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Abstract

Small-angle scattering (SAS) experiments applied to nano-scaled systems allow the inves-
tigation of the constituents’ overall shape, size, internal structure and arrangement. A
standard scattering experiment requires a relatively simple setup and is often applied to
investigate a system of particles. In these cases, the measured scattering intensity repre-
sents an average over a large number of particles illuminated by the incoming beam. The
calculation and modeling of the scattering intensity can be performed by the use of
analytical/semi-analytical expressions or by the use of numerical methods. In this book
chapter, an overview of current available simulation/modeling methods for SAS will be
shown either for systems composed of oriented or for randomly oriented particles. Exam-
ples demonstrating the use of the finite element method are presented as well as a newly
developed method for calculating scattering intensity for oriented particles.

Keywords: small-angle scattering, nanoparticles, finite element method, oriented
particles, simulation, numerical methods

1. Introduction

The investigation of internal structure of system at nanoscale permits the comprehension and

correlation of its microstructure to its macro properties. Theoretical and experimental methods

are widely used to predict and characterize the properties of these systems [1]. Density

functional theory (DFT), molecular dynamics (MD) simulations, and Monte Carlo (MC) simu-

lations are just few examples of theoretical methods used for these investigations [2, 3].

However, all these theoretical methods have always to be checked and confirmed by the use

of experimental results, in a large number of available experimental methods. Imaging tech-

niques, when applicable, are very useful since they can provide a direct indication of the shape

and size of the investigated system. Electron microscopy (EM) methods like transmission

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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electron microscopy (TEM) and scanning electron microscopy (SEM) give important informa-

tion on the structures in high resolution [4–6]. However, these methods demand the use of

special experimental conditions like measurements in vacuum and the use of coating agents.

Therefore, the obtained results can be affected by the experimental technique itself [7]. Scatter-

ing/diffraction methods, on the other hand, can be used for systems directly in solution or in

the amorphous matrix, with minimum interaction of the radiation with the matter [7, 8]. These

methods, namely, small-angle scattering (SAS) either with neutrons (SANS) or X-rays (SAXS),

static light scattering (SAS), etc., can provide useful information about the structure of the

investigated system. However, scattering methods give information in the Fourier space

(reciprocal space/scattering space) which can difficult its interpretation and modeling [8–10].

In this book chapter, a review about the calculation of scattering patterns from system composed

of particles will be presented. First, an overall discussion about the basic scattering theory and the

inverse scattering problem is shown. Later, several analysis and modelingmethods are described

and discussed. Finally, state-of-the-art methods with advanced applications are shown, demon-

strating the use of possibility of simulating scattering patterns for oriented particles.

2. Overall aspects of small-angle scattering

There are several approaches for describing the interaction of electromagnetic radiation with

matter. In this chapter, the scattering of an incident beam of radiation by a scattering potential

will be assumed [7, 11–14]. A schematic view of the scattering process is shown in Figure 1.

The potential is assumed to be weak (first Born approximation), and therefore the scattering is

considered to be elastic; it is also assumed that the radiation does not destroy the internal

structures. The target is considered to be sufficiently thin in order to disregard multiple

scattering events. In this description a plane monochromatic wave (far-field approximation) is

scattered by a finite potential field V r
!
� �

, and the wave function that expresses this phenom-

enon is a superposition of the transmitted plane wave eikz and scattered wave [7, 12–14].

ψ r
!

� �

� eikz þAk
eikz

r
(1)

If the scattering potential is weak, the function V r
!

� �

is equal to the scattering length distribu-

tion function r r
!

� �

, which is directly related to the particle shape. This information is con-

tained in the scattering amplitude Ak, as shown below [7, 12–14]:

Ak q
!

� �

¼ f q
!

� �

A0 q
!

� �

(2)

where q
!
¼ ks

!

�ki
!

is the momentum transfer vector, with modulus q ¼ 4π
λ sinθ (λ is the radiation

wavelength and 2θ the scattering angle), A0 is an amplitude scattered by one electron
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(or atom), and the particle form factor f q
!

� �

is the Fourier transformation of the function r r
!

� �

[7, 12–14],

f q
!

� �

¼

ð

V

r r
!0

� �

e�i q
!

r
!
0

d r
!0 (3)

For the cases of particles immersed in a solvent or in a matrix, the important quantity is the

scattering length contrast between the particles and the medium. The scattering length density

of the matrix is assumed to be constant, and therefore the scattering length contrast is given by

Δr r
!

� �

¼ r r
!

� �

� rSolvent. Therefore, the scattering form factor is rewritten as [7, 12–14].

f q
!

� �

¼

ð

V

Δr r
!

