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Abstract

Conversation is becoming one of the key interaction modes in HMI. As a result, the con-
versational agents (CAs) have become an important tool in various everyday scenarios. 
From Apple and Microsoft to Amazon, Google, and Facebook, all have adapted their own 
variations of CAs. The CAs range from chatbots and 2D, carton-like implementations of 
talking heads to fully articulated embodied conversational agents performing interaction 
in various concepts. Recent studies in the field of face-to-face conversation show that the 
most natural way to implement interaction is through synchronized verbal and co-verbal 
signals (gestures and expressions). Namely, co-verbal behavior represents a major source 
of discourse cohesion. It regulates communicative relationships and may support or even 
replace verbal counterparts. It effectively retains semantics of the information and gives 
a certain degree of clarity in the discourse. In this chapter, we will represent a model of 
generation and realization of more natural machine-generated output.

Keywords: co-verbal behavior generation, affective embodied conversational avatars, 
humanoid robot behavior, multimodal interaction, unity, EVA framework

1. Introduction

One of the key challenges in the modern human-machine interaction (HMI) is the genera-

tion of more natural, more personalized, and more human-like human-machine interaction 

[1]. As a result, the conversational agents (CAs) are gaining interest and traction, especially 

due to the fact that most of the user devices are already capable to support multimedia and 

the concept of conversational agents (CAs). Apple, Microsoft, Amazon, Google, Facebook, 
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etc., already have adapted their own variations of CAs. Moreover, the newest technologies, 

such as the Amazon Echo and Google Home, which are positioned as supporting multiuser 

and highly personalized interaction in collocated environments (e.g., homes and ambient-

assisted living environments), integrate virtual agents supporting both visual and auditory 

interactions [2–4]. Thus, exploring the conversational models and challenges around CA 

supported interaction represents a timely topic. The production of conversational behavior, 

e.g., socially shared information and attitude, incorporates much more than just speech ver-

bal exchange. Namely, it is multimodal and multilayered, since it entails multiple verbal and 

nonverbal signals that are correlated in a dynamic and highly unpredictable settings. One 
might even say that the social interaction involves synchronized signal verbal and nonverbal 

channels. The verbal channels carry symbolic/semantic interpretation of message through 

the linguistic and paralinguistic features of interaction, while the co-verbal channels serves 

as an orchestrator of communication [5–7]. Thus, such an interaction facilitates full embodi-

ment of the collocutors. It also exploits physical environment in which the interaction is 

positioned in [8–10]. Further, the co-verbal behavior is actually equally relevant as speech. 

Namely, it actively contributes to the information presentation and understanding, as well 

as the discourse itself. It establishes semantic coherence and regulates communicative rela-

tionships. It may support or even replace the verbal communication in order to clarify or 

reinforce the information provided by the verbal counterparts [11–13]. The co-verbal behav-

ior goes well beyond an add-on or a style of information representation. For instance, spatial 

orientation of the face and eye gaze are key nonverbal cues that shape the footing of the 

conversational participants [14]. Through the co-verbal responses, the listeners may sig-

nal their interest, attention, and understanding [15]. As a result, the role of co-verbal (and 

nonverbal) behavior in human communication and in human-machine interaction has been 

increasingly scrutinized over the last few decades, within a wide range of contexts [16–21]. 

Embodied conversational agents (ECAs) are nowadays the most natural selection for the 

generation of affective and personalized agents. ECAs are those CAs that can facilitate full 
virtual body and the available embodiment in order to incorporate humanlike responses. 

The ECA technology ranges from chatbots and 2D/3D realizations in a form of talking heads 

[22–24] to fully articulated embodied conversational agents engaged in various concepts 

of HMI, including sign language [25], storytelling [26], companions [27], and virtual hosts 

within user interfaces, and even used as moderators of various concepts in ambient-assisted 

living environments [28–32].

In this chapter we present novel expressive conversational model for facilitating human-

like conversations and a solution for affective and personalized human-machine interaction. 
The model facilitates (i) a platform for the generation of “conversational” knowledge and 

resources, (ii) a framework for planning and generation of (non-)co-verbal behavior, and (iii) 

a framework for delivery of affective and reactive co-verbal behavior through attitude, emo-

tion, and gestures synchronized with the speech. Namely, the EVA expressive conversational 

model is outlined in Section 2. The main idea is to formulate various forms of co-verbal behav-

ior (gestures) with respect to arbitrary and unannotated text and broader social and conver-

sational context. The “conversational” knowledge and resources required are generated via 

annotation of spontaneous dialog and through the corpus analysis as presented in Section 3. 
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In Chapters 4 and 5, how these resources are integrated into the two-folded approach of the 

automatic co-verbal behavior generation is then described. The presented approach involves 

(a) the problem of behavior formulation (intent and behavior planning) and (b) the problem 

of behavior realization (animation via ECA). Finally, we conclude with synthesis of affective 
co-verbal behavior within interfaces and final remarks.

2. EVA conversational model for expressive human-machine 

interaction

In order to cope also with the complexity in multiparty conversations, and in order to apply 

the knowledge to various concepts in human-machine interaction in a form of conversational 

behavior, we have envisaged and deployed an advanced EVA conversational model, which 

is used (a) to study the nature of natural behavior of human-collocutors; (b) to create con-

versational knowledge in form of linguistic, paralinguistic verbal, and nonverbal features; 

(c) and to test theories and to apply knowledge in various conversational settings as part 
of situation understanding or as a part of output generation processes. The presented EVA 

conversational model is outlined in Figure 1. As can be seen, it consists of the following three 

cooperative frameworks/platforms: conversational analysis platform, EVA framework, and EVA 

realization framework.

Figure 1. EVA conversational model for generation and exploitation of expressive human-like machine responses.
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The model builds on the notion that verbal to co-verbal alignment and synchronization are 

driving forces behind affective and social interaction. Thus, the conversational analysis platform 

is used for analyzing how linguistic and paralinguistic features interplay with embodiments 

during complex, spontaneous, and multiparty interactions. Its processing is based on multi-

modal corpus, named EVA corpus [33], the EVA annotation scheme developed to describe the 

complex relations of co-verbal behavior (proposed in [34]), and EVA framework capable (a) to 

capture various contexts in the “data” and (b) to provide the basis to analytically investigate 

into various multidimensional correlations among co-verbal behavior features.

