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Abstract

Chronic obstructive pulmonary disease (COPD), resulted from tobacco smoking, has an 
extremely poor prognosis and is a major cause of chronic morbidity and mortality world-
wide. In this chapter, we review the role of bacterial infection on the pathogenesis of 
COPD, with a particular focus on Pseudomonas aeruginosa. Chronic infection with P. aeru-

ginosa has been shown to contribute to COPD pathogenesis under certain conditions. In 
addition, P. aeruginosa is a major factor influencing severe symptoms, acute exacerbation, 
and the progression of COPD. Treatment for chronic P. aeruginosa infection may become 
a new strategy for addressing COPD.

Keywords: chronic inflammation, emphysema, acute exacerbation, bronchiectasis, 
microorganism, pathogenesis

1. Introduction

Chronic obstructive pulmonary disease (COPD) is induced by mainly tobacco smoking. 

The patients of COPD complained of cough, sputa, or exertional dyspnea. Compared to the 

patients with bronchial asthma, COPD has an extremely poor prognosis. Approximately 

3,200,000 COPD patients died worldwide in 2015 [1]. The mortality is estimated to be ≥8-fold 
that of bronchial asthma. In this chapter, we review the role of bacterial infection on the 

pathogenesis of COPD, with a particular focus on Pseudomonas aeruginosa.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Chronic obstructive lung disease (COPD)

COPD is a relatively common disease characterized by respiratory symptoms and airflow 
limitation, usually caused by smoking. A mixture of small airway disease and parenchymal 

destruction caused airflow limitation. COPD patients complained of cough, dyspnea, and 
sputum production. Acute exacerbation frequently occurs after an acute respiratory infec-

tion. The acute exacerbation leads to more severe airflow limitation [2]. Sometimes, COPD 

patients are accompanied with bronchiectasis. These patients caused more frequent acute 

exacerbations and severe airway obstruction. Also, these patients demonstrated pathogenic 

microorganisms and mortality [3]. At present, there is no universally effective treatment for 
COPD. Some treatments just relieve the symptoms, while others could slow the progres-

sion of the disease. The most effective treatment is stopping smoking. Bronchodilators are 
the mainstay of available treatment options for COPD. There are several types of broncho-

dilators. Long-acting beta agonist (LABA), long-acting muscarinic antagonist (LAMA), or a 
combination of these agents is used for COPD patients, since long-acting medication is pre-

ferred. For the patients complicated with bronchial asthma, known as asthma-COPD overlap 

(ACO), inhaled glucocorticoids (ICSs) can be used. Also, ICSs can be used for patients with 

frequent COPD exacerbation. Short-acting beta agonists (SABAs) and short-acting muscarinic 
anticholinergics (SAMAs) are used to relieve symptoms, such as exertional dyspnea. Since 
theophylline can be given orally, it can be used for patients who cannot inhale medications. 

Advanced COPD patients with hypoxemia are administered with long-term oxygen therapy 

(LTOT). Rehabilitation programs are also important. They can be effective; however, they do 
not improve the outcome. Lung volume reduction surgery is performed in select patients 

with COPD; however, the candidate patients are limited. Also, lung transplantation is rarely 
done because of lack of donors [4]. Antioxidants, mucolytics, antiproteases, and antifibrotics 
are sometimes used; however, these drugs are not a mainstay for COPD. Anti-inflammatory 
drugs such as phosphodiesterase 4 inhibitors are used to reduce airway inflammation. Also, 
kinase inhibitors, chemokine receptor antagonists, innate immune mechanism inhibitors, and 

statins are developing [5]. However, these new treatments are still insufficient to demonstrate 
the evidence for caring COPD. As such, a novel therapy for COPD is required.

3. Pseudomonas aeruginosa

P. aeruginosa is a glucose non-fermenting Gram-negative bacillus. The size of P. aeruginosa is 

0.7 × 2 μm. P. aeruginosa is localized in the natural environment such as in soil and freshwa-

ter. P. aeruginosa does not show usually pathogenicity in healthy individuals but, however, 

causes infection mainly in immunocompromised patients [6]. P. aeruginosa is well known to 

cause chronic infection in bronchiectasis as well as COPD. Biofilm formation is important for 
chronic infection. A biofilm is a self-produced polymer matrix consisting of polysaccharides, 
protein, and DNA. Bacteria are embedded in biofilm. The polysaccharide alginate is the major 
components of the P. aeruginosa biofilm matrix. P. aeruginosa escapes from host immunity and 

antibacterial drugs using biofilms [7, 8].
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4. P. aeruginosa and lung diseases other than chronic obstructive 

pulmonary disease

P. aeruginosa is often detected in ventilator-associated pneumonia and nosocomial pneumo-

nia. Moreover, bronchiectasis is easily colonized by P. aeruginosa [9]. P. aeruginosa infection 

is a risk factor for mortality and morbidity in cystic fibrosis patients [10]. P. aeruginosa some-

times produces mucinous materials, so-called mucoid P. aeruginosa. Gibson et al. reported 

that mucoid P. aeruginosa contributes to the progression of cystic fibrosis compared to non-
mucoid P. aeruginosa [11]. P. aeruginosa infection in non-cystic fibrosis bronchiectasis patients 
induces more severe impairment of the pulmonary function, although the rate of decline in 

the pulmonary function is not affected [12].

