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Abstract

Arsenic, known as both a naturally occurring toxic element and a traditionally used drug, 
has caught a great deal of attention from worldwide people due to its curable anticancer 
effect in patients with acute promyelocytic leukemia (APL). Among the arsenicals, arsenic 
trioxide (ATO) has been the most widely used anticancer drug. Since ATO exerts an anti-
cancer effect by mediating apoptosis, numerous studies have made efforts to uncover the 
molecular mechanisms by which ATO activates and/or mediates the apoptotic signaling 
pathway in cancer cells. Recent advances in cancer therapeutics have led to a paradigm shift 
away from the traditional cytotoxic drugs toward the targeting of proteins closely associ-
ated with driving the cancer phenotype. Here, we discuss novel current arsenic-based com-
bination therapies to treat cancer in both clinical and experimental settings. We also discuss 
the novel molecular mechanism underlying apoptosis induced by the combined therapies.

Keywords: arsenic trioxide, combination therapy, anticancer effect, apoptosis

1. Arsenic in cancer treatment

Arsenic, one of the ancient drugs, is currently used as a therapeutic agent worldwide because 
of its substantial anticancer activity. Arsenic trioxide (ATO), a trivalent arsenite (As

III
), was 

initially used for the treatment of chronic myelogenous leukemia (CML) in the nineteenth cen-

tury [1]. ATO readily induces apoptosis by promoting differentiation of acute promyelocytic 

leukemia (APL) cells and is thereby utilized as a therapeutic drug in the clinical setting [2]. 
ATO is currently used to treat patients with APL and recurrent/relapsed multiple myeloma 
(MM) [3]. Numerous studies that examined the tumor suppressive and/or proapoptotic effect 
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of ATO have revealed the molecular mechanism by which ATO exerts an anticancer effect in 
both solid cancer and hematological malignancies (see below section). Thus, accumulating 
evidence implicates ATO and/or other arsenicals in clinical use as a promising drug to treat 
cancer patients. Besides ATO monotherapy, there is a growing body of evidence that ATO 
may be a favorable drug when combined with not only conventional anticancer therapeu-

tics including radiation and chemotherapy but also recently developed molecular-targeted 
drugs. In one example, the combined treatment of all-trans-retinoic acid (ATRA) with ATO 
has been shown to synergistically induce apoptosis of APL cells and clinically shown to be 
better outcome and less toxicity than the combined treatment of ATRA with chemotherapy 
in the treatment of patients with APL [4, 5]. This chapter summarizes the anticancer effect of 
ATO-based combination therapies in different types of solid cancer and hematological malig-

nancies. Furthermore, the molecular mechanism by which ATO-based combination therapies 
exert a proapoptotic effect in cancer cells is discussed.

2. Novel arsenic-based combinatorial anticancer therapy

Based on the promising effect of arsenic on apoptosis in cancer cells, it has been further utilized 
as a combinatorial drug with other chemotherapeutic agents and/or molecular-targeted drugs 
to gain its anticancer effect in various types of cancer. The combination drugs, possible target 
molecules, molecular basis underlying combination treatment-induced apoptosis, and combi-
nation indices (CI) for each cancer are summarized in Figure 1 and Table 1.

2.1. Solid cancer

2.1.1. Colon cancer

Lee et al. reported that sulindac, a nonsteroidal anti-inflammatory drug (NSAID), enhances 
ATO-induced apoptosis by inhibiting NF-κB activation mediated through the blocking of 
phosphorylation and degradation of IκB-alpha in HCT-116 cells [6]. In addition, Cai et al. 
reported that combined ATO-PI3K inhibitor LY294002 treatment synergistically suppresses 
the proliferation of colon cancer cell lines, where ATO decreases Hh pathway transcription 
factor Gli1 and its downstream gene expression including BCL2 and CCND1 [7].

