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Abstract

Lipoprotein transports lipids in circulation and is primary driver/modulator of athero-
sclerosis. Highly dynamics of lipoprotein conformations are crucial to lipid transport 
along the cholesterol transport pathway, where high-density lipoprotein (HDL), low-
density lipoprotein (LDL) and cholesteryl ester transfer protein (CETP) are major players 
in lipid digestion & transport and the plasma cholesterol metabolism. This chapter cov-
ered how do HDL, LDL and CETP induce the metabolisms during cholesterol transport, 
and summarized recent process in the spatial information of the three lipoproteins, espe-
cially the elevations of plasma HDL and LDL, and shine a light on the assembly processes 
of lipoprotein particles and the substrates dynamics exchanges, for an in-depth under-
standing on the correlation between various lipoprotein classes and cardiovascular risk.

Keywords: lipoproteins, structure–function relationship, cholesterol transport, reverse 
cholesterol transport (RCT), lipoprotein particle metabolism

1. Introduction

Cardiovascular disease (CVD), a leading cause of mortality in many developed and develop-

ing countries [1], roots in the evolvement of atherosclerosis which is associated with profound 

disturbances of cholesterol metabolism. To some degree, these metabolism disturbances attri-
bute to the net movement of cholesterol among blood and peripheral tissues. For instance, 

cellular cholesterol uptake is increased in atherosclerosis, while cholesterol efflux is downreg-

ulated [2]. Lipoproteins (consists of apolipoproteins, phospholipid and cholesterol) play an 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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important role in the transport of cholesterol [3]. Based on density and size, lipoproteins can 

be classified as ultra-low- (chylomicrons), very low- (VLDL), intermediate- (IDL), low- (LDL), 
and high- density lipoproteins (HDL) [4]. The last two might be the significant sections of cho-

lesterol transport and metabolism: (1) LDL could transfer lipids into the blood vessel walls, 

and contribute to the atherosclerosis, which causally be associated with CVD and all-cause 

mortality; (2) HDL could remove the lipids and carry them back to the liver, being regarded 

as “good” one [5, 6]. Hence, the lipoprotein-mediated cholesterol metabolism (cholesterol 

transport) has aroused great attention and showed the benefit for the in-depth understanding 
of CVDs, as well as the prevention and treatment of CVDs.

As shown in Figure 1, the lipoprotein-mediated cholesterol metabolism can be divided into 

exogenous and endogenous pathways [7]. Exogenous pathway is one of crucial ways to trans-

port cholesterol to the body tissues (chylomicrons → VLDL → IDL → LDL) [8, 9], under the 

co-action of lipoprotein lipase (LPL) and hepatic lipase (HL) [10, 11]. While the higher plasma 

LDL level might drive the process of atherosclerosis [12]. Endogenous pathway delivers cho-

lesteryl esters back to the liver, working cooperatively in a concurrent manner with ATP-

binding cassette transporter A1 (ABCA1) [13], enzyme lecithin-cholesteryl acyltransferase 

(LCAT) [14], as well as HDL receptors scavenger receptor B1 (SR-BI) [15] or other unidentified 
HDL receptor (HDLR) [16]. It is widely accepted that HDL protein particles alleviate ath-

erosclerosis with better cardiovascular health (reverse cholesterol transport, RCT) [6, 17, 18]. 

Besides, cholesteryl ester transfer protein (CETP) does a heteroexchange of triglycerides and 

cholesteryl esters between VLDL/ LDL and HDL, with the lessen of cholesterol eliminations 

[19, 20]. Therefore, the functions of HDL, LDL and CETP play the important roles during 

the cholesterol transport (lipoprotein particle metabolism), and pharmacological inhibition of 

CETP is being regarded as a way to prevent CVDs [19, 20].

Figure 1. Lipoprotein-mediated cholesterol metabolism in human body.
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To best of our knowledge, there are scant reviews elaborating the structure–function rela-

tionship of lipoproteins albeit the schematic illustrating is oncoming clear. A comprehen-

sive understanding in this regard was endeavored, and then bioavailability that is closely 

related with cholesterol transport was discussed. In this chapter, we will summarize the 
recent achievements towards the structural basis and functional mechanism of lipoproteins 

in cholesterol transport, mainly focusing on functions of HDL, LDL and CETP, conformation 

dynamics of lipoprotein particles, and substrates dynamics exchanges.