� �

e�i q
!

r
!

d r
!

(4)

The scattering intensity I q
!

� �

by an object is the product by scattering amplitude and its

respective complex conjugate,

Figure 1. (A) Representation of the small-angle scattering of radiation by a potential. (B) Representation of scattering

vector, angle of scattering, and pattern diffraction. Figure adapted from [15], reproduced with permission of the Interna-

tional Union of Crystallography.
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I q
!

� �

¼ A q
!

� �

� A q
!

� ��
¼ A q

!
� �� �2

¼

ð

V

ð

V

r r
!

� �

r r
!0

� �

e�i q
!

r
!
� r

!0
� �

d r
!
d r
!0 (5)

Or, by using the self-correlation function [7, 12–14],

γ r
!

� �

¼

ð

V

r r
!

� �

r r
!0� r

!
� �

d r
!0 (6)

the scattering intensity can be rewritten,

I q
!

� �

¼

ð

V

γ r
!

� �

e�i q
!
r
!

d r
!

(7)

If there is no preferential orientation in the system, it is necessary to perform averages over the

particle orientation. In Eq. (7) this average gives rise to the calculation of the average correla-

tion function γ rð Þ or the pair distances distribution function p rð Þ ¼ r2γ rð Þ, which is widely used

in SAS analysis [7, 12–14].

An interesting approach is to consider that the particle, or system, is composed by n scatters

with scattering length contrast Δrj r
!

� �

. Each scatter will contribute with the scattering ampli-

tude f j q
!

� �

(Eq. (4)), and the resulting scattering amplitude is the composition of the scattering

amplitudes and its phase factors,

A q
!

� �

¼
Xn

l
f j q

!
� �

ei q
!
r
!

(8)

Therefore, the total scattering intensity from the group of n scatters at relative positions

rj
!
� r

!
l

� �

is given by [7, 12–14].

I q
!

� �

¼
X

n

j

X

n

l

f j q
!

� �

f l q
!

� �

e�i q
!

rj
!
�rl

!
Þð (9)

It is interesting to mention that Eq. (9) can represent a single particle composed by n subunits

or a system composed of particles dispersed in a matrix. Both situations are described by this

equation, and several simulation methods are based on it.

By assuming no preferential orientation, from Eq. (9), one obtains the resulting average scat-

tering intensity,

I q
!

� �D E

¼
X

n

j¼1

f j q
!

� �� �2
� �

þ 2
X

n

j 6¼l¼1

X

n

f j q
!

� �

f l q
!

� �

e�i q
!

rj
!
� r

!
lð Þ

* +

(10)

For a system composed of particles at very low concentration, the interference term (second

part of Eq. (10)) goes to zero, and the resulting average scattering intensity is [7, 12–14].

Small Angle Scattering and Diffraction6



I q
!

� �D E

¼
X

n

j¼1

f j q
!

� �� �2
� �

¼ n f q
!

� �� �2
� �

¼ n f 0ð Þð Þ2
D E

P qð Þ ¼ nI1 qð Þ (11)

where P qð Þ ¼ f q
!

� �� �2
�

f 0ð Þð Þ2 is the so-called averaged normalized form factor of the particle.

Eq. (11) is very important because it demonstrates that the scattering intensity from a system of

particles at very low concentration is proportional to the scattering of a single particle.

If the system is concentrated, the second term in Eq. (10) cannot be neglected. Depending on

the system characteristics, several approximations can be performed. It is beyond this chapter

to consider all possible approaches for the calculation of this interference term on concentrated

systems; good reviews can be found in the literature [14, 16–22]. A usual approach is to

decouple the particle shape and interparticle interactions. In this way, the particle form factor

P q
!

� �

and system structure factor S q
!

� �

are introduced:

I q
!

� �

¼ nI0P q
!

� �

S q
!

� �

(12)

In a typical scattering experiment, after interacting with the sample, the scattered radiation is

detected, generally, in a two-dimensional detector. In this case, the obtained image is,

depending on sample, isotropic or anisotropic, and these patterns are related to the particle

shape and size and possible interparticle interactions. The collected scattering intensity is a

direct representation of the data in reciprocal space. Therefore, the analysis of SAXS experi-

ment consists in the interpretation of this data in order to retrieve structural information in real

space. Even though the real space is three-dimensional, the collected scattering data are two-

dimensional (projection on a specific plane) or one-dimensional (particles randomly oriented

or a specific q
!

direction). Several modeling methods will be discussed for the calculation of

scattering intensities from oriented and randomly oriented particles dispersed in a homoge-

neous matrix. Examples of these methods are the use of analytical and semi-analytical expres-

sions, cube and sphere method, spherical harmonics, optimized Debye formula to systems

oriented and randomly oriented, and fast Fourier transformation [12, 14, 23, 24].