2.1.2. Prostate cancer

Therapeutics in prostate cancer is based on the progression stage of the cancer, and radiation 
therapy is widely utilized for treatment. ATO was reported to enhance the radiation sensitiv-

ity of androgen-dependent (LNCaP) and androgen-independent (PC-3) human prostate cancer 
cells by mediating inhibition of the Akt/mTOR signaling pathway both in vitro and in vivo [8]. 
As shown in colon cancer, it has been reported that ATO inhibits the proliferation of the prostate 
cancer cell line PC-3 by suppressing the Hh signaling pathway and the tumor suppression effect 
was further enhanced by a classic Hh pathway inhibitor cyclopamine in vivo [9]. Furthermore, 
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Figure 1. Molecular mechanism by which ATO exerts an anticancer effect synergistically with other therapeutics. (A) 
In most cancer cells, ATO generates intracellular ROS, which potentially triggers activation of the apoptotic signaling 
pathway. A glutathione synthesis inhibitor BSO enhances the effect of ATO-induced ROS generation by depleting GSH 
[43, 60], while a platinum drug CDDP cooperatively enhances ROS generation [12]. ROS-induced ER stress as well 
as MAPK phosphorylation can occur in mitochondrial dysfunction, which subsequently activates caspase-3/caspase-7 
and induces apoptosis. (B) Arsenite methyltransferase (As3MT)-mediated metabolic methylation of ATO decreases 
methyl donors (S-adenosylmethionine (SAM)) and increases its metabolite S-adenosyl-l-homocysteine (SAH), which 
may inhibit DNA methyltransferase activity of DNMT. ATO itself downregulates gene expression of DNMTs [117]. 
Consequently, promoter demethylation of silenced genes, including miR-155, miR-200c, secreted frizzled-related 
protein-1 (SFRP1), and ERα, upregulates their gene expression, which may exert anticancer activities [22, 118–120]. The 
demethylation effect of ATO and other anticancer therapeutics may cooperatively induce apoptosis in cancer cells. (C) 
In APL cells, ATO binds to PML, while ATRA binds to RARα. Thus, combined ATO-ATRA treatment synergistically 
induces proteasomal degradation of PML-RARα oncoprotein, differentiation, and subsequent apoptosis [73]. ATO also 
can induce proteasomal degradation of oncoproteins including chimeric protein BCR-ABL (generated in CML cells), Tax 
(HTLV-I-encoded protein), and NPM1 (frequently mutated in AML cells). ATO and combination agents are indicated in 
the Double Square. MMA, monomethylarsonous acid; DMA, dimethylarsinous acid.
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Combination regime Cancer type CI value Mechanism of action Ref.

ATO + radiotherapy Prostate cancer — Inhibition of Akt/mTOR 
signaling pathway

[8]

Oral cancer — Inhibition of tumor growth, 

angiogenesis, and metastasis

[11]

Cervical cancer — Suppression of radiation-
induced MMP-9 expression, 
ROS generation-induced 
MAPKs activation, and Bax 
translocation

[18, 19]

Breast cancer — Bcl-2/Bax ratio [23]

Glioma — Increased mitotic arrest 

and regulation of PI3K/Akt 
and ERK1/ERK2 signaling 
pathways

[53]

ATO + cisplatin (CDDP) Oral cancer 0.34–0.92 ROS generation, decrease 
in Bcl-2 protein level, and 
constitutive activation of 
caspase-3

[12]

Ovarian cancer 0.63–0.93 Upregulation of BAX and TP53 

and downregulation of HIF1A, 

IGF1R, MET, and AR (effects 
by only ATO)

[15]

Lung cancer 0.5–0.6 Increases in Bax and decreases 
in Bcl-2 and clusterin

[44]

TAO (As
4
O6) + CDDP Cervical cancer — Synergistic activation of 

caspase-3
[21]

ATO + all-trans-retinoic 
acid (ATRA)

Glioma — Suppression of cancer stem cell 
(CSC) properties

[61]

Hepatoma — Reduced GSH level [67]

Lung adenocarcinoma —

Breast cancer —

Acute promyelocytic 
leukemia (APL)

— ATO and APL differentially 
induce proteasomal 
degradation of PML-RARα

[73]

Acute myeloid 

leukemia (AML)/
FLT3-ITD

— Co-inhibition of FLT3 signaling 
pathways

[85]

AML/NPM1-mutated — Degradation of nucleophosmin 
(NPM1)

[86]

Adult T-cell leukemia 
(ATL)/RARα-positive

— Degradation of HTLV-I 
transactivator protein (Tax)

[118]
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Tai et al. reported that combined ATO-mTOR inhibitor RAD001 (everolimus) treatment syn-

ergistically induces both apoptosis and autophagy in prostate cancer cells, where enhanced 
autophagic cell death was accompanied by increased Beclin1 mRNA stability as well as upregu-

lation of ATG5-ATG12 conjugate, Beclin1, and LC3-LC2 [10]. Importantly, the study showed 
that ATO-RAD001 combinatorial treatment more significantly suppresses LNCaP xenograft 
tumor proliferation than monotherapy without enhancing weight loss [10].

