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Abstract

This chapter describes the numerical simulations of a coupled industrial scale of the
tundish and continuous casting process. The governing equations are presented, and the
numerical procedure is discussed in a common framework. The coupled solutions are
presented for the transient turbulent flows within the tundish, solidifying zone and
extracting regions with the coupling phenomena of heat and mass transfer. The tundish
region flow and refractory are calculated using the inlet and outlet boundary conditions in
order to estimate the filling phenomena. The transitions and cooling zones for the thin slab
continuous casting process are designed to account for the control of the solidified skin in
order to avoid breakout. We compared the numerical predictions of the temperatures with
industrial monitoring data for a reference case in order to verify the consistence of the
model predictions. A parallel version of the numerical code is proposed aiming to
improve the computation time keeping numerical accuracy.

Keywords: tundish, continuous casting, turbulent flow, numerical modelling, thin slab,
finite volume

1. Introduction

The steel production in an integrated mill requires complex operation units and demands a

large amount of energy. In the operation units comprising the transformation of the liquid steel

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



into slabs, several aspects of the product quality are assured [1–6]. The security and stability of

the operations as well as the productivity with lower defects are the main concern and have

driven the new development on this step. Of special interest is to fit the dimensions of the slabs

suitable for further hot working processes free of internal and superficial defects. The strict

control of these steps is the primary effort to high-quality steel slab. A general schematic

overview of the continuous casting facilities including the metal transfer steps is presented in

Figure 1. The initial step is the metal transfer from the ladle to the tundish filling the vessel and

establishing the synchronised mass flows. The tundish distributor is used to control the

feeding rate of the oscillating mould of the continuous casting step using the submerse tune

and flowing valve control. The heat transfer and the flowing phenomena within the oscillating

mould are key phenomena to attain the adequate microstructure of the solidified steel and

keep the safety of the process with the formation of the solidification skin, which plays the

major role on the cooling zones for final solidification of centre of the slab.

The synchronised control of the cooling rate along the mould, bender, speed, and radiation

regions is the key for a successful operation of the entire system. In order to improve the

process safety, control and productivity comprehensive mathematical models have been devel-

oped separately for the tundish and continuous casting processes [1, 4]. Progress in computa-

tional simulation has provided tools to help to comprehend the processes. Consequently,

several investigations of the parameters which affect the performance under safety operation

conditions were driven [3–7]. The tundish operation is carried out in order to assure the

compositional and thermal homogeneity of the liquid with low level of impurities and inclu-

sions. The caster machine is designed to promote continuous solidification of liquid metal fed

by a tundish through a submerse valve. In the mould region, a strong heat flux is imposed, and

a thick solid shell is formed. Water cooling is continuously applied until a secondary region is

Figure 1. Schematic view of coupling of ladle feeding, tundish and continuous casting process and facilities.
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reached, where the cooling is performed only by radiation. At the end of the vein, the slab is

cut and discharged on a rolled table. Due to process complexity, which involves heat transfer

coupled with phase transformation and fluid flow, the prediction of process parameters and

their optimization is usually performed by using empirical procedures. However, the devel-

opment of efficient numerical techniques and the availability of fast and low-cost computers

has bust recently the simulation of real operational conditions [8–13]. To date, it is possible to

investigate virtually the manufacturing of several kinds of steels aiming low cost and high

material efficiency. Several works in the literature have been reported to analyse the metal

behaviour within the oscillating mould of the caster machine due to its importance on the

productivity and on the product final quality [4–15]. The oscillating mould is an important

component of the caster machine and has strong influence on surface defects and on the

temperature distribution inside the mould [2–8]. The heat transfer analysis during solidifica-

tion is traditionally performed by analytical and numerical methods. Although analytical

methods are more elegant, they require a series of assumptions that usually lead to a consid-

erable simplification of the physical phenomena producing unrealistic or limited solutions.

Considering numerical methods, four techniques are commonly used: finite differences [7–11],

finite elements [12–15], finite volumes [16] and boundary elements [17]. These methods are

able to solve the energy, the mass, species and momentum equations. In order to improve

scientific calculation performance, continuous changes have been arisen in computational

platform paradigm. In the past, the scientific simulation was normally performed in shared

memory large computers or in common sequential computers [18]. The fast rate of develop-

ment in processor technology and the commercial availability of inexpensive powerful per-

sonal computers have created a perfect scenario to build up cluster of personal computers as

an alternative to the larger and more expensive ones [19]. As consequence of low price, easy

maintenance and powerful processors, these so-called Beowulf clusters are becoming popular

among scientific computational groups. This architecture offers collective memory to solve

scientific complex problems [17, 21]. Although the rise of distributed computer platforms was

only an alternative for high-cost supercomputer solutions, they changed profoundly the rule of

code development, which now needs to encompass distributed machines [18, 19]. Distributed

platforms are suitable for problems in which domain can be split up into small subdomains

containing common boundaries. Most CFD codes demand high amount of memory, which is

normally available in distributed memory architecture [17, 18]. However, for accuracy and

consistency reasons, a parallel implementation needs to interchange information with

subdomain boundaries. This synchronisation scheme leads to an increase in the data transfer

time due to the existence of a synchronisation elapsed time [17–21]. The communication

among computers is carried out by using libraries of Message Passing Interface (MPI) [25].

