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Abstract

This chapter presents bandgap-modulated tunnel field effect transistor (TFET) and dis-
cusses its simulation and modeling. A geometry of TFET, the heterojunction TFET, is
considered, and different electrical parameters are discussed using Technology Computer
Aided Design (TCAD) tool. The effect of the heterojunction on the characteristics is
observed through the variations in the length and mole fraction of the pocket layer
adjacent to the source. An analytical model is further presented for gate-drain underlap
TFET using 2-D Poisson equation and Kane’s interband tunneling model. The results are
validated with the output from the TCAD tool.
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1. Introduction

Tunnel field effect transistor (TFET) is an asymmetrical gated p-i-n device. Unlike thermionic

conduction in metal-oxide-semiconductor FETs (MOSFETs), its working principle is based on a

band-to-band tunneling (BTBT) mechanism [1, 2]. This amendment results in a reduced sub-

threshold swing (SS), low off-state leakage currents, and less short-channel effects. Recently,

numerous structural and material designs of TFETs have been proposed with an objective to

achieve improvement in subthreshold swing (SS) and off current. A few of them are bandgap-

engineered TFETs [3], graphene nanoribbon TFETs [4], gate-engineered TFET [5], and strained

silicon-germanium TFETs [6]. Double-gate TFET [7], dual-material gate TFET [8], hetero-gate

dielectric TFET [9], and heterojunction TFETs [10] have also been investigated for improved

electrical parameters of TFET. Generally, TFETs have a very low current as compared to ITRS

requirement. In order to get a high ON current, a high-k gate dielectrics are preferred. High-k gate

dielectrics causes improved capacitive coupling between the gate and the source-channel tunnel

junction, resulting in an increased current in TFET. Moreover, to decline the effective oxide
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thickness at the tunnel junction, high-k gate oxide is used so that the gate-tunneling current can be

reduced. Actually, due to these reasons, the recent trend is to use high-k materials as a better

replacement of the conventional SiO2 (silicon dioxide). On the other hand, it causes a significant

ambipolar current. The gate-drain underlap structure in association with heterojunction can be

adopted to diminish ambipolar current [2]. A silicon-germanium (SiGe) layer is used at the tunnel

junction so that bandgap and tunnel width can be modulated. Electrical parameters have been

investigated for various Ge-mole fractions.

Technology Computer Aided Design (TCAD) simulation is a complex iterative mathematical

process, and hence various analytical models have been proposed in order to develop a better

understanding of the physics-based principles of TFETs and obtain results not constrained by

computational time [11]. A number of analytical models based on Poisson equation have been

proposed in the study for different geometries [12–14]. In this chapter, a mole fraction-

dependent model has been proposed and validated.

This chapter is organized as follows: first, the heterojunction gate-drain underlap tunnel is

discussed, and in the second section, the electrical parameters of the heterojunction gate-drain

underlap tunnel FET (UL-HTFET) is investigated with the help of TCAD simulation. The third

section discusses the physics-based compact model and the validation of the model with simulated

results. In the last section, the effect of temperature on the electrical parameters is investigated.

2. Heterojunction gate-drain underlap tunnel FET

A 2-D structure of the proposed UL-HTFET is shown in Figure 1. Here, a p + source and

n + drain with an intrinsic channel and a δp + Si1-xGex layer at the source-channel tunnel

junction are present. The δp + layer can be replaced by a δn + layer too.

Figure 1. A 2-D geometry of the device (UL-HTFET).
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The effect of germanium mole fraction on the UL-HTFET is investigated. Aluminum with

work function (4.1 eV) is considered as the gate material. The proposed device spans across a

total length of 100 nmwith a length of the channel equal to 20 nm. The δp + Si1-xGex layer extends

from the source-channel junction up to 1 nm into the channel under the gate. The various doping

concentrations are used such as source, 1021 cm�3; drain, 5 � 1019 cm�3; δp + layer, 1018 cm�3;

and intrinsic region, 1016 cm�3. In n-channel, the operation of TFET positive gate and drain

voltages is applied with respect to the source. Here, voltage at the source is considered as the

reference voltage.

The tunnel FETworks on the principle of band-to-band tunneling. Here, SiGe layer is added at

the channel near the source-channel junction to enhance the on-current.