3. Modeling methods for SAS data

After the scattering data is collected, it is necessary to perform several procedures to have the

scattering intensity ready to be analyzed. The data treatment of the scattering data includes

normalization of the intensity, background subtraction, and normalization to absolute scale

among several steps, which depends on the specific characteristics of the experimental setup.

The overall data treatment process and necessary procedure for proper reduction of the

scattering data are described in many articles and books in the literature and will not be

presented here [7, 12, 14, 15, 23–29]. In this chapter we will focus on methods for calculation

of the SAS intensity, either for oriented or randomly oriented particles.

Calculation of Small-Angle Scattering Patterns
http://dx.doi.org/10.5772/intechopen.74345

7



The calculated intensity can be compared with experimental scattering data, and the model

parameters can be optimized in order to improve the agreement between the theoretical and

experimental data. The χ2 (chi-square) test is widely used for scattering experiments because the

basic assumption of this test, Gaussian distribution of uncertainties around a certain value, is

fulfilled in SAS data. In this test the sum of squares of the differences between experimental and

theoretical intensities is divided by the variance on each point, as shown below [7, 17, 30]:

χ
2 ¼

X

N

i¼1

I exp qi
� �

� Isimu qi
� �	 
2

σ2 qi
� � (19)

If the χ2 (chi-square) test is normalized by the difference between the number of experimental

data points and the number of independent parameters, a good fitting is obtained when the

normalized χ
2 approaches 1. This means that the differences between experimental and theo-

retical data are of the order of standard deviations.

3.1. Analytical and semi-analytical methods

For the cases where the particle has a simple shape, it is possible to have analytical or semi-

analytical expressions for the scattering intensity. There are a large number of examples in the

literature [30], and some examples are shown in Table 1.

Form factor amplitude

Sphere

fs q;Rð Þ ¼
3 sin qRð Þ�qRcos qRð Þ½ �

qRð Þ3

(13)

R is the radius of the sphere.

Spherical shell

fss q;Rð Þ ¼ V Routð Þfs q;Routð Þ�V Rinð Þfs q;Rinð Þ
V Routð Þ�V Rinð Þ

(14)

Rin and Rout are the inner and outer radius of the shell and V is spherical volume.

Tri-axial ellipsoid

fer q;Rð Þ ¼ fs q;R R1,R2,R3ð Þð Þ

(15)

R R1,R2,R3ð Þ ¼ R2
1 sin

2βþ R2
2 cos

2β
� �

sin 2 þ R2
3 cos

2α
	 


(16)

R1, R2 and R3 are the semi-axes of the ellipsoid.

Cylinder

fc q;Rð Þ ¼
2J1 qRsinαð Þ

qRsinα

sin qLcosαð Þ=2½ �
qLcosαð Þ=2

(17)

R is the radius, L is the length of the cylinder and J1(x) is the first-order Bessel function

of the first kind.

Rectangular prism

fp q;Rð Þ ¼
sin qasinα cosβð Þ

qasinα cosβ

sin qbsinα sinβð Þ
qb sinα sinβ

sin qccosαð Þ
qccosα

(18)

a, b and c are the edge lengths.

Table 1. Analytical and semi-analytical expressions for simple shapes.

Small Angle Scattering and Diffraction8



The use of the analytical and semi-analytical equations has the advantage of calculating the
scattering intensities with a good precision, low computational cost, and very low number of
model parameters. If the particles are randomly oriented, it is necessary to perform angular
averages on the equations shown in Table 1. Also, if the system is diluted but has polydisper-
sity in size, it is possible to calculate the resulting average scattering intensity by the use of
appropriate equations, which are described in the literature [30].

The calculation of the scattering intensity is reasonably fast and can be performed with high
precision. However, analytical or semi-analytical expressions are only available for simple
shapes [13, 14, 16, 30]. There are several programs available in the literature with a large
database of equations for modeling scattering data as the SASfit program [31], among many
others. In the webpage smallangle.org, there is an updated list of available programs.

3.2. Cube method

Fedorov et al. [32–34] and Ninio et al. [35] proposed the so-called cube method, where the
models of macromolecules in solution are surrounded by the solvent (or by the matrix where
the particles are immersed), and the cube method permits a correct calculation of the volume
inaccessible to the solvent. The theoretical intensity is given by

I q
!

� �

¼ f q
!

� �

� ϕ q
!

� �� �2
(20)

where f q
!

� �

is the scattering amplitude of the macromolecule in vacuum and ϕ q
!