Communication is in its fundaments a multimodal process. In order to describe the nature 

of face-to-face interaction, we have chosen to build upon the concept of “multimodality in 

interaction” over linguistic basis [2]. We extended this concept with a cognitive dimension 

consisted of various concepts, such as emotions, sentiment, and communicative intent. We 

also blend it with the meta-information represented as a set of paralinguistic features, such 

as facial expressions and gestures, prosody, pitch, dialog function and role, etc., [17, 35]. As 

outlined in Figure 1, the annotated EVA corpus is used to build resources required for the 

planning and generation of conversational behavior, both verbal part (e.g., text-to-speech 

(TTS) synthesis) and (non-)co-verbal part (conversational behavior synthesis). These are lexi-

cons, language models, semiotic grammar of communicative intent, lexicon of conversational 

shapes, gestures and movements, acoustic and prosodic properties, and other linguistic and 

paralinguistic features (e.g., word/syllable segmentation, sentence type, sentiment, etc.) that 

are used within behavior generation rules and machine-learned behavior generation models. 

The resources generated within the conversation analysis platform are fed to the EVA framework. 

The main idea of the proprietary EVA framework proposed in [36] is to evoke a social response 

in human-machine interaction through affective synthetic response generated on arbitrary 
and unannotated texts. Thus, the EVA behavior generation model within the EVA framework is 

data-driven and also driven by the text-to-speech (TTS) synthesis engine. The model is modu-

lar and merged with the TTS engine’s architecture, into the first omni-comprehensive TTS 
system’s engine as proposed in [37]. The output of the EVA framework represents the com-

plete co-verbal behavior described by using the proprietary procedural description language, 

named EVA-Script, and the synthesized speech, both perfectly synchronized at the phoneme 

level. The co-verbal behavior is described within an EVA event, where it represents a con-

textual link between the language, context-independent motor skills (shapes, movements, 

and poses that conversational agent can display), and the context-dependent intent for which 

the behavior has been generated (e.g., situation, relation, communicative function, etc.). The 

behavior is already adapted to the nature and capabilities of the virtual entity representing it. 

The EVA event then represents input for the EVA realization framework.

The EVA realization framework is built on the premises that natural multimodal interaction 

is much more than speech accompanied with the repetitive movements of the limbs and 

face. Namely, natural interaction entails multiple behavior variations that are correlated in 

dynamic and highly unpredictable settings [6]. It also incorporates various social and inter-

personal signals in order to “color” the final outcome and can dynamically adapt to vari-
ous intra- and interpersonal contexts as well as various situational contexts [4, 38]. The role 

of this framework is to transform the co-verbal descriptions contained in EVA events into 
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articulated movement generated by the expressive virtual entity, e.g., to apply the EVA-Script 

language onto the articulated 3D model EVA in the form of animated movement. Further, the 

framework contains the animation-parameters builder and the animation-realization engine. Both 

are maintained within the EVA behavior realizer and implemented as a series of standalone 

modules. The animation-parameters builder is used to understand the specified behavior and to 
adapt it to the restriction of the targeted agent. Thus, it transforms the EVA-Script sequence 

into animation parameters that are then mapped to different control units of the ECA’s 3D 
articulated model, while the animation-realization engine is responsible for scheduling and exe-

cution of the translated animation parameters in a form of sequences of parallel/sequential 

transformation of ECA-related resources (e.g., meshes textures, bones, morphed shapes, etc.). 

These resources actually constitute virtual agent’s embodiment in a form of hand/arm ges-

tures, posture and body configuration, head movement and gaze, facial expressions, and lip 
sync. Finally, the EVA realization framework also incorporates procedures required for efficient 
integration of the embodied conversational agent into various user interfaces. In the next sec-

tion, we will present particular modules of the EVA conversational model in more detail. Firstly, 

we will describe the conversational analysis platform, which represents the basis not only for 

the generation of communicative behavior but also for understanding the nature of complex 

conversational behavior and face-to-face interaction as a whole.

3. Conversation analysis and annotation scheme

Conversation analysis represents a powerful tool for analyzing language and human co-verbal 

behavior in various aspects of social communication [39]. Namely, interaction through dialog 

is an act of conveying information, in which humans can convey information through a variety 

of methods, such as speaking, body language (gestures and posture) and facial expression, 

and even social signals [40]. Interpersonal communication can involve the transfer of informa-

tion between two or more collocutors that use verbal and nonverbal methods and channels. 

Symbolic/semantic interpretation of message is presented through linguistic and paralinguis-

tic features, while the co-verbal part in general serves as an orchestrator of communication 

[5]. The concept of the co-verbal behavior has become one of the central research paradigms 

and one of the important features of human-human interaction. It has been investigated from 

various perspectives, e.g., from anthropology and linguistics and psychosociological fields to 
companions, communication and multimodal interfaces, smart homes, ambient assisted liv-

ing, etc. The multimodal corpora represent the results of various research efforts. They are the 
tools through which researchers analyze the inner workings of interaction. The knowledge 

generated by using such multimodal corpora and annotation schemes, therefore, represents a 

key resource for better understanding the complexity of the relations between verbal and co-
verbal parts of human-human communication. It provides insights into understanding of sev-

eral (social) signals and their interplay in the natural exchange of information. In the following 

section, we will represent EVA corpus, a corpus of spontaneous and multiparty face-to-face 

dialog. We will also outline the EVA annotation scheme designed as a tool for corpus analytics 

and generation of verbal and nonverbal resources [33].
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3.1. The multimodal EVA corpus

Among video corpora, television (TV) interviews and theatrical plays have shown them-

selves to be very usable resource of spontaneous conversational behavior for the analytical 

observation, and annotation of co-verbal behavior and emotions, used during conversation. 

In general, TV discussions represent a mixture of institutional discourse, semi-institutional 

discourse and casual conversation. Material used in existing corpora is often subject to certain 

restrictions in order to reduce the conversational noise, such as time restriction, strict agenda, 

strict scenario and instructions to implement targeted concepts, and technical features 

(camera direction and focus, editing) that further influence especially communicative func-

tion of co-verbal behavior and its expressive dimensions (speech, gestures, facial displays). 