2. Structure and function of HDL

HDL, a plasma lipoprotein, plays an important role in cholesterol metabolism [21–23], with 

several potentially anti-atherogenic properties (remove cholesterol from macrophages) [24–26]. 

Knowing the assembly mechanism and spatial information is of great importance to mediate 

cholesterol transport. HDLs exit three main steadier state during the cholesterol transport pro-

cess: lipid-free apoA-I (apoA-I, the major protein component of HDL particles), discoidal and 
spherical HDL, with highly heterogeneous and differences of density, size, shape, as well as 
composition of lipid and protein.

2.1. Lipid-free apoA-I

Structure of full-length lipid-free apoA-I (28-kD, 243 residues) at native states still remains 
unclear due to its high flexibility. The initial X-ray crystal structure revealed that N-terminal 
truncated (Δ(1–43)) lipid-free apoA-I features “horseshoe-shape” antiparallel helical dimers 
[27], being regarded as a vital initial model (“double-belt” model) for comprehending the 

structure of apoA-I on HDL subclasses (Figure 2b) [28]. Subsequent crystal organization of 

lipid-free Δ(1–43)apoA-I accommodated a four-helix bundle [29–31]. However, the structural 

information is out of step with some physical biochemical measurements, hinting the conforma-

tion dynamics of lipid-free apoA-I. The crystal structures of the N- and C-terminally truncated 

Figure 2. Three structures of lipid-free apoA-I: (a) full-length lipid-free apoA-I, [36] (b) N-terminal truncated Δ(1–43) 
apoA-I dimer, [27] and (c) C-terminal truncated Δ[185–243] apoA-I dimer [32].
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proteins presented antiparallel helical dimers, with inherent properties (e.g., 5/5 repeat regis-

ter, Figure 2b and c) in the lipid-bound and intermediate states [27, 32]. Amphipathic α-helix 
enables apoA-I to stabilize all HDL subclasses via the conformation change, and N-terminal 
two thirds constitute a dynamic, four-helix bundle, and the helical segments unfold and refold 

in seconds. While the C-terminal third, an intrinsically disordered domain, mediates initial 

binding to phospholipid surfaces. These structural motifs are important for the remodeling of 

apoA-I during the formation of various HDL particles. Nowadays, there remains some con-

fusions for the structure of full length free apoA-I, especially the dynamic conformations in 
solutions. The dynamic helical structure is unfolding and refolding in seconds, and the helices 

bundle at the N-terminal of apoA-I is far more stable than could be achieved in isolation, with 
mutually stabilizing interactions [33, 34]. The highly dynamic apoA-I molecules are capable of 
adopting an array of conformations through remodeling HDL that is crucial to lipid transport 

during the RCT process. Further studies show that mutations in apoA-I induce varied types 
of dyslipidemias [35].

2.2. Discoidal HDL

Human plasma HDL is high heterogeneous, and exists as a short-lived heterogeneous sub-

strate for LCAT in human plasma. Hence, reconstituted HDL particle (rHDL) is a power-

ful in vivo model system to study its structure and function, with most of the properties 

of native lipoprotein complexes (e.g., LCAT activation, lipid transfer, and receptor binding) 

[37–39]. Based on the crystal structure of Δ(1–43)apoA-I, [27] the original double-belt model 

features two antiparallel monomers, where each helix 5 segments directly oppose each other 

[40, 41], and the closely contact involved hydrophobic face of amphipathic α-helix with the 
fatty acid acyl chains [42]. In refined “looped belt” model, N- and C-terminal 40–50 residues 
doubled back as the “belt and buckle” [43], and residues 134–145 were coincide with a loop-

ing region, resulting in partial opening of the parallel belts. It is consistent with the accession 
between LCAT and the cholesterol and phospholipid acyl chains [44], With the aid of mass 

spectrometry (MS) and rHDL, lipid-free and lipid-bound apoA-I structures were solved at 
104 Å resolution, and resulted in a “solar flares” model, where C-terminal of both apoA-I 
molecules interacted with each other, and 159–178 loop might be the LCAT binding site, with 

reduced deuterium exchange [45, 46], Different from normal discoidal shape, double super-

helix (DSH) apoA-I model [47] has an open helical shape, with the similar interface interac-

tion between two apoA-I molecules (5/5 double-belt). While, the DSH model is not stable, 
and could rapidly collapse to a disc-shaped structure during the molecular dynamics (MD) 

simulations [48].