� �

has the

same volume of the molecule but with homogeneous electron density r0 [32, 33]. The calcula-
tion of the scattering amplitude of a protein macromolecule with known atomic coordinates
can be done with the equation,

f q
!

� �

¼
X

k

f k qð Þei q
!
rk
!

(21)

where f k qð Þ is the scattering factor of the kth atom and rk
! is its coordinate. The determination of

ϕk q
!

� �

, the scattering amplitude of the homogeneous substance filling themacromolecule and its

excluded volume, is not trivial, and several authors proposed solutions for it [21, 32, 33, 35, 36].

The idea is to put the macromolecule coordinates in a cubic grid composed of small cubes with

edges of 0.5–1.5 Å. The calculated intensity depends on a specific q
! direction. In order to

perform random orientation over direction Z, one can take N directions, in reciprocal space,
on an sphere of radius q, so the average scattering intensity is given by [32, 33]

I qð Þ ¼
1
N

X

N

j¼1

I q
!

� �

(22)

Virtanen and collaborators presented in 2011 an adaptation of the cube method [37, 38], using
a procedure, known as HyPred. Basically, these authors were inspired in cube method, to

Calculation of Small-Angle Scattering Patterns
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simulate scattering intensities, and also in molecular dynamics (MD) simulations, to find the
hydration layer of a protein. In this procedure, with atomic resolution precision, the
nonuniform solvent density around a protein is calculated [38]. With this information one can
calculate both small- and wide-angle X-ray scattering (SAXS/WAXS) intensities. In 2014,
Nguyen and collaborators presented another adaptation of the cube method [39], using RISM
(reference interaction site model) theory. In this application the cube method is used to calcu-
late the contribution from the solvent at amplitude scattering, and in 2016 Nguyen and
collaborators [40] proposed a procedure to extract information about water and ion distribu-
tions from analysis of SAXS experiments. This method allows to compute the solvent distribu-
tion around the solute allowing to calculate scattering intensities at small- and wide-angle
X-ray (SAXS/WAXS) and with less computational time than MD [39, 40]. One example [39] of
these applications, using RISM-SAXS andHyPred, is shown in Figure 2 for lysozyme and shows
a good agreement with experimental data to both applications. The results from other applica-
tions were also shown just for comparison. There is a good agreement between the experimental
data and the simulation performed by HyPred and RISM. CRYSOL obtained a good fit with the
experiment up to 1.5 Å�1. The program CRYSOL [41] has been used as standard program for
such calculations and uses the multipole expansion to calculate scattering intensities; this
approach will be discussed at Section 3.4. The web server FoXS is based on the Debye formula,
and this formula will be discussed in the next section. The web server program AXES calculates
the scattering amplitudes of the surface of solvent using a sum of the six elementary scattering
functions averaged [42]. The web server AquaSAXS [43] computes SAXS/WAXS profile of a
given structure, and PDB or PQR file is necessary to perform the calculation.

The HyPred method is very useful for the determination of excluded volumes and contrasts.
However, it requires the numeric calculation of the intensities, and if the cubic grid is very
small, the computational time for the calculation of intensity is very long. Approaches using
spherical harmonics proved to be more efficient and precise for the calculation of scattering
intensities for usual investigations of macromolecules in solution [36, 41].

Figure 2. Comparison between other methods for calculation SAXS of lysozyme: CRYSOL, FoXS, AXES, AquaSAXS, and
HyPred. Figure reprinted (adapted) from [39], with the permission of AIP publishing.

Small Angle Scattering and Diffraction10



3.3. Sphere method and Debye formula

Considering a system composed of n identical scatters, randomly oriented, it is possible to

rewrite Eq. (10) as

I q
!

� �D E

I0
¼ f q

!
� �� �2

� �

X

n

j¼1

X

n

l¼1

e�i q
!

rj
!
� r

!
lð Þ

* +

0

@

1

A ¼ f q
!

� �� �2
� �

nþ 2
X

n

j 6¼l¼1

X

n

e�i q
!

rj
!
� r

!
lð Þ

0

@

1

A

(23)

and calculating the average over all possible orientations,

e�i q
!

rj
!
� r

!
lð Þ

D E

Ω

¼
sin q r

!
jl

� �� �

q r
!

jl

� � (24)

it is possible to obtain the Debye equation [12, 44],

I q
!

� �

I0
¼ f q

!
� �� �2

nþ 2
X

n

j 6¼l¼1

X

n sin qrjl

� �

qrjl

0

@

1

A (25)

where f q
!

� �

is the scattering amplitude of a sphere (Eq. (13)).

