beam was isolated using high-melting tempera-

ture plastic tubes. The isolation was required since the NiTi SMA wire was heated through the

joules heating method. The NiTi SMA wire was attached at the center of the beam so as to get

the maximum deflection. During the performance of the experiment, two types of data were

being logged, that is, beam deflection and the NiTi SMA wire temperature. The beam deflec-

tion was recorded through the LVDTwhich was powered by the DC power supply (shown in

Figure 1). The LVDTdata were logged in the form of output voltage and it was translated into

millimeters using the method described subsequently. The temperature was recorded using a

GLX explorer data logger. A 1.54 A was supplied to the NiTi SMA wire, and the temperature
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of the wire increased from the room temperature to a maximum temperature. The wire was

allowed to cool down after reaching the maximum deflection of the beam, and then the beam

could go back to its rest position. This process was repeated several times so as to get stable

results.

4. Deflection test results

The following figures show the experimental results for the beam deflection test and these

results are used to validate FEA results. Although there were several tests conducted, only one

graph is presented to avoid repetition. It should be noted that the results presented are already

translated into millimeters using the method explained in the study [10]. Figure 2 shows the

time it takes for a beam to finish the full deflection cycle, that is, the deflection from the rest

position to the final position or the maximum deflection and from the final position back to the

rest position.

During heating, the beam deflects from the rest position to the maximum deflection and the

reverse during cooling. It is clearly seen from the figure that the beam’s maximum deflection is

reached in less than 10 s which is very quick. This quickness is suggested to be related to the

wire diameter. The smaller the diameter, the faster the response of the wire. It is noted in

Figure 1. Beam test experiment setup.
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the figure that there is a flatness of the graph between 10 and 70 s. This flatness shows the

beginning of the cooling cycle. It should be remembered that the driving force behind this

graph is the NiTi SMA wire phase transition as discussed in Section 1. The martensite phase

transforms to austenite phase between 0 and 10 s upon heating. The austenite phase is

the dominant phase between 10 and 70 s, and then the nucleation of martensite starts to occur

after 70 s. Martensite start occurs after 70 s and finishes after 140 s. The flatness behavior is seen

after 140 s which depicts the domination of martensite phase. The number of data points

between 0 and 10 s are few compared to the rest of the graph, and this is caused by the fact

that the sampling rate was not easy to control.

The SMA wire force, which produced the maximum deflection of the steel beam, is shown in

Figure 3. The maximum force produced by the current SMA wire (184-mm long) was found to

be approximately 35.87517 N (~3.5 kg).

Figure 3 shows the deflection of the beam to the negative vertical (y) direction as the temper-

ature increases and the reverse during cooling. It is noted that all the values on the y-axis of

each figure are negative. This indicates that the direction of steel beam is to the negative y-

direction. It is noted also that the curves (from Figures 2–4) are not smooth, and this is caused

by the uncontrolled environmental conditions. The maximum deflection is taken with consid-

eration of the sign of the value since it symbolizes the axis direction.

The deflection test results seem to be in agreement with the general behavior of shape memory

alloy material. Therefore, these results will be used as the benchmark for simulation results

and will be compared with FEA results in the following section.

Figure 2. Time-deflection curve.
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Figure 3. SMA wire force-temperature graph.

Figure 4. Steel beam deflection-temperature graph.
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5. Finite element analysis on a 2D beam setup

This section reflects the application of the proposed NiTi SMA model in predicting the

response of the steel beam subjected to mechanical loading from NiTi SMA wire. Prior to

the performance of the finite element analysis, an experiment was performed so as to find the

simulation parameters like transformation temperature, the beam effective length and breadth,

SMA wire effective length, and so on. To perform finite element analysis, a four-noded beam

bar structure was constructed as shown in Figure 5. Two elements were steel beam elements

and one bar element was NiTi SMA wire.