In according to the rapid growth of transmission electron microscopy (EM) technique, the 
directly imaging particle’s structure can be performed on individual particles, in order to 

preferably investigate lipoprotein structures. Negative stain EM combined with cryo-EM 
tomography have been applied to uncover the discoidal shape of apoA-I/HDL particles (both 
plasma HDL and 7.8, 8.4, 9.6 nm of rHDLs) [49, 50]. In these rHDL particles, the double belt 
was formed in an antiparallel fashion, with a gross “right-to-right” rotation of the helices after 

lipidation. The nonhelical regions in lipid-free apoA-I (residues 45–53, 66–69, 116–146, and 
179–236) change conformation from random coil to α-helix, to adjust a hydrophobic interior 
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[34, 46]. Above descriptions were further confirmed by the structures of reconstituted discoi-
dal HDL particles via nuclear magnetic resonance (NMR), electron paramagnetic resonance 
(EPR) and transmission electron microscopy (TEM) methods [51]. Based on the structures of 

lipid-free and lipid-bound apoA-I, we can speculate that the monomeric apoA-I forms a helix 
bundle in which the C-terminal domain binds the lipid to form a helical structure (Figure 3). 

Discoidal HDL are stabilized by two apoA-I molecules wrapped around the edge of the disc 
in an antiparallel, double-belt arrangement so that the hydrophobic PL acyl chains are pro-

tected from exposure to water [52]. These apoA-I molecules are in a highly dynamic state and 
adapt to discs of different sizes by certain segments forming loops that detach reversibly from 
the particle surface.

2.3. Spherical HDL

Due to the complexity of spherical HDL particles in human plasma, the spherical HDL struc-

tures are rarely known compared with lipid-free apoA-I and discoidal HDL. Recent devel-
opments in native and reconstituted spherical HDL supported a trefoil model, using by the 

elegant chemical cross-linking and mass spectrometry [53]. In this model, half of each apoA-I 
molecule in the double-belt arrangement is bent 60° out of the plane of the particle, suggesting 

the hinging of the Δ(1–43)apoA-I molecule is occur near residues 133 and 233 [53] which is 

different from the hinging of the full-length protein conformation, meanwhile, trefoil model is 
assumed to occur near residues 65 and 185 [54]. Determined by small angle neutron scattering 
method, the helical dimer with a hairpin (HdHp) model was proposed, associated with the 

intramolecular interactions within the hairpined apoA-I [55].

The first LpA-I HDL model at molecular level was proposed, with only apoA-I fractions iso-

lated from human plasma [56]. These isolated human plasma HDL particles range in diam-

eter from 8.8 to 11.2 nm and contain 3–5 apoA-I molecules. It was found that apoA-I adopts 
intermolecular interactions in plasma HDL which is very similar to those of the double-belt 

and trefoil models derived from reconstituted systems. Thus, apoA-I might adopt a common 
structural organization, characterized by distinct intermolecular contacts, regardless of size 

and shape or natural versus synthetic method of production [57]. Furthermore,  circulating 

Figure 3. The monomer open conformation transfer to dimer conformation of apoA-I (intermediate state) and final HDL 
state in solution regulated by the H5 region.
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sHDL contains similar amount of core lipid in reconstituted sHDL and has obviously less 

surface lipid monolayers, indicating that the apoA-I package on native spheres is much 
closer than the typical recombinant particles [46]. When a HDL disc alters to a sphere (LCAT 

converts free cholesterol to cholesteryl ester), global apoA-I conformation does not change 
significantly between particles of different shapes or origins, with similar protein–protein 
contacts.