The Debye equation is very useful because it is possible to compose the volume of the particle

by a sum of small spherical volumes. This modeling method, also known as finite element (FE)

method, allows the description of the particle shape by the use of small subunits.

The main advantage of this method is that one can easily model very complex objects. How-

ever, it has the disadvantage that the calculation is proportional to n2, where n is the number of

the small objects used in the model. The subunit size defines the precision of the method: the

maximum q value that can be calculated without the influence of the subunits’ form factor is

limited to q ≤π=rs (rs is radius of spherical subunits) [14]. Therefore the precision of the method

increases with the number of subunits used to represent the particle.

Oliveira and collaborators [45, 46] used this kind of procedure to show the first analysis of

nanocage structures using scattering radiation techniques. The authors were interested in

discovering the influence in the stability and yield to build experimental DNA octahedron

nanocages in solutions, using double and single DNA strands [45]. Then, to perform the

modeling and compare with experimental data, the double DNA helix models are positioned

in the edge, in octahedron geometry, that was truncated by single DNA strands that perform

linkers between the helices. Altogether, there are 12 double-stranded B-DNA helices with 18

base pairs each (positioned in the edges) and 24 single-stranded (making truncation proce-

dure). The stability and yield of nanocages were tested varying the length of single strands,

with three, four, five, six, or seven nucleotides (to build the linker).

Calculation of Small-Angle Scattering Patterns
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The SAXS models are built using bead atoms, representing DNA in the edge and in linkers of

the cages. These DNA models are rigid, and each bead atom is spherical, representing a

nucleotide positioned in atom of C2* (PDB format [47]). The scattering intensities were simu-

lated using Debye equation, Eq. (25). The results are shown in Figure 3, where the simulated

theoretical intensity was adjusted to each experimental SAXS data, for the five kinds of

nanocage. From this analysis it was possible to obtain the relations between the cage size and

the linker size and also the presence of high-order agglomerates (dimers and trimers of cages).

Even with the increase of performance of the new computer processors, the use of the Debye

equation is limited to few dozens of subunits, since it involves a double sum. In the next

sections, some procedures to speed up the calculation decreasing the computational costs will

be shown.

3.4. Spherical harmonics and multipole expansion

In the late 1960s, Harrison [48] and later Stuhrmann and Svergun [36, 49] proposed an

alternative procedure to compute scattering intensities for particles. The main idea is to

express the scattering length distribution function distribution r r
!

� �

as a series of spherical

harmonics [14], which describes an angular envelope function F ωð Þ,

r r
!

� �

¼
1, 0 ≤ r ≤F ωð Þ

0, r ≤F ωð Þ

�

(26)

Figure 3. Fitting of the experimental data with the truncated octahedron model. Left: Fits of the experimental data for the

samples with different thymidine linker lengths using the geometrical model. The data sets were shifted for clarity. Right:

Resulting three-dimensional structures obtained from the modeling of the experimental data. Figure reprinted (adapted)

with permission from [45]. Copyright (2018) American Chemical Society.

Small Angle Scattering and Diffraction12



The envelope function F ωð Þ is parameterized using multipole expansion

F ωð Þ ¼ FL ωð Þ ¼
X

L

r¼0

X

l

m¼�l

f lmYlm ωð Þ (27)

where Ylm ωð Þ ¼ Y θ;ωð Þ are spherical harmonics and the multipole [14] coefficients f lm are

complex numbers,

f lm ¼

ð

ω

F ωð ÞY∗

lm ωð Þdω: (28)

The scattering amplitude A q
!

� �

is given by,

A q
!

� �

¼
X

L

r¼0

X

l

m¼�l

Alm qð ÞYlm ωð Þ: (29)

The spatial resolution of the shape representation (Eq. (27)) is defined by the truncation value

L. Thus the particle shape is parameterized by Lþ 1ð Þ2 members. Also, the accuracy of its

representation increases with L [14, 36, 50].

The shape scattering intensity is expressed as

I qð Þ ¼ 2π2
X

L

r¼0

X

l

m¼�l

Alm qð Þj j2 (30)

where the partial amplitudes Alm are represented by the power series,

Alm qð Þ ¼ iqð Þl
2

π

� 1
2 X
pmax

p¼0

�1ð Þpf
lþ2pþ3ð Þ
lm 2pp! lþ 2pþ 3ð Þ 2 lþ pð Þ þ 1½ �‼f g�1q2p

h i

(31)

The use of spherical harmonics permits the description of low-resolution shapes with a relatively

low number of parameters, and it was the first approach capable to obtain the particle shape

directly from the scattering intensity, without any a priori information. This is the first of the so-

called ab initio modeling methods for SAS data analysis. This method was implemented in a

program, namely, by SASHA [50], and provides the angular envelope function that gives the best

fit of the scattering data. This application is a good option in determination of low-resolution

structure without internal cavities and without sharp edges or corners, limited to smooth shapes.