3. Simulated results of UL-HTFET

Figure 2 shows the Ids-Vgs characteristics of the Si/Ge heterojunction UL-HTFET at different

lengths of Lp. When the HTFET is turned on, it shows very high on-current due to the effective

bandgap narrowing at the interface of source-channel junction. The Ids-Vgs curves are mainly

dependent on n + �doped pocket length (Lp) as shown in Figure 2; as Lp gets longer, the

effective area for tunneling width is extended for HTFET. However, the low off-state current in

UL-HTFET (9.205 � 10�20 A/μm) when Lp is less than 2 nm, and this indicates that the

ambipolar-tunneling effect at drain channel is suppressed. When Lp is 2 nm, as observed, the

tunneling width becomes extremely thin to concede tunneling current at Vgs = �0.5 V. This

tunneling current interrupts UL-HTFET device performance at off-state. The low Ioff can be

achieved at Lp = 1 and 2 nm, and Ion is greatly higher at Lp = 4 nm in TFET. Therefore, an

optimum Lp can be located at 1 nm where high ion is achieved and the leakage is suppressed

as shown in Ids-Vgs characteristics.

Figure 2. Transfer characteristics for varying Lp lengths at Vds = 0.7 V.
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In Figure 3, the Id-Vgs characteristics of the UL-HTFET is shown. The mole fraction of SiGe

layer is varied. With germanium mole fraction of 0.4, the best Ion/Ioff ratio has been achieved

(1012). For Ge-mole fractions below 0.5, the device exhibits a better ratio. As the mole fraction

increases beyond 0.5, the properties of the n + layer align more with those of germanium than

of silicon. With an increase in mole fraction greater than 0.4, the on-current increases but the

increase in off-current is more. This is due to an effective band bending at the source-channel

tunnel junction by which the tunnel width can be modulated. For a reduced tunnel width in

ON state (Vgs = 1 V), more ON current is achieved. However, at OFF state, the current is due to

thermionic emission as the tunnel current is insignificant.

The energy band diagram is plotted at different mole fractions at ON state (Vds = 0.7 V,

Vgs = 1.2 V) shown in Figure 4. It is observed that at 0.8-mole fraction of germanium, the ON

current is more. With an increase in Ge-mole fraction, the tunnel width reduces and hence

enhanced ON current is achieved. In the inset of Figure 4, the variation of valence band with

mole fraction is shown. The conduction band variation is insignificant with mole fraction.

In Figure 5, the electric field is shown at different mole fractions. The peak electric field is

observed around 20-nm length along the lateral direction. This is the source-channel tunnel

junction. A high electric field at this location is due to the presence of a large tunnel barrier.

With the increased mole fraction (at x = 1), a highest peak is observed, and hence tunneling

probability will increase and be responsible for the increased current in ON state.

The ON/OFF current ratio and the subthreshold swing are shown in Figure 6. The best

ION/IOFF ratio is achieved for Ge-mole fraction of 0.3. In TFETs, an abrupt Id-Vgs plot is

obtained where the subthreshold swing varies with gate voltage. Therefore, two types of SS

[15] are defined in TFETs: one is the average SS and the other is known as point SS. The

average SS is defined mathematically as

SSav ¼ VT � VOFFð Þ= log ITð Þ � log IOFFð Þ½ � (1)

Figure 3. Id-Vgs characteristics of UL-HTFETwith varying Ge-mole fractions.
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where VT is the threshold voltage and VOFF is the value of gate voltage at which the drain

current just begins to take off. IT and IOFF are the drain currents at the respective voltages. Point

SS, on the other hand, is the minimum SS at any point on the Id-Vgs plot. The plot of average SS

for different Ge-mole fractions is shown in Figure 6. A remarkable average SS (37 mV/dec) is

achieved at 0.2 Ge-mole fraction.

Figure 5. Electric field along the channel length in UL-HTFET.

Figure 4. Energy band diagram at ON state.
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4. Development of analytical model for UL-HTFET

4.1. 2-D Poisson equation-based model

In regions 1–4 of Figure 1, the 2-D Poisson’s equation is considered and the 1-D Poisson’s

equation is solved on region 5 due to the absence of gate overlap. The following assumptions

have been considered while modeling [12–16]:

1. No trap charges are considered.

2. There are no immobile charges in gate dielectric.

3. Gate leakage current is zero.

4. Source-channel and channel-drain depletion regions do not have any kind of mobile

charges.

In regions I–IV, the 2-D Poisson’s equation is given as follows:

∂
2
Ψ i x; yð Þ

∂x2
þ

∂
2
Ψ i x; yð Þ

∂y2
¼

qNi

ℇi
(2)

where the subscript i ¼ 1, 2, 3, 4 corresponding to regions 1, 2, 3, or 4.