2.1.3. Oral cancer (oral squamous cell carcinoma (OSCC))

OSCC is the most common head and neck neoplasm and is highly associated with poor prog-

nosis, despite advances that have been made in diagnostic and therapeutic strategies such as 
surgery, chemotherapy, and radiotherapy. ATO was reported as a combinatorial drug with 
radiotherapy [11] and a platinum-based antineoplastic drug cisplatin (CDDP) [12], both of which 

Combination regime Cancer type CI value Mechanism of action Ref.

ATO + buthionine 
sulfoximine (BSO)

Ovarian cancer — GSH depletion, increased 
intracellular ROS generation, 
and activation of oxidative 
stress-related pathway

[17]

Lung cancer — GSH depletion [43]

Glioma — GSH depletion [60]

AML — ROS-mediated 
phosphorylation of JNK 
and BIMEL and induction of 

intrinsic apoptosis

[87]

Lymphoma and 
leukemia

— ROS-mediated phosphorylation 
of JNK and upregulation of 
death receptor 5

[88]

ATO + bortezomib (BOR) Multiple myeloma 0.4–0.64 Synergistic effect of ATO/BOR 
with p38 inhibitor (SB203580) 
on Bcl-2 downregulation and 
apoptosis in MM cell lines

[97]

Mantle cell lymphoma <1.0 Inhibition of NF-κB activity, 
decreases in cyclin D1 
and Bcl-2 expression, and 
decreased interaction of Mcl-1 
with Bak

[114, 115]

ATO + interferon-α 
(IFN-α)

Chronic myelogenous 
leukemia (CML)

— Suppressive activity of CML 
leukemia-initiating cells

[108]

ATL — Degradation of HTLV-I 
transactivator protein (Tax)

[109, 110]

Primary effusion 
lymphoma

— Inhibition of NF-κB activity [111]

Combination index value (CI); synergism is indicated by CI < 1.

Table 1. Summary of representative ATO-based combination strategies to treat cancer.
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are the most standard therapies for OSCC. Since ATO/CDDP-induced apoptosis was almost 
completely abrogated by NAC, ROS generation may be closely associated with the tumor sup-

pression effect (Figure 1A) [12]. Recent publications also implicated the therapeutic application 
of arsenic in the treatment for OSCC. Wang et al. reported that nicotinamide phosphoribosyl-
transferase (NAMPT) increases in patients with OSCC and a NAMPT inhibitor FK866 and ATO 
cooperatively induced apoptosis and depletes intracellular nicotinamide adenine dinucleotide 
levels in OSCC cell lines [13]. Tsai et al. showed that the combined ATO-dithiothreitol (DTT) 
treatment increases proapoptotic molecules Bax and Bak and decreases Bcl-2 and p53, which 
leads to a significant cell death of oral cancer cells but not the non-tumor cells [14].

2.1.4. Ovarian cancer

The rate of the mortality from ovarian cancer is highest among malignant tumors of the female 
genital organs. As indicated in other types of cancer, ATO was reported to exert synergistic cyto-

toxic effects against ovarian cancer cells when it was combined with CDDP, one of the standard 
chemotherapeutics for ovarian cancer, and/or mTOR inhibitor RAD001 [15, 16]. Ong et al. reported 
that both buthionine sulfoximine and ascorbic acid differentially enhance ATO-mediated cell kill-
ing by mediating GSH depletion and the oxidative stress-related pathway, respectively [17].

2.1.5. Cervical cancer

Radiotherapy has been generally used for the treatment of patients with cervical cancer, which 
is the most common cancer among females worldwide, as a monotherapy and combined ther-

apy with chemotherapeutics, such as platinum-based drugs. The combined ATO-radiation 
treatment was expectably reported to exert a beneficial antitumoral effect on cervical cancer 
cells in vitro and/or in vivo [18, 19]. Wei et al. reported that ATO decreases radiation-accelerated 
lung metastases probably via suppression of radiation-induced MMP-9 expression [18]. Kang 
et al. reported that ATO enhances the translocation of Bax protein to mitochondria and the 
phosphorylation level of Bcl-2, which were accompanied by activation of MAPKs including 
p38 and JNK [19]. Since NAC clearly inhibits the ATO-mediated cell killing as well as MAPK 
activation, ROS generation may play an important role in ATO-radiation-induced apoptosis. In 
addition to ATO, tetraarsenic oxide (TAO, As

4
O6) was shown to potentially exert an anticancer 

effect on cervical cancer cells. Kim et al. reported that the combined TAO and radachlorin/pho-

todynamic therapy cooperatively suppress the proliferation of mouse TC-1 cells both in vitro 
and in vivo, where tumor suppressor p53 and the inducible p21 protein increased especially 
in combined treated tumor cells [20]. TAO was also reported to synergistically suppress tumor 
growth of human cervical carcinoma cell line CaSki when it was combined with CDDP [21]. 
The combined TAO-CDDP therapy dramatically increased the number of apoptotic cells, as 
similarly observed in other types of cancer cells when ATO was combined with CDDP [12, 15].