One example of application is shown in Figure 4. In this work, Arndt and collaborators inves-

tigated extracellular proteins [51]. By using SAXS investigations, in particular the spherical

harmonics approach (program SASHA), it was possible to obtain low-resolution models for

the protein Biomphalaria glabrata in pH 7 and pH 5.

The description of particle shape using the envelope function F ωð Þ was a major step for the

calculation of the scattering from macromolecules in solution [41]. Given the atomic coordi-

nates for the macromolecule, it is possible to calculate the scattering intensity and excluded

Calculation of Small-Angle Scattering Patterns
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volume for the macromolecule. This was implemented in the program CRYSOL and readily
demonstrates the presence of a hydration shell around macromolecules in solution. The use of
spherical harmonics permits a very fast calculation of the scattering intensity and opened new
research lines and opportunities for the use of SAS data.

In the late 1990s, Svergun’s group proposed a set of tools combining the use of spherical
harmonics to calculate scattering amplitudes and variation of the Debye equation. In the
program called DAMMIN [52], a search space filled with spherical beads is created, and by
the use of a heuristic optimization based on Monte Carlo approach (simulated annealing, SA
[53]), a subset of this set of spheres is selected in order to provide the best fitting of the
scattering data. The expression used for the calculation of the scattering intensity is [52]

Figure 4. External envelope of the hemoglobin from B. glabrata calculated using the multipolar expansion method.
(A) Fitting of the low-angle part of the scattering curve (qmax� 0.07 Å�1) by the multipolar expansion method for the
hemoglobin at pH 5. (B) Solid surface views of the hemoglobin at pH 5. Figure adapted and reproduced from [51], with
permission of the John Wiley & Sons, Inc.
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The use of spherical harmonics speeds up the calculation process, which is the main drawback

of the original Debye equation (Eq. (25)).

Other ab initio methods using the dummy atom approach were proposed by many other

authors but using optimized implementations of the Debye equation (see the next section).

Chacon [54, 55] proposed ab initio methods using genetic algorithm procedures for the model

optimization. A modified procedure was proposed by Doniach and collaborators [56] chang-

ing the genetic algorithm by the so-called “Give‘n’Take” algorithm. Due to its functionality

and special features (inclusion of symmetry constraints, multiple curve fitting, etc.), the pro-

gram DAMMIN is the most used and cited in the literature.

Further implementations performed for the use of ab initio methods applied to the study of

macromolecules in solution took advantage of the known atomic resolution information for

proteins, available in the protein data bank (https://www.wwpdb.org/) [47], and composes the

ATSAS program suite [17, 41, 57–69]. Several good reviews can be found in the literature for

this subject [14, 17, 36, 50, 60, 65, 67–69].

3.5. Optimized Debye equation

The Debye equation assumes that the subunits are identical and the arrangement of the sub-

units defines the particle shape. As mentioned before, the double sum involved in the calcula-

tion limits the number of subunits since the computational time increases with O(n2). In order

to decrease the computational time, Glatter proposed the use of histograms of distances

inside the particle [70]. With this procedure the double sum, Eq. (25), is converted in a single

sum [70, 71],

I q
!

� �D E

I0
¼ f qð Þj j2 nþ 2

X

nbins

k¼1

h rkð Þ
sin qrkð Þ

qrk

" #

(33)

by the use of the histogram of distance between the subunits h(rk) that compose the model. In

this new equation, optimized Debye equation, the construction of the histogram still involves a

double sum, but it is performed only once. All the further calculations are done in a single sum,

over the histogram bins. If the subunits in the model are randomly distributed, the intensity

calculation can be again optimized, dividing the histogram into blocks. So, the computational

time cost decreases to O[n/numblocks], where numblocks is the number of blocks [8, 72, 73].

In Figure 5A the comparison between analytical equations, Table 1, and the same models built

with the FE method and the intensities calculated with the optimized Debye equation is

illustrated. The very good agreement between the theoretical analytical intensities and the

calculated intensities with the optimized Debye equation demonstrates the precision of the

method for its use in calculating complex shapes.
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In Figure 5B two models were built using FE method. The red (internal) model is a DNA cage.

The DNA molecule was modeled using coarse-grained approach, so each nucleotide corre-

sponds to one spherical subunit place in positions of C2*. The blue model is an icosahedral

shell-like structure. The composed model is an icosahedral shell-like with a DNA cage in its

interior. The calculation of the scattering intensity was performed using the optimized Debye

equation in a slightly different implementation in order to include different contrasts and dem-

onstrate the potential use of this approach. In the figure of the original article is possible see that

the histogram approach also permits an easy computation of affine polydispersities [8, 73].