Ψ i x; yð Þ, Ni, and ℇi are the two-dimensional potential, doping concentration, and permittivity

of the semiconductor material, respectively, in the respective four regions.

The 2-D potential is approximated as parabolic along the depth of the device. So, the assump-

tion for the 2-D potential is considered as

Ψ i x; yð Þ ¼ C0i xð Þ þ C1i xð Þyþ C2i xð Þy2 (3)

Figure 6. ON and OFF current ratios (ION/ IOFF) and subthreshold swing (SS) versus Ge-mole fraction.
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where C0i xð Þ, C1i xð Þ, and C2i xð Þ are coefficients that are functions of mole fraction.

In each of the four regions, three vertical boundary conditions must be satisfied to confirm the

continuity of potential and electric field at the gate insulator–semiconductor interface (y ¼ 0)

and at the lowermost part of the device (y ¼ ts)

Ψi x; 0ð Þ ¼ Ψsi xð Þ

∂Ψi x; 0ð Þ

∂y
¼

εi

εoxtox
Ψsi xð Þ � vif g

∂Ψ i x; tsð Þ

∂y
¼ 0 (4)

where Ψ si xð Þ is the surface potential, ℇox is the permittivity of gate dielectric, tox is the gate

dielectric thickness, and vi ¼ VGS � V fbi. The gate voltages with respect to source and the

flatband voltage are represented by VGS, and V fbi, respectively. The bandgap EGi is a function

of Ge-mole fraction in Si1-xGex expressed as a linear interpolation of the bandgaps of Si

(� 1.10 eV) and Ge (� 0.66 eV):

EGi ¼ 1:10� 0:34x (5)

Using the boundary conditions of Eq. (4), we obtain the coefficients of Eq. (3) as follows:

C0i ¼ Ψsi xð Þ

C1i ¼
εi

εoxtox
Ψsi xð Þ � vif g

C2i ¼
εi

2εoxtoxts
vi � Ψ si xð Þf g (6)

Using the coefficients of Eq. (6) in the polynomial in Eq. (3), the 2-D Poisson’s equation can be

expressed as

Ψ si
== � k2i Ψ si ¼ k2i ξi (7)

with

ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

εox

εitoxts

r

and ξi ¼
qNi

εik
2
i

� vi:

Eq. (7) has a solution of the form:

Ψ si xð Þ ¼ Aie
þkix þ Bie

�kix � ξi (8)
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The surface potentials for regions I–IV of the device are represented by Eq. (8). For region V, we

apply 1-D Poisson’s equation:

∂
2
Ψ 5 xð Þ

∂x2
¼

qN5

ε5
(9)

to get

Ψ 5 xð Þ ¼ Ψ s5 xð Þ ¼
qN5

ε5
x2 þ C1xþ C2 (10)

The coefficients A1, B1, A2, B2, A3, B3, A4, B4, C1, and C2 must satisfy the boundary conditions

for the continuity of surface potential and electric field in the five regions:

Ψs1 �fð Þ ¼ �
kT

q

� �

ln
Ns

ni1

� �

Ψs1 0ð Þ ¼ Ψs2 0ð Þ

∂Ψs1 0ð Þ

∂x
¼

∂Ψs2 0ð Þ

∂x

Ψs2 að Þ ¼ Ψs3 að Þ

∂Ψs2 að Þ

∂x
¼

∂Ψs3 að Þ

∂x

Ψs3 bð Þ ¼ Ψs4 bð Þ

∂Ψs3 bð Þ

∂x
¼

∂Ψs4 bð Þ

∂x

Ψs4 cð Þ ¼ Ψs5 cð Þ

∂Ψs4 cð Þ

∂x
¼

∂Ψs5 cð Þ

∂x

Ψ s5 dð Þ ¼ VDS þ
kT

q

� �

ln
Nd

ni2

� �

(11)

where VDS is the drain voltage with respect to source, and ni1 and ni2 are the intrinsic

concentrations of the Si1-xGex layer and silicon, respectively. Here, a, b, c, d, and -f are the

various positions along the channel at which the boundary conditions are applied. Their
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values are mentioned in the inset of Figure 1. The width of the depletion region in the source is

expressed as

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ε1 ξ1 �Ψssj j
q N1j j

s

(12)

where

Ψss ¼ � kT

q
ln

Ns

ni2

� �

Using Eqs. (8) and (10), the lateral electric field for the five regions is given as