2.1.6. Breast cancer

Breast cancer is one of the leading causes of cancer-related deaths among women worldwide. 
In breast cancer cells, ATO was reported to reduce the expression of DNA methyltransferase-1 
(DNMT1) and to induce the expression of estrogen receptor α (ERα), whose expression has 
been epidemiologically recognized to increase disease-free survival and indicate an overall 
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better prognosis (Figure 1B) [22]. Subsequently, combined ATO and antiestrogen tamoxifen 
(TAM) therapy coordinately suppressed tumor growth of a human breast cancer cell line 
MDA-MB-435S both in vitro and in vivo [22]. ATO was reported to enhance 89Sr radiation 
treatment-induced apoptosis by partly modulating the Bcl-2/Bax ratio [23]. Guilbert et al. 
reported that ATO suppresses rapamycin (specific mTOR inhibitor)-induced phosphoryla-

tion of both ERK and Akt (Ser473), which leads to enhancement of the anticancer effect of 
rapamycin in vivo [24]. Cotylenin A (CN-A), a plant growth regulator, was reported to exert a 
favorable antitumor effect on breast cancer cells when it was co-incubated with ATO in vitro 
[25]. The combined CN-A-ATO treatment decreased survivin expression and increased cas-

pase-7 expression by partly mediating ROS generation [25]. It has been reported that mel-
atonin, a known natural antioxidant, enhances ATO-induced apoptosis by mediating ROS 
generation-induced MAPK activation including p38 and JNK in human breast cancer cell 
lines MDA-MB-231 and SK-BR-3 [26]. They also showed that mTOR inhibitor rapamycin fur-

ther enhances the ATO-melatonin-induced apoptosis [26]. In addition to inorganic arsenite 
ATO, its intermediate metabolites monomethylarsonous acid (MMAIII) and dimethylarsinous 
acid (DMAIII) exert more cytotoxicity toward breast cancer cells than ATO, implicating appli-
cation of the arsenite-related intermediates in anticancer therapy for breast cancer [27]. The 
combined intermediates MMAIII and DMAIII cryptotanshinone (a natural quinoid diterpene 
isolated from Salvia miltiorrhiza roots) strongly induce apoptosis by mediating endoplasmic 
reticulum (ER) stress and/or ROS generation in MCF-7 cells [27].

2.1.7. HCC and bile duct carcinoma (cholangiocarcinoma)

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy, which is the 
sixth most common type of cancer worldwide. Sorafenib, a known multikinase inhibitor, can 
extend the survival rate of patients with advanced HCC. ATO was reported to synergize with 
sorafenib to inhibit the proliferation and promote the apoptosis of HCC cells by diminishing 
the sorafenib-induced activation of Akt and/or its downstream factors, including glycogen syn-

thase kinase-3β, mTOR, ribosomal protein S6 kinase, and eukaryotic translation initiation factor 
4E-binding protein 1 [28]. ATO was also reported to potentiate the anticancer effect of genistein 
[29], 3′-azido-3′-deoxythymidine (AZT) [30], oridonin [31], MDM2 inhibitor nutlin-3 [32], metfor-

min [33–34], survivin mutant (T34A) [35], shikonin [36], and andrographolide [37] in HCC cells.