However, the conversational noise, if properly analyzed and incorporated, may unravel a 

lot of features and contexts that model the natural multimodal conversational expressions. 

Namely, by exploiting the casual nature and noise in the material, as we do with the EVA 

corpus, we can take into consideration the complete interplay of various conversation phe-

nomena, such as dialog, emotional attitude, prosody, communicative intents, structuring of 
information, and the form of its representation. All these can give us a true insight into how 

informal communication works, what stimuli triggers conversational phenomena, and how 

do these impulses interact and reflect on each other. Such relations can then provide synthetic 
agents with the basis for the multimodal literacy, namely, the capacity to construct meaning 

through understanding of situation and responding to some not predefined situation. The 
conversational setting in the EVA corpus is totally relaxed and free and is built around a talk 
show that follows some script/scenario; however, the topics discussed are highly unpredict-

able, changeable, informal, and full of humor and emotions. Further, although sequencing 

exists, it is performed highly unorderly as are also the communicative functions. This guar-

antees a highly causal and unordered human discourse, with lots of overlapping statements 

and roles, vivid emotional responses, and facial expressions. The goals of the corpus and 

the annotation scheme are built around (semiotic) communicative intent as the driving force 

for the generation of co-verbal and communicative behavior. The communicative intent is a 

concept through which we are able to correlate the intent of the spoken information (defined, 
e.g., through part-of-speech (POS) tags, prosodic features, and classification of interpretation 
through meaning) with co-verbal behavior (gestures). Human face-to-face interactions are 

multimodal and go well beyond pure language and semantics. Within the EVA corpus and 

corpus analysis outlined in this section, we decided for the extension of semantics by apply-

ing the concept of communicative intent and other linguistic and paralinguistic features, such 

as dialog role and functions, attitude, sentiment and emotions, prosodic phrases, pitch, accen-

tuation, etc., to the observed exchange of information.

3.2. The EVA annotation scheme

In order to capture and analyze conversational phenomena in EVA corpus, the video mate-

rial is annotated by following the EVA annotation scheme that incorporates linguistic and 

paralinguistic features and interlinks them with nonverbal movement [37, 41]. The annota-

tion process is performed separately for each speaker. The formal model of the annotation 
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scheme is outlined in Figure 2. In addition to symbolic conversational correlations, the pre-

sented scheme also targets the analysis of the form of movement in high resolution. This 

allows us to test and evaluate also the low-level correlation between movement and prosody, 

communicative intent, and other linguistic and paralinguistic features. As a result, we can 

analyze the face-to-face interactions in greater detail. Further, through the extracted knowl-

edge, we are able to pair features into complex stimuli used for triggering the generation of 

the conversational artifacts and to improve the understanding of the situation through mul-

timodality. As can be seen in Figure 2, the annotation session per speaker is separated into 

symbolical annotation (e.g., annotation of function) and into annotation of the form (e.g., 

annotation of visualization). Each of the annotated features (linguistic, paralinguistic, and 

movement/shape related) is captured on a separate track and interlinked with spoken con-

tent and movement via a shared timeline. In this way we are able to analyze and search for 

various multidimensional relationships between conversational artifacts and identify and 

establish temporal and symbolic links between verbal and co-verbal features of complex 

multiparty interaction.

As outlined in Figure 2, the EVA annotation scheme has the capacity not only to establish 

links between features on the symbolic level but also to interlink the form of co-verbal move-

ment and its manifestation (e.g., the visualization) with symbolic artifacts, such as dialog 

role, emotions, lemma, POS tags, sentence type, phrase breaks, prominence, sentiment, and 

semiotic intent. This is quite important for investigating into the multidimensional interlinks 

between various features. For instance, the co-verbal behavior may originate as a reflection 
of attitude/emotion or even be a supportive artifact in the implementation of the communica-

tive function (e.g., feedback, turn taking, turn accepting, sequencing, etc.), while the verbal 

behavior primarily used for representation of information may also reflect attitude/emotion 
or be adjusted to serve as a part of the implementation of a communicative function. Through 

Figure 2. The formal model of the EVA annotation scheme and the topology of the annotation of the form.
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the annotation scheme, all artifacts are interconnected through temporal domain and can be 

related among each other in numerous ways and combinations.

Overall, the symbolic annotation allows us to identify and describe in detail the nature of 

communicative acts performed during information exchange. The annotation of the form, 

on the other hand, then describes the shapes and movements generated during these sym-

bolically defined communication acts. Thus, the concept of EVA annotation is based on the 
idea that symbolic relations and concepts are established on the functional/symbolic level 

and realized via body expressions, e.g., hand gestures (left and right arm and hands), facial 

expression, head movement, and gaze. During each symbolic act, the movement of each 

body part (hands, arms, head, and face) can be described with movement phrase, movement 

phases, transitions, and the articulators propagating the observed movement. The movement 

phrase describes the full span of movement phases, where each movement phase contains a 

mandatory stroke and optional preparation, hold, and retraction phases. Further, each move-

ment phase identifies a pose at the beginning Ps and a pose at the end Pe, where poses are 

“interconnected” with a trajectory that identifies the path over which the observed body parts 
propagate from the start pose to the end pose. The trajectory T is a parametric description 

of propagation, which includes the partitioning of the trajectory T into movement primes 

(simple patterns), such as linear and arc, each defined through the intermediate poses.