The library Message Passing Interface (MPI) has largely been used in its freeware version

called MPICH [17–21]. In this context, this work newly presents a multidomain parallel

numerical model able to simulate the continuous casting of steel. The main objective is to

demonstrate the validity of the model and point out the improvement in calculation speedup

by developing a code based on multidomain parallel MPI compared to a serial and to a simple

MPI parallel code. All the computer codes used in this study are homemade ones, which were

developed and tested by the authors.
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2. A unified formulation for the tundish and continuous casting processes

The tundish and continuous casting operation units are connected by metal transfer systems to

account for the smooth operation and strict control of both. However, a common formulation is

possible based on transport phenomena principles. In this section we present a turbulent flow

coupled with heat and mass transfer for interconnected processes. The tundish is modelled as a

reactor including the metal, slag and inclusions flows, while the refractories and internal

protective devices are considered. A multiphase formulation is considered: (a) liquid metal,

(b) liquid slag, (c) solidified metal, (d) solidified slag, (e) particle inclusions and (f) refractory:

∂ ruið Þ

∂t
þ

∂

∂xj
rujui
� �

¼
∂

∂xj
μþ μt

� � ∂ui
∂xj

� �

�
∂

∂xj
τij þ Cij þ Lij
� �

�
∂P

∂xi
�

1� f s
� �

Kui

ui þ rgui (1)

∂ rTð Þ

∂t
þ

∂

∂xj
rujT
� �

¼
∂

∂xj

k

Cp
þ

kt
Cpt

� �

∂T

∂xj

� �

�
∂

∂xj
θþ Cþ Lð Þ �

∂

∂t
rΔHf s
� �

(2)

∂ rð Þ

∂t
þ

∂

∂xj
ruj
� �

¼ 0 (3)

∂

∂t
rCi
� �

þ
∂ rujC

i
� �

∂xj
¼

∂

∂xj
Di þ

μt

r

� �

∂ Ci
� �

∂xj

 !

(4)

∂ rkð Þ

∂t
þ

∂

∂xj
rujk
� �

¼
∂

∂xj
μþ

μt

σk

� �

∂k

∂xj

� �

þ 2μtSijSij � rεþ βgi
μt

Pr

∂T

∂xi
(5)

∂ rεð Þ

∂t
þ

∂

∂xj
rujε
� �

¼
∂

∂xj
μþ

μt

σe

� �

∂ε

∂xj

� �

þ C1e
ε

k
2μtSijSij þ C3eβgi

μt

Pr

∂T

∂xi

� �

� C2er
ε2

k
(6)

where gu is the gravity acceleration component at the velocity component direction, depending

on the number of species, which can be written as

gu¼
ug0

X

C,Mn

βiS Ci
l � Ci

l,0

� �
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h i

(7)

Viscosity was treated as effective viscosity [21] in the following form:

μeff ¼
σ

3ε
þ μt (8)

μt ¼ Δð Þ2
ffiffiffiffiffiffiffiffiffiffi

SijSij

q

(9)

where σ is the material mean stress and ε is the effective deformation rate presented by

Zienkiewicz [22] and Δ is a sub-grid scale for the isotropic turbulence filtering. All the vari-

ables used in the formulation are taken as the filtered values. The constants c1ε ¼ 1:44,

c2ε ¼ 1:92, c3ε ¼ 0:09 and σε ¼ 1:30 are related with turbulent kinetic energy (k) and its dissi-

pation rate (ε):
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In the solid phase, thermal conductivity was assumed as a function of temperature, according

in Holman [23]:

k ¼ ψ� 0:01γT (13)

where ψ and γ are constants for a specific metal alloy and the refractories considered for each

layer and formed solidified shell. For the liquid phases, a similar relationship is assumed with

their specific constants.

The specific heat for the solid and the liquid phases is obtained directly from ThermoCalc

calculation using TCFE5 database, while for the refractories, specific relations are used

depending on the materials used [24].