3.6. Fast Fourier transformation

Schmidt-Rohr [74] proposed the use of a direct method, based on the use of Fourier trans-

form (FT) of a three-dimensional model, to calculate the intensity scattering. Basically, the

Figure 5. Computation of test examples for simple and composition models. (A) (left) Models assumed. (right) The

calculation for solid spheres, spherical shells, and spherical core-shell structures, compared with theoretical expressions.

(B) Composition of a shell-like structure with a DNA cage in its interior. (left) Models assumed. (right) Calculated

scattering intensities. The assumed sizes and relative electron densities for each object are given on the figure. Figure

adapted from [8], reproduced with permission of the International Union of Crystallography.
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three-dimensional model is defined, a priori, on a cubic discrete lattice of dimension Na, with

N3 points spaced by a value a and with a scattering density rlatt x
!

� �

. So, using the 3D discrete

(fast) FT (FFT), it is possible to find the scattering amplitude [74],

A q
!

� �

¼ DFT rlatt x
!

� �h i
�

�

�

�

�

� (34)

To obtain the intensity for a subunit, one can use the equation below,
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where m is the number of the dimensions. The orientation averaging is performed in the final

stage, where the sum of the intensity correspondents to each small (discrete) subunit of the

lattice is realized (using a procedure developed by author called “channel sharing”) followed

by a normalization procedure by q2. This procedure has a low computational cost of O(N.lnN),

and, according to this author, the FFT could be applied to obtain two-dimensional diffraction

patterns [74, 75].

For a system of identical particles, the total intensity is represented by the convolution of the

spatial points of the particles’ center of mass
P

n δ x
!

�xn
!

� �

together with the density distribu-

tion of one particle r x
!

� �

[74],
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Schmidt-Rohr and Chen [74, 76] showed an application of this method to quantitatively

simulate small-angle scattering data of hydrated Nafion and were capable to explain the

“ionomer peak” visualized in SAXS patterns has been related to the randomly packed water

channels internal to cylindrical inverted micelles. These results demonstrated the good trans-

port properties of hydrated Nafion and have given details about its internal structure like

diameters of water channels, cluster sizes, the shape of channels, and crystallinity levels [76].

An advantage of this method is the order of computational cost, O(NlogN), but on the other

hand, it does not present the good results when used to systems where the SAS features are of

the order of size of systems. For this kind of systems, Monte Carlo distribution function

method (MC-DFM) gives better results [75] (the MC-DFM uses optimized Debye equation,

Eq. (33), to simulate scattering intensities). Olds and collaborators [75] compared the efficiency

of these two methods and suggest that the use of FFT method is more efficient for dense

systems and complex dense-packed particle systems such as high-density polydisperse hard-

sphere models. In this last case, systems of dense arrays of monodisperse spheres, the FFT

method can be at least three times more efficient. However, for systems of low density such as
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extended polymers and dilute systems, FFT is inefficient and is also less useful for systems

where it is possible to use the diffuse character of the model and use the atomic coordinates.

So, to large model particle systems, dilute particle arrays, polymers, and proteins, the MC-

DFM can be a more efficient procedure [75].

3.7. Optimized Debye equation for oriented particles

The FE method can also be used to calculate the scattering intensities for oriented systems or

particles. The calculation can be performed by the use of Eq. (9), but the practical application of

this formula is limited since it involves a double sum and vectorial arguments, which makes

the computational costs very high. Since the particles are oriented, the scattering intensity is

anisotropic and therefore is necessary to compute the two-dimensional scattering pattern. A

possible approach was proposed in the seminal Guinier-Fournet book [12] and consists in

applying the equation below

I q
!

� �

I0
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Xn

i¼1

f i q
!

� �
cos q

!
R
!origin

i

� " #2

(37)

to calculate the scattered intensities in a specific direction. However, this equation can only be

used to centrosymmetric particles, which largely limits its application.

Sjöberg [77] proposed an approach to investigate the effects of interparticle correlations. In this

approach the particles or molecules have known form factor, and the correlations can be

obtained by the use of single sums, as shown below,

I q
!

� �

I0
¼

Xn

i¼1

f i q
!

� �
cos q

!
R
!origin

i

� " #2

þ

Xn

i¼1

f i q
!