4. Advanced co-verbal behavior generation by using EVA framework

The EVA behavior generation model proposed in [36] is used to convert general unannotated 

texts into co-verbal behavior description automatically. The model integrates several non-

verbal elements that are associated (correlated) with the verbal behavior (speech). Therefore, 

general texts can be presented as multimodal output, consisting of spoken communication 

channel as well as synchronized visual communication channel. The EVA behavior genera-

tion model performs synchronization of the verbal and nonverbal elements that is necessary 

in order to achieve desired naturalness, in the domain of meaning (intent) and in the temporal 

domain. Further, the EVA model generates the co-verbal behavior descriptions and the verbal 

behavior simultaneously. The EVA model distinguishes between the behavior generation and 

behavior realization step. Figure 3 outlines the expressive conversational behavior genera-

tion module, which consists of the following three concurrent processes: intent classification, 
behavior planning, and speech synthesis. The speech synthesis process converts general text into 

speech signal and also represents a source of linguistic and prosodic features that are used for 

planning and synchronizing the nonverbal behavior. Further, the intent classification process 

identifies the nature of the spoken content through pattern matching incorporating linguistic 
and prosodic features, where the intent of the input text is defined in the form of classification 
of linguistic expressions into semiotic classes. The result is a set of possible interpretations 

of the input text. Further, the behavior planning process involves filtering of several interpre-

tations, the pose/gesture selection process based on target cost calculation mechanism, and 

the temporal synchronization step based on prosodic and acoustic features obtained during 

synthesizing the speech signal. As outlined in Figure 3, the EVA behavior generation model 
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facilitates language−/context-dependent and language−/context-independent resources. The 
language−/context-dependent resources are linguistic resources and the nonlinguistic semi-
otic grammar. The linguistic resources include lexicons, language models, rules, and cor-

puses, while the nonlinguistic grammar includes sets of semiotic rules for pairing language 

with communicative intent. The language−/context-independent resources are Gesticon and 

the repository of motor skills. Gesticon couples the context-independent motor skills with the 

semiotic nature of the intent. Namely, we associate a given semiotic pattern (communica-

tive intent) with a unique set of features describing the manifestation of the shape/pose. The 

semiotic pattern incorporates a semiotic class/subclass, the movement phase within which the 
pose manifestation is observed, and the POS tag of the word represented as the nucleus of 

meaning. The unique set of features describing the manifestation of shape/pose incorporates 

body-pose identification, representing a pair of initial and final pose, a general trajectory of 
hand movement, semantic word relation, and minimal and maximal temporal values within 

which the gesture was observed to be carried out, and the number of occurrences of the given 

gesture that was observed in the EVA corpus. The semiotic grammar and Gesticon are created 

and populated with patterns and associated with unique sets based on the analysis and anno-

tation discussed in Section 3.

The conceptual EVA behavior generation model has been actualized in the form of the EVA 

engine outlined in Figure 4. The EVA engine converts a general text into the speech signal 

accompanied by humanlike synchronized gesticulation and lip movement. The EVA engine 

Figure 3. The architecture of the EVA behavior generation model for the generation of expressive co-verbal behavior.
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is composed of (a) processing steps for text-to-speech synthesis as proposed in the TTS sys-

tem PLATTOS [42] and of (b) processing steps for expressive co-verbal behavior generation 

algorithm. All steps are fused into a compact processing EVA engine. In this way, the expres-

sive co-verbal behavior generation algorithm works with the verbal modules concurrently, 

by sharing data, machine-trained models, and other resources. The EVA engine takes into 

account the latest results of research on multimodal communication, goes beyond traditional 

computational speech processing techniques, and facilitates heuristic and psychological mod-

els of human interaction. The algorithm for the generation of expressive co-verbal behavior 

implemented within the engine in Figure 5 generates the co-verbal behavior by considering 

Figure 4. EVA engine: implementation of the EVA behavior generation model.
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the synchronization of intent and shape (the intent classification and planning), the synchroniza-

tion of several movements (movement planning), and prosodic and timing synchronization regard-

ing speech and gestures (synchronization of the form).

In phase I, named classification of the intent, the input is POS-tagged text and semiotic grammar. 

The semiotic grammar is used for mapping individual morphosyntactic sequence in the text onto a 

corresponding parametric description of the semiotic class (subclass)  Z =  {S, I,  ω  
S
  ,  p  

S
  }  

.
1 In this way, 

we are able to perform the classification of the intent by defining the semiotic classes and cor-

responding cores of meaning. The algorithm searches for the longest morphosyntactic sequence 

x
i-j
 that can be found in the semiotic grammar, while the following two rules are implemented:

• If at a specific word index the sequence x
A
 happens to be   x  

A
   (S)  ⊆  x  

B
   (S)  , where both sequences belong to 

the same semiotic class, then sequence x
A
 must be discarded.

• If a sequence x at word index j is already contained in previous CU elements started at word index i 
and with the same semiotic intent (i < j), then it is discarded.

In this way, for each such sequence, the content unit (CU) is created. The CUs are used to store 

the semiotic classification of the intent as well as those meaningful words that actually induce 
the shape in the stroke movement phase F

S
 of the gesture.

Nevertheless, sentences/statements can have multiple interpretations. Further, the classified 
CU interpretations can partly or fully overlap, therefore, introducing ambiguities and a num-

ber of inconsistencies. Thus, in phase II, named planning of the intent, these inconsistencies and 

1Represents a unique set of features describing the semiotic class/subclass S, the index of the word(s) that represent a 

nucleus of meaning I, the distribution of the POS sequences for the specific semiotic class/subclass ωs, and the distribu-

tion of selecting the specific POS sequence among the semiotic classes/subclasses ps.

Figure 5. The algorithm for the generation of expressive co-verbal behavior.
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ambiguities have to be resolved by using integration, elimination, and selection. For this task the 

prosodic information (prominence, stress, prosodic phrases), as predicted by the TTS mod-

ules, is used. The prosodic information includes syllables labeled with PA (most prominent) 

and NA (stressed) tags that exist within minor phrases (B2) or major phrases (B3). The resolv-

ing is implanted by observing the following rules:

• Each CU must include the most prominent syllable (PA) within a given prosodic phrase (B2 or B3), 
except in the case of enumeration.

• Each CU element must lie within the prosodic phrase (B2 or B3).

• Each prosodic phrase can be represented by no more than one concept of motion, i.e., with no more 

than one element CU.

• When the CU element contains the semiotic class enumeration, the CU boundaries must remain 
unchanged (the boundaries of prosodic phrases are not considered).