The local liquid concentration of each species is given by
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The segregation parameter β can vary as 0 ≤ β ≤ 1. Assuming β=1 means the lever rule, and β=0,

provides Scheil’s equation [24].

The heat flux boundary conditions for the continuous caster machine are estimated depending

on the region and operational conditions. In the mould and in the foot roll, the cooling water

flow is specified at the four faces, internal and external large faces and right and left narrow

faces, while at the other zones, heat fluxes were imposed only at two faces, the internal and the

external large faces. For both processes the initial conditions are specified by the measured

operational conditions or temperature monitoring data.

Heat fluxes on the water-cooled surfaces and on the radiation zones are given by

k
∂T

∂x
¼ heff Tsur � Teð Þ þ σrεr T4

sur � T4
e

� �

(16)

where heff is the effective heat transfer coefficient provided by Eq. (17), Tsur is the surface

temperature, Te is the environment temperature, σr is the Stefan-Boltzmann constant and εr is

the emissivity.
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The heat transfer coefficient in the sprays zones (foot roll, bender and secondary cooling zone)

was obtained by the water cooling enthalpy balance, providing

heff ¼
mwcpΔT

A Tsur � Teð Þ
(17)

where mw is the water flow, cp is the water-specific heat, A is the cross-sectional area and ΔT is

the water temperature difference given as a setup parameter for the cooling system.

The mould region was modelled by using the steel residence time in the mould to calculate the

effective heat transfer coefficient. This coefficient regards the effect of thermal resistance due to

air gap formation:

hmold ¼ 1004:6exp 0:02 tmð Þ (18)

where tm is the steel residence time, calculated by means of the cast velocity setup (Vc) and the

mould height (Y) as

tm ¼
Y

Vc
(19)

The inlet and outlet boundary conditions are specified using mass flow, compositions and

temperatures. The wall standard log law is used for modelling the liquid to walls and barrier

interfaces in both domains of the tundish and continuous casting vein. Figure 2 shows the

geometry and computational domain of the tundish with the refractories and internal barriers.

The numerical mesh used was obtained by using continuous refinement using 20% of the total

volume increment of each calculation for a standard operational conditions assuming aver-

aged error less than 1% on the temperature and velocity fields. Same procedure was used to

obtain the suitable mesh distribution along the continuous casting vein. The final mesh total

volumes in the tundish domain were 201,300 and for the continuous casting vein were 288,000.

Figure 2. Physical and computational domains including the refractory layers and internal features of the tundish

(60 ton).
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One additional restriction for the continuous casting vein was imposed by using 20% of the

total volumes on the oscillating mould region to account for the accuracy of the solution in this

region due to the strong gradients developed within the oscillating mould with solidifying

shell with strong heat release and solute redistribution. Details of the mesh generated and the

subdomains assumed in the simulations are presented in Figure 3.

The turbulent quantities at the inlet and outlet are calculated based on the averaged velocities

for both processes, as follows:

Uav ¼
Q

A
(20)

kav ¼ 0:01 Uavð Þ2 (21)

εav ¼
2

D
kavð Þ2=3 (22)

Eqs. (20)–(22) are applied depending on the geometry of the valves and feeding systems. The

averaged values for the temperature and compositions are either set using the measured

values or, in the case of transfer system, the values calculated in the previous connected

domains.

The thermophysical properties of the liquids (steel and slags) and solids formed during the

solidification process are determined by using computational thermodynamics database. The

solid barriers such as refractories and inhibitors are included by using their tabled

thermophysical property data furnished by the suppliers. By using the thermodynamics data-

base, a typical steel is modelled using their pseudo-binary diagrams. Figure 4 shows the

temperatures and phase composition dependency for the whole system and specific regions of

the diagram. These data are continuously accessed for local predictions of the thermophysical

properties during the transient calculation.

Figure 3. Physical and computational domains indicating the zones of the continuous casting slab and subdomains.
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Figure 5 shows the density and heat of phase transformation during temperature evolution.

These quantities are accessed to estimate the heat capacity and latent heat released during the

solidification and flowing paths. Figure 6 shows the solid fraction during the solidification

path considering the local conditions predicted by computational thermodynamics. With these

parameters and physical properties, all the information need for the coupled calculation of the

tundish and continuous casting operation are closed.

Figure 4. Pseudo-binary phase diagram of Fe-C-Mn-P-S as a function of carbon content (a) phase diagram, (b) and (c)

magnification of high temperature range closed to 0, 15 wt% C, which is close to the steel used in this study.
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3. Numerical features

Momentum, mass, energy and species equations were discretizated by using the finite volume

method (FVM) applied for general coordinate system [25, 26], where the integration is taken

Figure 5. Thermophysical properties inside mushy zone: (a) density and (b) heat and latent heat for the steel used in this

computational modelling.