Exi ¼ �ki Pie
kix �Qie

�kix
� �

for i = 1, 2, 3, 4 corresponding to regions I, II, III, or IV.

and

Ex5 ¼ � qN5x

ε5
þ C1

� �

(13)

The vertical electric fields for the different regions are expressed using Eqs. (3) and Eq. (10) as

Eyi ¼ � a1i þ 2a2iyð Þ (14)

for i = 1, 2, 3, 4 corresponding to regions I, II, III, or IV.

and

Ey5 ¼ 0 (15)

The drain current is calculated by integrating the band-to-band generation rate GBTBT over the

volume of the device

Id ¼ q

ð

GBTBTdV (16)

where

GBTBT ¼ A
Ej j2
ffiffiffiffiffiffiffi

EGi

p exp �B
E1:5
Gi

Ej j

 !

(17)

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
x þ E2

y

q
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4.2. Validation of the analytical model

The developed analytical models are validated with simulation data from TCAD. Figure 7

shows the plot of lateral electric field at the surface of the UL-HTFET in the channel region for

different Ge-mole fractions of the silicon-germanium layer, at VGS ¼ 1:2 V and VDS ¼ 0:7 V . It

has been seen that the modeled values match with the simulated values of lateral electric field

except that a small mismatch in the field is observed at the position in the channel where the

gate-channel overlap terminates.

Figure 7. Variation of lateral electric field at the surface in the channel for different Ge-mole fractions.

Figure 8. Variation of vertical electric field at the surface in the channel for different Ge-mole fractions.
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A plot of vertical electric field at the surface of the device versus horizontal position in the

channel region is shown in Figure 8 for different values of Ge-mole fractions at a fixed drain

voltage of 0.7 V and a gate voltage of 1.2 V. For all the cases, it has been observed that the

modeled results closely approach the simulated results. The simulated vertical electric field is

slightly different as compared to the modeled ones near the junction of silicon-germanium-

silicon in the channel region; however, at other positions in the channel, there is a close match

between the modeled and the simulated values of vertical electric field.

The variation of drain current with gate voltage has been computed and portrayed in Figure 9.

There is a close match between the model and the simulated data.

5. Dependence of threshold voltage on temperature

An algorithm for the extraction of threshold voltage in heterojunction TFET is presented in

Figure 10 [17]. The algorithm uses the analytical model of Section 4 to plot multiple curves of

surface potential versus position for different gate voltages and fixed drain voltage. The

advantage of this algorithm is that the procedure is completely computational, and the thresh-

old voltage can be determined without deriving the transfer characteristics. Moreover, the

method can be extended to fit different threshold voltage extraction methods by changing the

fitting parameter [17].

The model takes into account the dependence of temperature. The method involves geometri-

cal constructions on a plot of surface potential versus position and using mathematical param-

eters to define a variable range_point.

Figure 9. ID-Vgs characteristics at Ge-mole fraction equal to 0.5, gate voltage equal to 1.2 V, and drain voltage equal to

0.7 V.
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A plot of threshold voltage versus temperature is shown in Figure 11. The plot shows that for

high-k gate dielectric TFET, the threshold voltage rises with an increase in temperature,

whereas for low-k dielectric, the threshold voltage remains almost constant. The simulated

values of threshold voltage have been derived using linear extrapolation method of determin-

ing threshold voltage. The method involves the construction of a tangent at the point on the

Figure 10. Algorithm for the extraction of threshold voltage in heterojunction and homojunction TFETs [17].
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transfer characteristics where the transconductance is maximum. The value at which the

tangent intersects the gate voltage axis is taken to be the threshold voltage.

6. Conclusion

This chapter has presented a comprehensive evaluation of a bandgap-modulated UL-HTFET.

The simulation analyses have examined the different electrical parameters and their depen-

dence on the pocket length, mole fraction of the SiGe layer, and gate voltage. An impressive

on-off current ratio of >1012 and a subthreshold swing less than 60 mV/dec are observed. An

analytical model based on 2-D Poisson equation has been developed for the gate-drain

underlap heterojunction TFET. The modeled values of surface potential, electric field, and

drain current satisfy the results of the simulation. Furthermore, a temperature-dependent

algorithm has been discussed to extract threshold voltage in heterojunction TFETs, and a

validation has been presented for the plot of threshold voltage at different temperatures.
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