At the end, the structure of the intent is uniquely defined, and the co-verbal behavior G can 

be represented as a sequence of co-verbal models H that are related with the CU as follows:

   G ̂   =  T  
m
  −1  H ̂   = H [ CU  

1
  ,  t  

1
  ]  × H [ CU  

2
  ,  t  

2
  ]  × … × H [ CU  

n
  ,  t  

n
  ]   (1)

where  H [ CU  
i
  ,  t  

i
  ]   describes the movement model that depends on semiotic classification and pro-

sodic characteristics in each CU element. However, internal overlapping can still occur, when 

several CU elements contain one or more of the same words, while their boundaries lie within 

the same prosodic phrase. In this case we have to decide, which of the CU elements must be 

kept, since only one CU element is allowed within each prosodic phrase. Firstly, the algorithm 

removes all those CU elements that do not contain a word with a PA syllable, and if overlap-

ping still exists, then on the remaining CUs, their normal distribution ω
s
 is considered, as 

calculated for the given semiotic class, when the CU with its maximum value is only kept. 

Therefore, common CU is created as:

   

 CU  
S ( CU  

m
  ) =S ( CU  

m
  ) 
   = f ( CU  

m
  , … ,  CU  

n
  )  =

    
 

⎧

 
⎪

 ⎨ 
⎪

 

⎩
 

 CU  
m
  ; if  ω  

s
   ( CU  

m
  )  >  ω  

s
   ( CU  

n
  ) 

     CU  
n
  ; if  ω  

s
   ( CU  

m
  )  <  ω  

s
   ( CU  

n
  )     

max (len ( CU  
m
  ) , len ( CU  

n
  ) ) ; if  ω  

s
   ( CU  

m
  )  =  ω  

s
   ( CU  

n
  ) 
  
   (2)

Further, in the case of ambiguity, there are multiple CUs within a single prosodic phrase but with-

out overlapping. When these CUs are consecutive and classify the same semiotic class S (e.g., 

represent the same communicative intent), they are merged into a single CU element as follows:

   

CU = f ( CU  
i
  , … ,  CU  

j
  )  =

   
 

⎧
 

⎪

 ⎨ 
⎪

 

⎩
 

Join  CU  
k
  ,  CU  

k+1
  , … ; if 

     CU  
k
   . POS =  CU  

k+1
   . POS ∧ S ( CU  

k
  )  = S ( CU  

k+1
  )       

Add into a set; otherwise

   
   (3)
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The semiotic indicator I is defined as a set of corresponding semantic indicators contained 
within individual CUs in the sequence. Finally, external overlapping can occur, when some CU 

boundaries are stretched over the boundaries of the prosodic phrase. In this case the CU is 

kept only when the following rules are met:

• The CU element includes the PA syllable, and this PA syllable lies within the boundaries of the pro-

sodic phrase B2:  PA ∈ B2 ∧ PA ∈  CU  
i
   .

• The semiotic indicator I of the CU element lies within the boundaries of the prosodic phrase B2, i.e.,  
I ∈ B .

And, only when both rules are met, the following two rules are implemented:

• If  CU ∩ next (CU)   is not empty, the right boundary of the CU is set to the left boundary of the next (CU) 
element, in order that  CU ∩ next (CU)  = ∅  is true.

• If  CU ∩ next (CU)   represents an empty set, the CU element is kept completely. Further, those words that 
lie outside the prosodic phrase that contains semiotic indicator I can only represent the holding phase 

and/or the retraction phase.

In this case the common CU is created as:

   

CU = f ( CU  
i
  ,  CU  

i+1
  )  =

   
 

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

keep & reduce; if 

   

 I ∈ B ∧ PA ∈ B ∧ PA ∈  CU  
i
   ∧  CU  

i
   ∩  CU  

i+1
   ≠ ∅

      
keep & extend; if

    I ∈ B ∧ PA ∈ B ∧ PA ∈  CU  
i
   ∧  CU  

i
   ∩  CU  

i+1
   = ∅

      

remove; if

  

 I ∉ B ∨ PA ∉ B ∨ PA ∉  CU  
i
  

   
   (4)

In phase III, named planning of the movement, the movement models, which are based on CU units, 

are defined. A movement model is an animated sequence of shapes/poses that together represent 
a co-verbal expression. For each H, at least a stroke movement phase F

S
 has to be defined, which 

is aligned with the acoustic prosody information, as specified by the TTS engine. Therefore, the 
prosodic synchronization of movement phases is based on temporal information (regarding pho-

neme and pause durations). The following rule is used for the stroke movement phases F
S
:

• The stroke phase F
S
 is always performed on the PA word and is ended together with the correspond-

ing PA syllable.

The next step then represents the synchronization of all F
S
 with the gesticulation in case of 

enumeration and/or search, which are not directly related to the PA syllables, by using the fol-

lowing rule:

• If the word that represents the semiotic indicator I for the specific CU does not contain the PA syl-
lable, the NA syllable is considered in the same way instead.

Advanced Content and Interface Personalization through Conversational Behavior…
http://dx.doi.org/10.5772/intechopen.75599

87



The most prominent words (with the PA syllable) do not necessarily represent the semiotic 

indicator I for the given CU element. If this is the case, the following rule is applied:

• If the semiotic indicator I and the PA syllable are not represented by the same word, the stroke phase 

F
S
 must be defined by following the previous rules, but the hold movement phase F

SH
 must end with 

the NA syllable of the word that represents the semiotic indicator I within the given CU.

Within the algorithm movement models, H is represented by movement phrase units (MPHRs), 

where each unit can contain several movement phases (MPHs). Further, each MPHR must 

contain at least stroke phase F
S
. The syllables that occur before the stroke phase F

S
 are used 

for the preparation movement phase F
P
, while the sil segment just before the first syllable of 

the F
S
 can be used for the hold movement phase F

HS
 (hold before stroke). And, those syllables 

after the F
S
 are used for the retraction movement phase F

R
. In this way, the behavior structure 

is applied by the following rules:

• The preparation phase F
P
 starts before the stroke phase F

S
 and lasts from the NA syllable to the 

beginning of the F
S
.

• The sil segment, which can have a nonzero duration between the words with the preparation phase 

F
P
 and the stroke phase F

S
, represents the so-called hold before stroke, which (if it exists) represents 

a ready-made idea regarding the content.

Additionally, the created MPHs can be extended or merged by the following rules:

• The right boundary of movement phase (with the exception of the hold phase FH) must be 

a PA or NA syllable.

• The stroke phase FS and the preparation phase FP can be joined into the stroke phase FS, 

as this often occurs in multimodal communication (as observed in database annotations).