Figure 6. Solid fraction of all solids as a function of temperature during the solidification process within the steel slab

used during the calculations accessed from the thermodynamic database.
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over a typical control volume. The final product of this operation is a set of algebraic equations.

Coefficients are obtained by the so-called power law scheme, according to Patankar [26]. The

SIMPLE algorithm is used to iteratively determine the velocity components and pressure

linked equations. The numerical solution of the set of algebraic equations demands large

computational effort. A line-by-line solver based on the tridiagonal matrix algorithm (TDMA)

was used to solve the system of algebraic equations. The Alternate Direction Implicit (ADI)

iterative procedure was applied within a common solver for all discretized equations. The

iterative solution was obtained for each time step in a fully implicit scheme [25, 26]. The

convergence criteria were used for all variables admitting a maximum local error less than 1%

for all variables simultaneously.

4. Analysis cases

In order to show the capability of the coupled model, a sequence of tundish filling and

continuous casting of a Fe-C-Mn thin slab (125 mm) of 1200 mm width is presented. The

tundish has 60 ton capacity, and the basic properties of the steel are presented in Table 1.

Properties Units C-Mn SAE 1018 steel

Slab width m 1.600

Slab depth m 0.255

Casting temperature �C 1.574

Casting speed m.min�1 0.810

Cooling water temperature �C 30

Environment temperature � C 40

Liquidus temperature �C 1.519

End of solidification temperature �C 1.410

Slab material SAE 1018 steel

Emissivity 0.600

Thermal conductivity in liquid phase W.m�1.K�1 25.400

Thermal conductivity in solid phase W.m�1.K�1 29.700

Specific heat in BCC phase at 30–838�C J.kg�1.K�1 783.400

Specific heat in FCC phase at 838–1416�C J.kg�1.K�1 647.500

Specific heat in liquid phase 1416–1519�C J.kg�1.K�1 803.200

Density of solid phase BCC 300–838�C kg.m�3 7.830

Density of solid phase FCC 838–1416�C kg.m�3 7.305

Density of liquid at 1522�C kg.m�3 7.034

Latent heat of solidification, ΔH J.kg�1 231.900

Table 1. Basic thermophysical properties of SAE 1018 (Fe-C-Mn) with simulation data.
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The initial step of the tundish feeling presents strong turbulence features and plays important

role on the stable flowing development and security of the whole operation. Figure 7 shows

the flowing pattern (t= 3 s) for a thin slab operation while the slab extraction is off. As can be

observed, the inhibitor apparatus is important to avoid splashing and protect the refractories.

Figure 8 shows the conditions where the stable flow rates are achieved with the liquid level of

the tundish nearly constant. The flow pattern indicates that a complex turbulent flow is

observed and the liquid flow promotes strong mixing.

In order to assure the coupled model formulation and the simultaneous solution in the parallel

platform simulation, a confrontation with measured temperature profile measured in the

industrial machine was performed. Figure 9 showed a comparison of the model predictions

for the serial, parallel and the pyrometer measurement at the industrial machine.

As can be observed, a close agreement with the industrial operation measurements for the

temperature is reached. The measurements and calculations were compared for the stable

casting operation, and the measured values were obtained using infrared pyrometer, and the

plotted values are the average of five runs with intervals of 5 min.

As can be observed also, the values obtained with the serial and parallel versions are virtually

the same. A complete view of the solid portion of the continuous casting domain is shown in

Figure 10 for stable flowing state. A thin skin formed in the oscillating mould region and

continuous growing along the bending and cooling zones is observed. A recalescence and final

cooling regions are observed. These regions are critical for the process due to the possibility of

crack and defect susceptibility depending on the cooling rates and inclusions dragged and

formed during the casting development [22–24].

Figure 7. Fluid flow pattern during initial stage of the tundish feeling period.
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Figure 8. Fluid flow pattern obtained with the solutions of the model equations with parallel code version.

Figure 9. Model validation with industrial data acquisition along the steel slab and comparison with the solutions

obtained with the serial and parallel code versions.
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5. Conclusions

A unified formulation for the liquid metal flows and heat transfer within the tundish and

continuous casting was presented and applied for actual industrial practices. New operational

conditions for the metal flows aiming to allow the inclusion flotation and slag capture are

suggested. The prediction of actual continuous casting practice is compared with industrial

data. Thus, the simulation platform can be used for designing new thin slab continuous casting

process, which could decrease the subsequent steps of hot rolling for thickness reduction.
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