3. Structure and function of LDL

In normal human body, there are about 70% plasma cholesterol contained in LDLs, and the 
endocytosis of cholesterol-rich LDLs is mediated by LDL Receptor (LDL-R) on the surface of 

body cell. Hence, LDLs work as the vehicle for cholesterol transportation between liver and 

cells to maintain a constant cholesterol supply in human body [58, 59]. In some abnormal 
conditions, LDL might induce over-accumulation of cholesterol to form foam cells, result-

ing in the development of atherosclerosis [60]. The apo-B48 (apoprotein B48) and apo-B100 

(apoprotein B100) located in surface of LDL particles tend to interact with extracellular mate-

rial, which make LDL particles easy to bind with blood vessel intima [61]. The oxidation-

LDL can promote lipoproteins aggregation [62, 63] and provoke inflammation by recruiting 
the circulating monocytes to the site followed invade the vessel wall and differentiate into 
macrophages, to finally produce atherosclerotic plaque [62, 64–66]. Cryo-EM combined with 

single particle technology and small angle scattering model reconstruction technology have 
been effectively applied to analyze the LDL structures, and molecular components [67]. LDLs 

include difference in density (~1.019–1.063), shape, size (diameter ~18–25 nm), surface charge 
and chemical composition [68]. A general consensus is that LDLs particles all have two com-

partments, an amphipathic surface phospholipid monolayer which surrounded by one single 

copy of apoB-100, and a hydrophobic lipid-cholesteryl esters core [69]. The structure and 

physical function of LDLs predominantly depend on the core-lipid composition and the con-

formation of the apoB-100 [70, 71].

3.1. Lipid core of LDL

Lipid core of LDL mainly consists of cholesteryl esters, some triglycerides, and some free-cho-

lesterol. Structural changes of LDL are strikingly related to physiological temperature [72]. 

Lipids located in core show order arranged to a liquid-crystalline phase below the critical 

temperature, indicated by the results of X-ray and neutron small angle scattering technol-
ogy, with the transition temperature of 15~35°C [73, 74]. Besides, the overall structure of LDL 

is a classical spherical particle when core structure is composed of radial cholesteryl esters 

arranged into a concentric spherical shell [75, 76]. However, the core-located lipids present 

in the liquid-crystalline state within an ellipsoidal shape particle revealed by the cryo-EM 

data [76, 77]. It seems reasonable to speculate that the change of temperature might indirectly 
change the shape of LDL particles from roughly spherical to ellipsoid [67]. Many efforts have 
been made to explore the structure of LDL at different temperatures, such as 4, 6 [77–79] and 

37°C [80].
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3.2. apoB-100 in LDL

ApoB-100 (4536 residues, ~20% of overall LDL) is the only protein component of LDL, and 
wrapped around the phospholipid monolayer on the surface of LDL particle, with an irregu-
lar ring shape. N- and C-terminus of apoB-100 touch each other, with the formation of a 
protruding globular structure at N-terminal [81]. A more generally accepted structural model 
of apoB-100 is “pentapartite” structure, which generated by molecular simulations. In this 
model, apoB-100 has five consecutive functional domains, NH2-βα1-β1-α2-β2-α3-COOH [79]. 
As shown in Figure 4, a new LDL reconstruction in which lipid core is revealed an organized 
three-layer structure by using the single particle approach, including a pair of “paddles” con-
figurations with several long “fingers” extensions which have similar length and interval [82].

4. Structure and function of CETP

CETP acts as a medium between lipoproteins for elevating plasma LDL-C (or VLDL-C) level 
and lowering HDL-C level [19]. A series of CETP inhibitors have been investigated in clini-
cal, such as torcetrapib, dalcetrapib, evacetrapib, and anacetrapib [83–85]. However, current 
inhibitors represent the turbulent beginning of CETP inhibition and an increased mortality 
rate related to off-target effects and lack of efficacy [86–88]. Accompanying adverse effects call 
for a deeper exploration of the mechanism for CETP-mediated lipid transfer.

CETP is a hydrophobic transfer protein composed of 476 amino acids and reveals a so-called 
banana-shape (the size is 135 × 30 × 35 Å, see Figure 5) [20]. Its crystal structure includes two 
different β-barrel structures in N- and C- terminal respectively, and a central β-sheet with an 
~60 Å-long hydrophobic central cavity, which can hold two phospholipids and two choles-
terol molecules. Moreover, the two phospholipid molecules that located in two pores near the 
central domain expose the hydrophilic terminal to the aqueous environment and hydropho-
bic terminal to the hydrophobic cavity. Because of its special function to transfer cholesterol 

Figure 4. Overall structure and core structure of LDL above (a) or below (b) the critical temperature.
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esters between HDL and LDL (or VLDL), the way of CETP interacts with lipoproteins is 

extremely essential. CETP shows a high binding affinity for nascent HDL and other lipopro-

teins to cover the lipoproteins surfaces owing to its proper curvature radius. They proposed 

a lipid transport mechanism, shuttle model. In this mechanism, the CETP in turn covers the 
surface of LDL (or VLDL) and HDL to swap LDL-cholesterol esters (or VLDL-cholesterol 

esters) with HDL-triglycerides. These steps are constantly recycled until the completion of 

the transport process, in which cholesterol esters move from LDL (or VLDL) to HDL [20]. 