Nevertheless, the extensions are always limited by the boundaries of the specific CU. The 

structure of the movement models H is now synchronized with verbal content on the sym-

bolic level. Further, temporal synchronization is performed by considering the durations of 

phonemes and pauses. The duration of individual movement phase is described by the fol-

lowing sum of the syllable durations that they may include:

  t  (  MP H  
i
   )    =   (    ∑  

j=0

  
n−1

  t  (  syl  l  
j+k

   )    )     (5)

where n represents the number of syllables in each MPH unit and k its first syllable. F
P
 can be 

fused with the F
H
 phase, resulting in the following maximal duration:

   t  
max

    (   F  
P
   )    = t  (   F  

P
   )    +   ∑  

j=k

  
n−1

  t  (   z  
k−j

   )    + t  (   z  
r
   )     (6)

where n represents the number of syllables before the F
P
, k its first syllable, and r the first syl-

lable after the F
P
. Further, F

S
 can be fused with F

P
, resulting in the maximal duration:
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   t  
max

   ( F  
S
  )  =  t  

max
   ( F  

P
  )  +  t  

min
   ( F  

S
  )   (7)

Finally, F
R
 can be extended with subsequent syllables but only up to the last NA syllable:

   t  
max

    (   F  
R
   )    =  t  

min
    (   F  

R
   )    +   ∑  

j=0

  
n−1

  t  (   z  
k+1

   )     (8)

where n represents the number of subsequent syllables, while k is the first syllable after the F
R
. 

Temporal descriptions of movement phases define time instants when the individual shape 
must be fully manifested and also the time that is available for the transition between the 

shapes. Further, this time also restricts the set of suitable motion trajectories for the transition, 

as well as restricting the set of shapes.

In phase IV, named synchronization of the shape, the movement is then temporally aligned with 

the temporal features of verbal information (durations of phonemes and pauses). Based on 

morphosyntactic sequences, movement models, and durations of the movement phases, a 

lookup into Gesticon is carried out, in order to specify the best shapes V (or poses P) and 

trajectories T of the realization of the co-verbal behavior. Thus, a lookup for possible configu-

rations of the embodiment within F
S
 phases is performed. It selects a set of probable poses 

P for each F
S
. These poses are evaluated by using the suitability functions [43]. If there are no 

matched poses in the Gesticon, the set of most appropriate poses is selected by the CART 

(classification and regression tree) model, while the most appropriate pose P is assigned to 

each F
S
. After defining the pose candidates on each stroke phase F

S
, the poses for F

P
, F

R
, and 

F
H
 are also defined. At the end, the transition between the poses are also defined and aligned 

with given temporal and prosodic specifications. Namely, the trajectory describes the local 
space in which body part should move when traversing from the start to the end pose. The 

huge diversity of trajectories within the material demands restrictions, when describing them 

in the Gesticon. We are specifically interested in the trajectories of hands or the curve that the 
hand describes during the transition. The definition of the trajectory between two poses is 
performed by considering the temporal structure of the movement phase MPH, the semi-

otic class, the movement phase type, the morphosyntactic tags, prosodic features within the 

phase, and possible semantic relation. The lookup in the Gesticon, therefore, results in several 

possible trajectories. Therefore, only the most appropriate and closest to the temporal predic-

tions on each sequence is used at the end.

In phase V, named generation of the co-verbal behavior G, the conversion of the defined move-

ment models (stored within the heterogeneous relation graph (HRG)) into a procedural 

description can be understood as a parameterization of the animation. Each movement 

phrase is transformed into a symbolically, prosodically, and spatially coherent move-

ment of an individual body part. Thus, it viably illustrates the communicative intent of the 

corresponding verbal segment. In order to be applied on an ECA and represented to the 

user, it has to be converted into a procedural description in the EVA-Script notation. Each 

model H represents simultaneous execution and is described within the block <bgesture>. 

The stroke movement phase F
S
 and the preparation movement phase F

P
 within the block 

<bgesture > represent sequences during which a change in configuration of embodiment 

Advanced Content and Interface Personalization through Conversational Behavior…
http://dx.doi.org/10.5772/intechopen.75599

89



Figure 6. Realization of a sentence with the conversational agent EVA.

is actually requested. The hold movement phase F
H
 and the retraction movement phase 

F
R
, however, do not require procedural description. Namely, F

H
 only represents a hold of 

the existing configuration, while F
R
 a retraction into a rest/neutral state. The transforma-

tion of movement model H into an EVA event (co-verbal behavior written in EVA-Script) 
is outlined in Figure 6. Figure 6 also outlines how EVA event is applied to an ECA and 

then realized as a multimodal expression, which is built from the synchronized verbal and 

co-verbal sequences. As can be seen, the F
P
 is defined across the word “bila” (was), with 

predicted extension up to the word “je” (is). Further, the predicted duration of the F
P
 phase 

is 413 ms, while the maximum duration of the F
P
 is 593 ms. The F

S
 is defined across the PA 

word “tako” (that), with a predicted duration 300 ms and a maximal duration 893 ms. The 

post-stroke-hold phase F
HS

 is identified across the semiotic nucleus, the word “velika” (big), 

with a duration of 451 ms.
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5. Realization of expressive conversational behavior on embodied 

conversational agents

The proprietary EVA realization framework proposed in [36–37, 44] has been developed in 

order to be able to evoke a social response in human-machine interaction based on expres-

sive conversational behavior generated through the previous modules of the EVA model. The 

framework enables machines to engage with the user on the more personal level, namely, 

through humanlike entity realization of multimodal interaction models, which are based on 

the concept of conversation. Thus, this framework integrates ECAs as virtual bodies and gen-

erates responses via their embodiment. The ECA’s artificial body and articulation capabilities 
(embodiment) are already close to those found on real humans. From the skin, face, hands, 

and body posture, these virtual entities tend to look and behave as realistically as possible. 

ECAs also tend to imitate as many features of human face-to-face dialogs as possible and 

integrate them into interaction as synchronized as possible. Although the humanlike equa-

tion is mostly defined via co-verbal behavior generation model and the corpus analysis, the 
framework actually represents the final component through which users actually come in 
contact with the response. Thus, one could say that the framework brings responses to “life.” 