2.1.8. Lung cancer

Lung cancer is the most common type of cancer worldwide. As indicated in colon cancer, there 
are several reports regarding the synergistic induction of apoptosis by an NSAID sulindac and 
ATO in human lung cancer cell lines [38, 39]. Combined ATO-sulindac treatment induced apop-

tosis of human non-small cell lung cancer (NSCLC) cell line A549 by mediating the mitochon-

drial pathway and the NF-κB pathway [38] and by mediating p53-induced downregulation of 
survivin [39]. It has also been reported that combined ATO-sulindac treatment induces syner-

gistic augmentation of cytotoxicity in both human NSCLC cell lines NCI-H157 and NCI-H1299 
by mediating ROS-induced MAPK phosphorylation and via c-Jun NH

2
-terminal kinase-depen-

dent Bcl-xL phosphorylation, respectively [40, 41]. Indomethacin, a nonselective cyclooxygen-

ase inhibitor (a structural isoform of sulindac), was also shown to enhance the ATO-induced 
cytotoxic effect in A549 cells by mediating activation of ERK and/or p38 MAPKs [42]. Han et al. 
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reported that buthionine sulfoximine (BSO), a glutathione synthesis inhibitor, enhances ATO-
induced apoptosis in A549 cells, in which the apoptosis was related to the increased level of 
intracellular ROS (Figure 1A) [43]. In addition, combined ATO-CDDP treatment induced apop-

tosis and synergistically suppressed the proliferation of human NSCLC cell lines A549 and 
H460, with CI values 0.5 and 0.6, respectively, where CI <1 defines synergism [44]. Lam et al. 
indicated that combined treatment with ATO and a selective fibroblast growth factor recep-

tor (FGFR) inhibitor PD173074 cooperatively suppresses tumor proliferation both in vitro and 
in vivo in the lung squamous cell carcinoma (SCC) cell line SK-MES-1, in which ATO-PD173074 
decreased FGFR1, Akt, Src, c-Raf, and Erk, at least in part by mediating proteasomal degrada-

tion [45]. Gu et al. reported that ROS-mediated ER stress and mitochondrial dysfunction were 
involved in the apoptosis induced by resveratrol and ATO in A549 cells [46].

2.1.9. Gastric cancer

In gastric cancer, ATO and ABT-737, a small-molecule drug that inhibits Bcl-2/Bcl-xL anti-
apoptotic molecules, cooperatively suppressed the proliferation of human gastric cancer cell 
lines SGC7901 and MGC-803 [47]. Although ABT-737 has low solubility and oral bioavailabil-
ity, the other Bcl-2 inhibitor ABT-199 has been developed for clinical use for the treatment of 
hematological malignancies including chronic lymphoid leukemia (CLL) [48].

2.1.10. Urothelial carcinoma (UC)

In urothelial carcinoma, Kuo et al. reported that 2-methoxyestradiol (2-ME), an endogenous 
derivative of 17β-estradiol, elicits synergistic cytotoxicity of human UC cell lines NTUB1 and 
T24 in combination with ATO, with a CI < 1.0 [49].

2.1.11. Pancreatic cancer

In pancreatic cancer, Wang et al. reported that parthenolide (PTL), a sesquiterpene lactone 
from the medical herb feverfew, enhances apoptosis of human pancreatic cancer cell lines 
PANC-1 and BxPC-3 by mediating ROS generation and subsequent caspase activation via the 
mitochondrial pathway [50]. The combined ATO-PTL treatment significantly reduced tumor 
growth rates of PANC-1 xenografts compared with those treated with either PTL or ATO alone 
[50]. Another report focused on the limited efficacy of ATO on cytotoxicity in pancreatic ductal 
adenocarcinoma probably because of the high-cellular ROS scavenging activity. Lang et al. 
reported that PX-478, a hypoxia-inducible factor-1 inhibitor, robustly strengthens the anti-
growth and proapoptosis effect of ATO on Panc-1 and BxPC-3 pancreatic cancer cells in vitro 
by mediating ROS accumulation [51].

2.1.12. Glioma and glioblastoma (GBM)

In glioma, several reports indicated the effectiveness of arsenic for combination therapy. Kim 
et al. reported that ATO specifically increases expression of death receptor 5 (DR5), a death 
receptor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a subset of 
human glioma cell lines but not in astrocytes [52]. They also showed that combined ATO 
and TRAIL treatment synergistically reduces the survival of glioma cells, with a CI < 1.0 [52]. 
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ATO-radiation combination treatment enhanced autophagic effects in U118-MG cells through 
increased mitotic arrest and regulation of PI3K/Akt and ERK1/2 signaling pathways [53]. Similar 
observations were reported in human fibrosarcoma and osteosarcoma, where the combined 
treatment arrested their cell cycle at the G