� �
sin q

!
R
!origin

i

� " #2

(38)

One of the main difficulties on simulating anisotropic two-dimensional scattering pattern is the

computational time required to perform the calculation. For example, to make a scattering

image with side of m = 512 pixels (a total of 262,144 pixels), it is necessary to perform the

calculation for each pixel (which defines a specific q
!
value) and for each scatter (n scatters). The

calculation is impractical for small models (low number of scatters) even in the nowadays

computers. These were the main difficulties presented by McAlister and Grady in their first

approach to this problem [25, 26].

In order to overcome these limitations, Alves and collaborators [15] recently proposed an

innovative procedure to solve this problem. Inspired by the histogram approach used in the

optimized Debye equation Eq. (33), it is possible to convert the double sum in Eq. (9) into a

single sum over the bins of the histogram. This new equation

I q
!
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¼ f q
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� ����
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nþ 2
Xn

q
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(39)
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Figure 6. Calculation of 2D scattering patterns for oriented lysozyme (6lyz.pdb). The orientations are indicated in the

figure. Figure adapted from [15], reproduced with permission of the International Union of Crystallography.
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permits the fast calculation of the scattering intensity in a given q
!

direction. nbins q! is the

number of channels of histogram, bq is a unitary scattering vector, and rjl
!

is the distance vector

between the subunits composing the model.

The values for the dot product of bq � rjl
!

are used to create the histogram of the projection

distances h bq � rjl
!

� �

k
, in a specific direction. The construction of the histograms still involves a

double sum but is performed only once. Having the histograms, the intensities are easily

calculated. One strategy proposed by Alves et al. [15] is to divide the 2D scattering image in

angular slices and compute the histograms for each direction. As shown by the authors, the

calculation can be further optimized by the use of parallel computing.

The precision of the method is demonstrated by the use of known analytical equations for

simple shapes, as the ones shown in Table 1. Several examples demonstrating the precision of

the method are described in the original article [15]. This new method opens a large number of

possibilities for the calculation of scattering intensity for oriented particles.

Recent applications using X-ray free-electron lasers (FEL) are capable to produce intense

ultrashort pulses (femtoseconds), in nanometer-sized coherent beams, irradiating particles in

solution. Due to the special properties of these experiments, it is possible to irradiate single

particles. Since the pulse durations are shorter than the characteristic rotational diffusion time

of the particle, the obtained scattering intensity corresponds to particle oriented in a given

direction. Therefore, if the system is composed of identical particles, multiple scattering images

correspond to the scattering intensities from multiple orientations of the particles.

Several authors propose methods to describe the coherent scattering pattern and recover the

three-dimensional structure of the scattering particle, based on the method proposed by Kam

[78–80]. The proposed method for calculation of oriented scattering intensities can potentially

be used to describe data from FEL experiments. To demonstrate this potentiality, in Figure 6

the two-dimensional scattering pattern simulated for the protein lysozyme in several orienta-

tions is presented. This simulation method can also describe models with variable scattering

length contrasts and interparticle interactions (structure factor). Several examples can be found

in the original article [15].

4. General conclusions and perspectives

In this chapter a general overview about several procedures to calculate scattering intensifies

for system of particles was presented. After a brief description of the general theoretical

aspects, several methods for the calculation of scattering intensities were shown, with some

typical applications. The main points and limitations of each procedure were discussed.

The analytical calculation of the scattering intensity is restricted to particles with simple geo-

metries. More complicated shapes require the use of simulation methods. The Debye equation

provided a first indication in this direction by the use of spherical subunits to build the particle
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(finite element description—FE) and calculate the scattering intensity for randomly oriented

averaging. Its variation, with the use of cubic subunits, gives the so-called cube method. This

approach permitted a better calculation of excluded volumes but requires numerical averaging

for account for the random orientation or the particles. The original Debye equation involves a

double sumwhich is very inefficient (high computational costs) and cannot be applied for a large

number of subunits. Optimized forms of the Debye equation were proposed by the use of

histograms of pair distances, which turn the double sum on the number of particles into a single

sum over the histogram bins. In this way, this method could be used for fast calculation of

scattering intensities and modeling methods. Another modeling method was the use of spherical

harmonics for the calculation of the scattering intensity. With the introduction of the envelope

function to describe the particle shape, this method proved to be very powerful for the descrip-

tion of proteins in solution and the description of hydration layers. In the last decades, this

approach and its development combined with ab initio methods promoted a revolution on the

use of scattering data for the investigation and modeling of macromolecules in solution. Fast

Fourier transformation methods have been recently applied to calculate the scattering patterns

for known shapes, with very interesting applications. Also, based on the FE method, one can use

a special development of the optimized Debye equation to compute scattering intensities for

oriented particles. This innovative approach permits the fast calculation of 2D scattering patterns

and provides new perspectives for the use and analysis of the small-angle scattering method.
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