Further, diversity and capacity to handle highly dynamic and interchangeable contexts of 

human interaction are in addition to realism of appearance, one of the key challenges of the 

modern ECAs. 3D tools, such as Maya, Daz3D, Blender, Panda3D, and Unity, have opened 

up completely new possibilities to design virtual entities, which appear almost like real-life 

persons. The modern behavior generators open the possibility to plan and model responses 

almost completely to the context of situation and collocutor. The behavior realizer, therefore, 

represents the bridge between the two concepts. The EVA realization framework also creates an 

environment that is capable to deliver expressive and socially colored responses in the form 

of facial expressions, gaze, head, and hand movement. Its architecture is outlined in Figure 7.

It consists of animation-parameters builder, animation-realization engines, articulated 3D 

models, and created 3D resources. The animation-parameters builder is used to understand 

and transform the co-verbal events into animation parameters and integrate them onto the 

animation execution plan. The animation-realization engines then realize these animation 

parameters through their internal renderers and display them to the user. As outlined in 

Figure 7, two animation engines are implemented, one is based on Panda 3D2 game engine 

and the other based on Unity 3D game engine3. Each of them incorporates its own set of 

articulated 3D models. However, all articulated 3D models support the same movement 

controllers (bones and morphed shapes). Thus, any EVA event can be used by either real-

izer, and the result will be still practically the same. The major difference between the sup-

ported animation engines is their implementation of frame-by-frame operations. Namely, 

in the Panda 3D engine, frame-by-frame operations are handled internally by the renderer, 

while in the Unity 3D engine, the renderer only renders each frame. This means that all 

2Panda 3D: https://www.panda3d.org/.
3Unity 3D: https://unity3d.com/.
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calculations for the next “in-between” pose are calculated via the implanted algorithms. As 

a result, the Unity 3D implementation allows for controlling the scheduled animation and 

even animation already being executed. In order that the EVA realization framework realizes 

the generated synchronized behavior and represents it to the user, the EVA behavior real-

izer transforms conversational events into their physical representations. This is achieved 

by applying the co-verbal features described in the co-verbal events into the 3D resources 

available in the renderer. The animation-parameters builder translates the EVA-Script into ani-

mation parameters. This is achieved by interfacing each script’s tag with the control unit or 

behavioral template and by extrapolating different groups of movements. Each group of 
movement is defined by semantic (which control units in which order), temporal (durations 
of stroke, hold, and retraction movement phases), and spatial features (ending position of 

the control unit). The main components of the animation-parameters builder are event proces-

sor, animation generator, and animation scheduler. The event processor intercepts and handles 

the conversational events. It parses event stream and checks event’s type and priority. The 

animation generator then transforms the conversational behavior into animation sequences. 

As part of this process, the animation generator applies temporal and spatial constraints 

adjusted to the agents’ articulated body. The animation scheduler then inserts the generated 

animation sequences into the execution plan. It handles the animation graph and feeds 

them to the rendering engines accordingly. Finally, after the realization of each animation 

sequence is completed, the event processor signals its status (conversational context) to the 

Figure 7. EVA realization framework.
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behavior generator and optionally to the dialog handlers. Similarly, after the full realization 

of the behavior que, a change in conversational context event is raised, and the generation 

of inactive (rest) behavior is triggered.

The communication between processes within the EVA realization framework is implemented 

via event-oriented publish/subscribe model. Namely, when the event processor intercepts a 

conversational event, it firstly checks its type and priority. Afterward, it pushes it into the 
animation scheduler. When the animation scheduler receives the conversational event, it initiates 

internal interpreter in order to segment the behavior into three animation streams. The inter-

preter transforms the EVA-Script behavior into body part-segmented schedule of parallel/

consecutively executed behavior in a form of animation streams. At the same time, the sched-

uler smoothly stops any idle behavior, destroys its handlers, and moves it to the rest pose. The 

overall result of the animation-parameters builder is, therefore, a set of animation parameters, 

which describe the execution of one or more animations representing the planned co-verbal 

act (multimodal response). The animation parameters are those features that specify how 

the animation engine should build its animation graph. The animation parameters are “fed” 

to the second component of the framework, the EVA animation engine. The EVA animation 

engine takes care for the transformation of animation parameters into animated sequences. 

The animation plan contains the co-verbal behavior que. After its que is emptied, the anima-

tion scheduler signals that the animation stream has been completed and will destroy ani-

mator objects, in order to release the reserved resources. After all animation segments are 

completed, the animation scheduler signals the end of the conversational event. As a result, the 

event handler, if no more co-verbal events arrive, triggers the manifestation of the idle behav-

ior. Each animation engine transforms the animation parameters maintained in the anima-

tion plans into corresponding sequential and/or parallel movements of control points (bones 

or morphed shapes). Further, both animation engines provide the forward kinematics (and 

inverse kinematics) and animation-blending techniques, which enable for animation param-

eters to appear as viable behavior even on segments that have to be controlled by different 
gestures at the same time, e.g., simultaneously animating smile and viseme. Each gesture/

expression/emotion is realized by combining different sequential/concurrent transformations 
of different movement controllers (embodiments) of the ECA. The EVA-Script events describe 
the facilitation of the movement controllers in a form of temporally defined end poses. Thus, 
each entry contains “next” configuration, which should be rendered over the specified tem-

poral distribution. The in-between frames, which actually generate movement, however, are 

calculated and interpolated by animation engines. In case of Panda 3D engine, the render 

receives the required end pose and calculates the in-between frames automatically, while in 

the case of Unity 3D engine, the animation handler handles frame-by-frame operations, e.g., the 

render receives the next in-between configuration, which is calculated by the animation handler 

at each frame. In this way, any animation can be modified at any step, even during the execu-

tion of some step/sequence. For a smooth transition, the scheduler does not have to wait and 

adjust its temporal scheduling. It just has to adjust its frame-by-frame schedule and replace it 

with new configurations. It can actually instantiate changes instantly as they occur. It can also 
insert new behavior between configurations, etc. As a result, the virtual character becomes 
more responsive and can react to changes of the conversational, environmental, and other 
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contexts instantly. The agent also “remembers” what it was gesturing prior to the excited 

state. Additionally, it can continue with the realization of that behavior after the excited state 

dissipates.