2
/M phase [54, 55]. ATO is a ROS inducer, and heme 

oxygenase-1 (HO-1) is known to be increased in arsenic-treated cells [56]. Liu et al. reported that 
HO-1 inhibition or Nrf2 knockdown significantly potentiated ATO-induced cytotoxic effects 
on glioma cells [57]. This result suggests that ATO-induced gene expression including the Nrf2 
signaling pathway may be partly involved in the resistance of cancer cells to ATO. Dizaji et al. 
reported that combined treatment with ATO and silibinin, a natural polyphenolic flavonoid, 
synergistically induces apoptosis and inhibits invasiveness in the human GBM cell line U87MG, 
in which the expression of cathepsin B, uPA, MMP-2, MMP-9, membrane type 1-MMP, sur-

vivin, Bcl-2, and CA9 decreased after treatment [58]. Gülden et al. reported that combined treat-
ment with ATO and silibinin reduces the viability of A-172 by mediating intracellular arsenic 
accumulation [59]. As described in lung cancer, BSO depleted cellular glutathione and acted 
synergistically with ATO in rat C6 astroglioma cells [60]. Karsy et al. investigated the effect 
of ATO and ATRA on neurosphere formation of U87MG possessing wild-type (wt) p53 and/
or codon-specific p53 mutant (R273H) [61]. They found that ATO and ATRA treatment could 
induce apoptosis of both U87-p53 (wt) and U87-p53 (R273H) and could potently suppress CSC 
properties in vitro [61]. It is well known that c-Myc is also required for the maintenance of CSCs 
of various cancers including GBM [62]. Yoshimura et al. showed that ATO and c-Myc inhibitor 
10058-F4 coordinately enhanced differentiation of GBM CSCs and regressed GBM CSC tumor 
growth in vivo [63]. Primon et al. reported the involvement of cathepsin L (CatL) in the ATO-
induced apoptotic effect [64, 65]. They found that knockdown of CatL enhances ATO-mediated 
in vitro cytotoxicity and apoptosis in both the GBM cell line U87MG [58] and pilocytic astrocy-

toma cell line MPA58 [65].

2.1.13. Other combinations

Baumgartner et al. reported that ATO-mediated apoptosis is markedly enhanced by using the 
polyunsaturated fatty acid docosahexaenoic acid (DHA) in 12 different ATO-resistant solid 
tumor cell lines including breast, ovarian, colon, prostate, cervical, and pancreatic cancer, 
while there was no cytotoxicity in normal skin fibroblasts, human microvascular endothelial 
cells, and peripheral blood mononuclear cells derived from healthy donors [66]. Lin et al. 
reported that combined ATRA and ATO treatment synergistically inhibits the proliferation 
and induces apoptosis in human hepatoma, breast cancer, and lung cancer cells in vitro [67]. 
Kryeziu et al. found that combined treatment with ATO and erlotinib, a selective EGFR inhibi-
tor, acts synergistically through accumulation of DNA damage by inhibiting EGFR-mediated 
DNA double-strand break repair in mesothelioma, HCC, colorectal carcinoma, osteosarcoma, 
thyroid carcinoma, and cervix carcinoma in vitro [68].

2.2. Hematological malignancies

2.2.1. Acute promyelocytic leukemia (APL)

Patients with newly diagnosed APL, also known as a AML M3 subtype with APL-specific chro-

mosomal translocation t(15;17) (q22;q21) and PML/RARα chimeric fusion protein, are mostly 
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cured after standard ATRA with chemotherapy, while toxicity and refractoriness to the treatment 
are observed in some patients. Accumulating evidence shows the superiority of novel combined 
ATRA and ATO therapy for the treatment of patients with APL in terms of event-free survival, 
relapse-free survival, and less hematologic toxicity, compared to ATRA with chemotherapy [4, 5, 

69–72]. The molecular basis underlying synergistic effects between ATRA and ATO has been bio-

logically demonstrated. ATRA and ATO differentially bind PML/RARα protein, the proteasomal 
degradation of which readily induces terminal differentiation, and subsequent apoptosis in APL 
cells (Figure 1C) [73]. In addition to the effect of ATO on the PML moiety, ATO-induced anti-
cancer activities including inhibition of leukemic progenitor self-replication and antiangiogenic 
effects might be involved in the antileukemic activity. The combined ATRA with intravenous 
administration of ATO has been developed to combine ATRA with oral As4S4 administration as 
a routine treatment option for appropriate patients [74]. Moreover, Wang et al. showed that the 
combination of low concentrations of As4S4 and As3+ enhanced degradation of the PML/RARα 
oncoprotein and subsequent apoptosis [75]. Other modified combination regimes have been 
demonstrated using in vitro experimental models [76–82]. Jung et al. reported that the Src family 
kinase inhibitor PP2 enhances differentiation of APL cells induced by ATRA-ATO treatment [76]. 
Rogers et al. reported that vitamin D3 potentiates the antitumorigenic effects of ATO in HL-60 
cells (PML/RARα-negative APL cell line) by enhancing nuclear DNA fragmentation [77]. The 
antileukemic activity of ATO was also enhanced by the combination strategies with granulocyte-
monocyte colony stimulation factor [78], a noncalcemic vitamin D analog 19-Nor-1,25(OH)2D2 
[79], N-(beta-Elemene-13-yl) tryptophan methyl [80], a selective inhibitor of epidermal growth 
factor receptor (EGFR) gefitinib [81], and high-dose vitamin C (ascorbic acid) [82], all of which 