This model based on the hydrophobic cavity of CETP and its feasibility of binding to lipopro-

teins, explains the mechanism of CETP-mediate lipid transfer reasonably, but there are not 

complex of CETP binding to lipoproteins in the cryo-EM micrographs intuitively to verify the 

authenticity of the model.

Zhang et al. [89] studied human recombinant CETP with cryo-EM by using an optimized 

negative-staining (OpNS) EM protocol [49, 90]. Applied the single-particle techniques, they 

obtained the 3D structure of CETP and the complexes of CETP binging to lipoproteins. In 
the 3D-map of complexes, they discovered the HDL-CETP binding structure which appears 

to be formed by N-terminal of CETP insert into HDL and the HDL-LDL (or HDL-VLDL) is 
formed by C-terminal of CETP insert into HDL (or LDL) (Figure 5c~f). This conclusion was 
later confirmed by Geraldine et al. by using large-scale atomistic molecular dynamics [91]. 

The measurement of the protrusion from the lipoproteins surface shows that ~48 Å of the 
tapered N-terminal end of CETP penetrates the HDL surface and ~25 Å of the C-terminal 
end of CETP penetrates the LDL surface (~20 Å of the C-terminal end of CETP penetrates the 
VLDL surface) reaching the lipid–rich, lipoproteins core. Furthermore, Zhang et al. proposed 

the tunnel model of lipid transfer mediated by CETP [89, 92, 93]. In this model, both CETP 
terminals finish penetrating surface sites on lipoproteins, N-terminal to HDL and C-terminal 
to LDL (or VLDL). Then neutral lipids, including cholesterol esters and triglycerides, transfer 

through the hydrophobic tunnel at the core of the CETP (Figure 5).

However, there are some discrepancies with the tunnel model mentioned above. Matthias 
et al. used the experiments which involve three monoclonal antibodies to demonstrate that 

the antibodies binding on both ends of CETP do not inhibit CETP’s function of transshipment 

cholesterol esters, but the antibodies on the middle does [94]. In their research they supposed 
that the formation of the ternary tunnel complexes is not a mechanistic prerequisite by CETP 

Figure 5. The crystal structure of CETP (PDB: 2OBD) and three-dimensional density maps of CETP binging lipoproteins. 
(a) Atom figure of CETP. (b) Secondary structure of CETP. (c) Ternary complexes of HDL-CETP-LDL in cryo-EM 
micrographs. (d)~(f) the CETP insert into HDL, VLDL, LDL respectively in cryo-EM micrographs. (g) (color online) the 
tunnel model of CETP-mediated lipid transfer [89].
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to perform its functions. Hence, the real mechanism of CETP-mediated lipid transfer still 

remains to be studied and verified.

5. Conclusion

In this chapter, we briefly summarized the functional mechanism and structural basis of 
lipoproteins (e.g., HDL, LDL and CETP) in cholesterol transport, as well as their structural 

dynamics during the transport process. Furthermore, the latest developments in the plasma 

lipoprotein (HDL and LDL) elevations were summarized, especially the conformational 

changes of lipoprotein particles. Due to the incapability of the current assays and highly 

heterogeneous of lipoprotein particles, the function of lipoprotein in cholesterol transport 

remains elusive with regard to many important questions, such as how the lipoprotein par-

ticle assembles and how the assembly modulates the neutral lipids dynamic exchanges at 

the molecular level. Cryo-EM coupled with MD simulations have revealed several impor-

tant mechanisms of CETP-mediated lipid exchange and metabolism with all-atom detail [89, 

95]. Further researches could pay more attention to simultaneously monitor the dynamic 
structural change of lipoproteins and the dynamic mechanism of lipid transfer, especially 

the internal motivation of physical mechanism during the process of lipid transport.
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