6. SMA model implementation

This section deals with the computer implementation of the finite element analysis. The local

and the global plane beam bar element systems are being demonstrated schematically and are

shown in Figure 6. The system has got three elements where each element has six degrees of

freedom (three degrees of freedom per node). The axial degrees of freedom are ignored due to

the nature of loading, hence the degrees of freedom per node are reduced from three to two,

and therefore each element remains with four degrees of freedom (i.e. vertical displacement

and rotation). The element node displacements and forces are given by Eqs. (12)–(14) as

follows:

Figure 5. Steel beam bar-SMA setup.
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Element 1:

f 1ð Þ ¼

f y1

mθR1

f y2

mθR2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

u 1ð Þ ¼

uy1

θR1

uy2

θR2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(12)

Element 2:

f 2ð Þ ¼

f y2

mθR2

f y3

mθR3

2

6

6

6

6

6

4

3

7

7

7

7

7

5

u 2ð Þ ¼

uy2

θR2

uy3

θR3

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(13)

Figure 6. Plane bar elements in its local and global system.
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Element 3:

f 3ð Þ ¼

f x2

f y2

f 4x

f 4y

2

6

6

6

6

6

4

3

7

7

7

7

7

5

u 3ð Þ ¼

ux2

uy2

u4x

u4x

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(14)

For beam stiffness calculations, the only material properties required are the modulus of

elasticity E, the second moment of area I and the length L of the beam. For the bar stiffness

calculation, the only properties required are the cross-sectional area A, the modulus of elastic-

ity E and the length L of the bar. These properties are taken to be constant throughout the bar

and the beam. The solution procedure for our present problem is shown in Appendix A.

The schematic diagram for solution flow is shown in Figure 7. The solution diagram is a

general solution flow to be used to solve one-sided temperature and phase coupling of any

given 2-D geometry. In our case, we assume that phases are only affected by temperature and

not by stress or pressure. The temperature affects the calculation of volume fraction through

Eqs. (9) and (10). The linear averaged property (Young’s modulus, E) is then calculated

together with other parameters mentioned under phase transformation section.

The stiffness matrix of beam is formed using material properties of the beam and then that

affects the formation of forces due to shape memory effect which is triggered by temperature

variation. In our case, there are no external loads. This brings us to the calculation of the linear

solution of Eq. (A8) from Appendix A. The process gets repeated until the maximum allowed

temperature is reached.

Figure 7 summarizes the solution flow process of the developed simulation tool.

7. Simulation and experimental results

This section reflects the numerical results obtained from 1D finite element analysis. The

material parameters used during FEA simulation are tabulated in Table 1. These parameters

were derived from experiment using the procedure available in the study [11].

Figure 8 shows the deflection-time graph where we wanted to see if the numerical results

would match the experimental results. Therefore, based on the results, it can be seen that the

simulation curve resembles the experimental curve. Both curves show the maximum deflection

of about 4.9 mm in less than 10 s. The two curves follow the same trend and they both do not

exceed the maximum deflection of 5 mm.
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The force-temperature curves are shown in Figure 9. This graph shows the force variation

which is effected by the temperature variation. The negative values indicate that the SMA wire

was contracting. The maximum deflection (in Figure 8) was produced by a force of approxi-

mately 35.0 N (in Figure 9). The numerical results are in agreement with the experimental

results with minor negligible difference. It can be seen from the figure that the numerical

prediction follows a similar trend with experiment.

Figure 7. Finite element program solution flow process.
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The maximum deflection for a steel beam as a function of temperature is shown in Figure 10.

This figure shows graphical comparison between the numerical and the experimental results.

The maximum deflection obtained experimentally agrees to that obtained numerically. The

minor difference between the experimental and the numerical results is seen during the

cooling path, and this is suggested to be caused by the uncontrolled environmental conditions.

It can be concluded that the developed mathematical equations can be used to predict the

behavior of smart simple structures.

Property Value Units

EM 16.8 GPa

EA 31.8 GPa

AM 0.6 oC�1

AA 0.06 oC�1

ξM 0.5 —

As 43 oC

MF 18.3 oC

εL 0.0485 mm/mm

ASMA 1.9635E�7 m2

Table 1. Measured material parameters for 0.5-mm diameter NiTi SMA wire.

Figure 8. Deflection-time curve.
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Figure 9. Force-temperature curves.