enhance ATO-induced differentiation and apoptosis of APL cells.

2.2.2. Acute myeloid leukemia (AML)

AML is a malignant disease of the bone marrow, where juvenile leukocytes are arrested in 
an early stage of differentiation. It has been reported that AML patients with FLT mutations 
including FLT3-internal tandem duplication (FLT3-ITD) had significantly shorter overall and 
disease-free survival [83]. Takahashi et al. reported that combined treatment with ATO and 
FLT3-specific inhibitor AG1296 synergistically induces apoptosis in FLT3-ITD-positive cells, 
but not in Flt3 wild-type cells [84]. The combined ATO with ATRA, a novel standard treatment 
for patients with APL, was shown to exert synergistic cytotoxicity against FLT3-ITD AML 
cells via co-inhibition of FLT3 signaling pathways [85]. In addition, ATO-ATRA was shown to 
induce apoptosis of NPM1-mutated AML cells by targeting nucleophosmin (NPM1) oncop-

rotein, whose mutation possibly represents a therapeutic target because of high frequency in 
>30% AML [86]. As indicated in lung cancer and glioma, BSO was shown to enhance the ATO-
induced anticancer effect by mediating ROS generation in AML cells [87] and other leuke-

mic/lymphoma cells [88], suggesting that combined ATO-BSO treatment would be one of the 
attractive alternative therapies for cancer treatment. It has also been reported that combined 
treatment with ATO and dichloroacetate [89], azacytidine [90], rapamycin [91], and aclacino-

mycin A [92] enhances apoptosis in AML cells. Wang et al. reported that ethacrynic acid and 
a derivative enhance apoptosis in ATO-treated myeloid leukemia and lymphoma cell lines; 
this combination treatment generates high levels of ROS, activates JNK, and subsequently 
decreases the protein level of antiapoptotic molecule Mcl-1 [93].

Current Understanding of Apoptosis - Programmed Cell Death42



2.2.3. Multiple myeloma (MM)

ATO, melphalan, and ascorbic acid (AA) combination therapy (MAC) is a therapeutic option 
for patients with relapsed or refractory MM [94]. Grad et al. initially showed that clinically rele-

vant doses of AA decrease GSH levels and potentiate ATO-mediated cell death of MM cell lines 
[95]. Current therapeutics for MM, such as a proteasome inhibitor, namely, bortezomib (BOR) 
and carfilzomib, and immunomodulatory drugs, namely, thalidomide, lenalidomide (LEN), 
and pomalidomide, have successfully improved the patient survival, though MM remains an 
incurable disease [96]. In view of the current MM therapeutics, ATO was reported to enhance 
the anti-myeloma cytotoxicity of BOR [97] and sensitivity of MM cells to lenalidomide (LEN) 
[98]. Wen et al. showed that the enhanced cytotoxicity of ATO-BOR is associated with aug-

mented STAT3 inhibition, JNK activation, and upregulation of Bim, p21, p27, and p53 as well 
as downregulation of Bcl-2 [97]. Jian et al. showed that ATO upregulates cereblon, the anti-
myeloma target of LEN, thus potentiating the sensitivity of MM cells [98]. The anti-myeloma 
activity of ATO was also enhanced by the combination strategies with a vitamin E analog 
Trolox [99], a specific MEK inhibitor PD325901 [100], a natural quinoid diterpene cryptotan-

shinone (also known as STAT3 inhibitor) [101, 102], and a phytochemical sulforaphane [103].