6. Realization of complex co-verbal acts

When the realization framework receives some co-verbal EVA event, it transforms it into a 

synchronized and fluid stream of movement, performed by the following independent body 
parts: hands, arms, face, and head. To retain naturalness (especially regarding visual speech 

coarticulation) and at the same time prevent “jerky” expressions, the animation-blending tech-

niques are used. The same animation-blending techniques are also used to realize three differ-

ent types of complex emotions: emotion masking, mixed expressions, and qualified emotions. 
These complex emotions further intensify the expressive factor of the framework and enable 

the implantation of highly humanlike representation of feelings in facial region (e.g., by mod-

ulating, falsifying, and qualifying an expression with one or more elemental expressions). 

The modulation of expression is realized by using animation-blending techniques, based on 

intensification or de-intensification. Both are similar to qualification of expression and imple-

mented through the power (e.g., stress attribute) and temporal (durationUp, durationDown, 
delay, and persistence attributes) components of the domain of expressivity [36–37, 44]. Figure 8 

outlines output from the realization framework as interpretation and realization of EVA-Script 

events, including several layers of complexity, and EVA-Script attributes described through 
the EVA-Script language. In Figure 8, the behavior generator defines a co-verbal act that con-

sists of two co-verbal events. The first one resembles the end of “searching idea” event (when 
some idea of a solution comes to our mind), and the second one reassembles the beginning of 

revelation of the idea (e.g., how one starts outlining the solution to collocutors). The co-verbal 

behavior is described in order to be performed via full embodiment (all co-verbal artifacts), 

namely, by using the arms, hands, face, and head. To add an additional layer of complex-

ity, the inner synchronization and the temporal distribution are different for each co-verbal 
artifact.

During the first co-verbal event (e.g., revelation), the head, face, and right hand are the domi-
nant artifacts. Thus, they appear to “move” with most significance and power. On the other 
hand, the left hand moves to its targeted position slightly delayed but as fast as possible. 

In the second act, however, the left hand is the dominant artifact. Thus, its movement will 

appear as most significant, e.g., the longest duration and with most power, while the face/
head and right arm/hand are moved to the position as “quietly” as possible. The overall dura-

tion of the first co-verbal act (Act 1) act is 1.567 s. During this time period, the agent has to 
perform a pointing gesture, by pointing to the sky and by moving its left arm to a position that 

is relevant for the specified pointing gesture (e.g., almost touching the torso). Additionally, 
the agent should express a blend of happy/surprised emotion on his/her face. As outlined in 

Figure 8, head/gaze and facial expression started to appear first (delay = 0.0 s). The two co-
verbal artifacts then moved to their final configuration in 0.5 s, while the right- and left-hand 
movements are delayed for 0.4 s. Thus, both configurations started to form 0.1 s interval, 
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before the previous two co-verbal artifacts finished. The right arm finished with its animation 
after 0.567 s, while the right hand manifested the targeted hand shape in 0.3 s. The left hand 

and arm propagated to their end-configuration until the overall end of the event (e.g., for 
1.167 s). Those co-verbal artifacts, which have already finished, just maintained their configu-

ration. The second co-verbal act is targeted to last 5.567 s. During the realization of the second 

co-verbal act, the right arm (with hand) is regarded as less significant; therefore, it is moved 
to its intended rest position as slowly as possible. The left arm (with hand) is, in this situation, 

regarded as one of the significant co-verbal artifacts carrying some conversational meaning. 
The same holds true for the head and face. The left-hand movement in this case appeared as 

with most power in order to gain the most attention of the collocutor, and the face expressed 
confidence colored with excitement. Finally, by directing gaze to the collocutor, the ECA EVA 
prepares the conversational environment, which facilitates the full attention of the collocutor. 
Thus, it can start with the representation of the recently developed idea.

7. Conclusion

Natural interaction entails multiple behavior variations correlated in a dynamic and highly 

unpredictable setting. It also incorporates various social and interpersonal signals to “color” 
the final outcome. Furthermore, multimodality in interaction is not just an add-on or a style 
of information representation. It goes well beyond semantics and even semiotic artifacts. 

It significantly contributes to representation of information as well as in interpersonal and 
textual function of communication. In this chapter we have outlined approach to automatic 

synthesis of more natural humanlike responses generated based on EVA conversational 

model. The presented model consists of three interlinked and repetitive frameworks. The 

Figure 8. Realization of EVA event on ECA EVA rendered in unity-based realizer.
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first framework involves conversational analysis through which we analyze multiparty and 
spontaneous face-to-face dialogs in order to create various types of conversational resources 

(from rules and guidelines to complex multidimensional features). The second framework 

then involves an omni-comprehensive algorithm for the synthesis of affective co-verbal 
behavior based on the arbitrary and unannotated text. In contrast to the related research, 

the proposed algorithm allows for the conversational behavior to be driven simultaneously 

by prosody and text and modeled by various dimensions of situational, inter- and intraper-

sonal contexts. Finally, the predicted behavior well synchronized to its verbal counterparts 

has to be represented to a user in a most viable manner. Thus, the third framework in the 

proposed model involves implementation of co-verbal behavior realizer. In our case we have 

decided to fuse advantages of state-of-the-art 3D modeling tool and game engines with the 

latest concepts in behavior realization in order to deploy an efficient and highly responsive 
framework through which the generated co-verbal expressions may be represented to users 

via realistic and humanlike embodied conversational agents. Namely, modern behavior 

realizers have the capacity to support several parameters of believability of conversational 

behavior, such as diversity and multimodal planning, situational awareness, synthesis of 

verbal content, synchronization, etc. The game engines on the other hand are a powerful 

tool for rapid and high-quality design and rendering of virtual humanlike entities including 

ECAs. They enable the design and delivery of beautiful and highly realistic graphics and the 

efficient handling of hardware resources. To sum up, the ability to express information visu-

ally and emotionally plays a central role in human interaction and thus in defining ECA’s 
personality, its emotional state, and can make such an agent an active participant in a con-

versation. However, in order to make him be perceived even more natural, the agent must be 

able to respond to situational triggers smoothly and almost instantly as they are perceived 

and by facilitating synchronized verbal and co-verbal channels. Thus, the presented model 

presents an important step toward generating more natural and humanlike companions and 

machine-generated responses.
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