Figure 10. Experimental and numerical results for deflection-temperature curve.
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8. Conclusion

A finite element analysis based on the proposed SMA model was performed successfully. The

finite element analysis was performed on the 1D setup which was oriented on the 2D space. The

C++ code was developed in order to perform the 2D numerical analysis. The experiment was

performed in order to obtain the parameters to input in the developed code and also to validate

the numerical results. The maximum deflection obtained numerically matches that which was

measured experimentally. It was verified through the results that the developed SMAmodel has

the ability to capture all the temperature range and not only the intended range.

A. Beam bar elements used to solve our system presented in the main text

The element stiffness matrix in global coordinates (X,Y) is explicitly given as follows:

Element 1:

K 1ð Þ
h i

¼
EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2

6

6

6

4

3

7

7

7

5

u1

θ1

u2

θ2

(A1)

Element 2:

K 1ð Þ
h i

¼
EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2

6

6

6

4

3

7

7

7

5

u2

θ2

u3

θ3

(A2)

Element 3:

K 3ð Þ
h i

¼

kc2 ksc �kc2 �ksc

ksc ks2 �ksc �ks2

�kc2 �ksc kc2 ksc

�ksc �ks2 ksc ks2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ k

c2 sc �c2 �sc

sc s2 �sc �s2

�c2 �sc c2 sc

�sc �s2 sc s2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

u2x

u2y

u4x

u4y

θ ¼ 2700; c ¼ 0; s ¼ �1; cs ¼ 0

K 3ð Þ
h i

¼
AE

L

0 0 0 0

0 1 0 �1

0 0 0 0

0 �1 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

u2x

u2y

u4x

u4y

(A3)
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The next step is the assemblage of the above stiffness matrix to get the global stiffness matrix.

KG½ � ¼

12EI

L3
6EI

L2
�
12EI

L3
6EI

L2
0 0 0 0

6EI

L2
4EI

L
�
6EI

L2
2EI

L
0 0 0 0

�
12EI

L3
�
6EI

L2
24EI

L3
0 �

12EI

L3
6EI

L2
0 0

6EI

L2
2EI

L
0

8EI

L
þ
AE

L
�
6EI

L2
2EI

L
0

AE

L

0 0 �
12EI

L3
�
6EI

L2
12EI

L3
�
6EI

L2
0 0

0 0
6EI

L2
2EI

L
�
6EI

L2
4EI

L
0 0

0 0 0 0 0 0 0 0

0 0 0 �
AE

L
0 0 0

AE

L

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(A4)

The structural equation would be

F1x

M1

F2x

F2y

F3x

M3

F4x

F4y

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

12EI

L3
6EI

L2
�
12EI

L3
6EI

L2
0 0 0 0

6EI

L2
4EI

L
�
6EI

L2
2EI

L
0 0 0 0

�
12EI

L3
�
6EI

L2
24EI

L3
0 �

12EI

L3
6EI

L2
0 0

6EI

L2
2EI

L
0

8EI

L
þ
AE

L
�
6EI

L2
2EI

L
0

AE

L

0 0 �
12EI

L3
�
6EI

L2
12EI

L3
�
6EI

L2
0 0

0 0
6EI

L2
2EI

L
�
6EI

L2
4EI

L
0 0

0 0 0 0 0 0 0 0

0 0 0 �
AE

L
0 0 0

AE

L

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

u1

θ1

u2

v2

u3

θ3

u4

v4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(A5)

The boundary conditions for our system are as follows:

Fx1 ¼ M1 ¼ Fx3 ¼ M3 ¼ Fx2 ¼ Fx4 ¼ Fy4 ¼ 0

ux1 ¼ θ1 ¼ ux3 ¼ θ3 ¼ ux4 ¼ uy4 ¼ 0

Fy2 ¼ FSMA

(A6)

The structural equation reduces to the following equation:

FSMA ¼
8EI

Lbeam
þ

AE

Lbar

� �

U2y (A7)
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The deflection could be calculated as follows:

FSMA

8EI
Lbeam

þ
AE
Lbar

� � ¼ U2y (A8)

This is the deflection that needs to be solved by the FEA. It should be noted that SMA force is

the only variable in this equation, and also this SMA force is calculated inside the FEA code as

follows:

FSMA ¼ EAεLξ (A9)
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