2.2.4. Chronic myelogenous leukemia (CML)

Recent therapeutics for CML were developed by targeting the Bcr-Abl fusion protein gener-

ated from a Philadelphia (Ph) chromosome with reciprocal translocation of chromosomes 9 
and 22. Despite the advances in CML therapeutics including Bcr-Abl tyrosine kinase inhibi-
tors (TKIs), TKI therapy can produce a subpopulation of CML cells with a Bcr-Abl gene muta-

tion that leads to resistance to TKI therapy, which results in a poorer prognosis in 10–15% of 
patients with CML. Several reports indicated the efficacy of ATO-based combined therapy for 
CML cells [104–108]. Du et al. reported that combined treatment of ATO with imatinib, which 
is the first approved TKI, coordinately enhances apoptosis of CML cells by mediating intrinsic 
(upregulation of BAX), extrinsic (upregulation of TNFR1, CASP8, and CASP10), and ER stress-
related pathways (HSPA5 and DDIT3) [104]. Wang et al. also showed the additive effect of ATO-
nilotinib, a second-line TKI agent, on the proliferation and differentiation of primary leukemic 
cells from patients with CML in blast crisis [105]. In addition, combined nilotinib-ATO treat-
ment induces ER stress-mediated apoptosis in imatinib-resistant K562 cells by mediating JNK 
activation [106]. Li et al. reported that anti-miR-21 oligonucleotide sensitizes K562 cells to ATO 
and enhances ATO-induced apoptosis probably by mediating upregulation of programmed cell 
death 4 (PDCD4) [107]. In a CML mice model, combined treatment with ATO and interferon-α 
(IFN-α) was reported to be superior to imatinib [108] in terms of overall survival of secondary 
recipients, indicating that ATO-IFN-α may exhaust the activity of CML leukemia-initiating cells.

2.2.5. Other leukemia and lymphoma

As the efficacy was shown in a CML mice model [108], ATO and IFN-α synergized to induce 
cell cycle arrest and apoptosis in adult T-cell leukemia/lymphoma (ATL)-derived human 
T-cell lymphotropic virus type I (HTLV-I)-transformed cells [109, 110]. El-Sabban et al. 
reported that combined ATO-IFN-α treatment induces the degradation of Tax, which is the 
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viral transactivator protein that plays a critical role in HTLV-I-induced transformation and 
apoptosis resistance [110]. Similarly, the enhanced ATO-IFN-α-induced apoptosis was shown 
in primary effusion lymphoma [111]. Darwiche et al. showed that synergism of ATO-ATRA is 
especially observed in the HTLV-I-transformed cells expressing RARα protein [112]. In acute 
lymphoblastic leukemia (ALL), low-dose ATO sensitized glucocorticoid-resistant ALL cells 
to dexamethasone via an Akt-dependent pathway [113]. Jung et al. and Zhao et al. indepen-

dently showed the synergistic anticancer effects of ATO with BOR in mantle cell lymphoma, 
which is an aggressive and highly incurable B-cell non-Hodgkin lymphoma [114, 115]. Ding 
et al. recently reported that combined treatment of ATO with cucurbitacin B, an effective com-

ponent of the dichloromethane extraction from Trichosanthes kirilowii maxim, synergistically 

enhances apoptosis by inhibiting STAT3 phosphorylation in Burkitt’s lymphoma cell lines 
both in vitro and in vivo [116].

3. Summary

In this chapter, we show that arsenical compounds enhance cancer cell apoptosis when com-

bined with other anticancer therapeutics including radiation, chemotherapies, and molecular-
targeted drugs. Although a number of reports have shown the anticancer effects of arsenic 
and have discussed the possible molecular targets of ATO in malignant cells, molecular mech-

anisms underlying ATO-based synergistic anticancer effects with other anticancer therapeu-

tics remain obscure. In the past decade, next-generation sequencing (NGS) technologies have 
tremendously improved and have clarified the whole context of genomic alterations in cancer 
cells, among which phenotypic and functional heterogeneity arises within the same tumor as a 
consequence of genetic changes, environmental differences, and anticancer therapy [121–123]. 
This indicates that the possibility of targeting single molecules and/or signaling pathways as 
well as single cellular biological processes may generate a different malignant population of 
cancer cells, some of which may acquire a certain drug resistance. Therefore, novel therapeu-

tic agents and/or strategies are required to overcome drug resistance and improve both the 
disease outcome and the quality of life for patients with cancer. Further understanding of the 
relationship between induction of apoptosis and genetic/epigenetic changes in cancer cells 
may contribute to improvement in selectivity for cancer treatment. Additional studies are 
required to understand the synergistic anticancer action regarding ATO-based combination 
therapeutics to develop a novel combined therapy for cancer.
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