5. P. aeruginosa and chronic obstructive pulmonary disease

5.1. Steady status of COPD and P. aeruginosa

Numerous studies have characterized the lung microbiome of healthy adult subjects using BAL 
samples. The most common phyla consistently observed have been Bacteroides, Firmicutes, and 

Proteobacteria in the phylum level. Prominent genera among healthy controls are Prevotella, 

Veillonella, Streptococcus, and Pseudomonas. Tobacco smoking alters the microbial constitu-

tion of the upper airways [13]. Erb-Downward et al. reported that Pseudomonas, Streptococcus, 

Prevotella, Fusobacterium, Haemophilus, Veillonella, and Porphyromonas were observed in COPD 

lungs [14]. P. aeruginosa is often observed in the sputum of patients with COPD. Rosel et al. 

reported that P. aeruginosa was colonized in one-quarter of patients with COPD during steady 

status [15]. P. aeruginosa was detected in 4–34.7% of sputum samples from COPD patients 

[16–20]. P. aeruginosa causes chronic infections in COPD [21], and especially COPD patients 

accompanied with bronchiectasis are easily colonized with P. aeruginosa. COPD patients with 

P. aeruginosa colonization have a worse disease activity than COPD patients without P. aeru-

ginosa colonization. Desai et al. conducted a longitudinal prospective observational study of 

COPD. They found that the average of breathlessness, cough, and sputum scale (BCSS) score 
was higher during the periods of colonization compared to periods without colonization. 

Colonization was associated with a clinically significant worsening of daily symptoms, even 
in the absence of clinical exacerbation [22]. These findings suggest that novel therapies that 
decrease the bacterial colonization may be able to improve the daily symptoms and quality 

of life in COPD patients.

5.2. Acute exacerbation of COPD and P. aeruginosa

Acute exacerbation of COPD is defined as a worsening of the respiratory condition, such 
as coughing, sputum production, and dyspnea, beyond daily physiological fluctuations and 
requiring additional treatment. COPD patients with acute exacerbation document a worse 

quality of life as well as decrease of pulmonary function. Finally, COPD patients with acute 
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exacerbation result in lower mortality [9]. Acute exacerbation mainly occurs due to airway 

infections. The relationship between COPD and P. aeruginosa infection in acute exacerbation 

of COPD has already been reported [23–26]. However, bacteria other than P. aeruginosa can 

also cause acute exacerbation of COPD. Indeed, infection with a new strain of Haemophilus 

influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae is strongly associated with the 

occurrence of exacerbation. H. influenza (20–30%), S. pneumoniae (10–15%), and M. catarrha-

lis (10–15%) were causative bacteria for acute exacerbation. P. aeruginosa accounted for only 

5–10% of causative bacteria. Infection of respiratory viruses has also been shown to cause 

exacerbations. However, it is difficult to identify the specific respiratory viruses because 
of technical problems. P. aeruginosa is less frequently detected from the sputum in COPD 

patients with acute exacerbation than in those without exacerbation. However, acute exacer-

bation caused by P. aeruginosa generally produces a more severe clinical condition than that 

caused by other pathogens [26].

5.3. Progression of COPD and P. aeruginosa

The relationship between disease progression and P. aeruginosa infection in COPD patients is 

not fully understood. Bronchiectasis, a percentage of forced expiratory volume in 1 s (%FEV1) 
of <35%, systemic steroid use, and antibiotic therapy within the preceding 3 months increased 

the risk of P. aeruginosa colonization [13, 23, 24]. The detection rates of H. influenza and P. 

aeruginosa were reported not to be associated with the severity of emphysematous changes 

[26, 27]. However, chronic P. aeruginosa infection was recently reported to be associated with 

severe obstruction in COPD patients [28]. Hospitalized COPD patients with acute exacerba-

tion by P. aeruginosa demonstrated worse lung function, greater dyspnea, and more hospital-

izations over the previous year. Therefore, P. aeruginosa infection is commonly observed in 

COPD patients and has been found to cause severe symptoms of COPD, the development of 

severe acute exacerbation, disease progression, and a poor prognosis.

6. Pathogenesis of chronic obstructive pulmonary disease

The pathogenesis of COPD is considered to be chronic airflow limitation results from an 
abnormal inflammatory response to the inhaled particles and gasses in the lung in suscep-

tible smokers. There is a famous hypothesis that a protease-antiprotease imbalance leads to 

the progression of the destruction of alveoli [2]. Alveolar cell loss through apoptosis might 

contribute to the pathogenesis [29–31]. There are many animal models for COPD, including 

elastase, cigarette, inhaled gasses, and gene-targeted models. As COPD models, administra-

tion of papain or porcine pancreatic elastase model is well known [32]. Neutrophil elastase 

and proteinase-3, but not non-elastolytic enzymes, such as bacterial collagenase, caused 

COPD-like changes [33–35]. Cigarette smoking is a major factor inducing the development of 
COPD. Long-term cigarette smoking caused macrophage-predominant inflammation and air-

space enlargement in animal models similar to those found in humans [36]. Potential mech-

anisms include high concentrations of reactive oxygen species (ROS) [37], oxidative stress 
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[38], and matrix metalloproteinase (MMP)-12 [39, 40]. Inhaled stimuli, such as sulfur dioxide 

[41, 42], nitrogen dioxide [43], and oxidant [44], have been shown to induce COPD-like lesions 

in animal models. Ultrafine particles, such as silica, coal dust, diesel exhaust particles, and 
cadmium, induced focal emphysema [45, 46], chronic airway inflammation [47], and inter-

stitial fibrosis with enlargement of the airspaces [48]. Alveolar wall apoptosis without the 

accumulation of inflammatory cells, resulting in emphysematous changes, was attained by 
active caspase-3 [31, 49]. Prednisolone also causes emphysematous changes through apopto-

sis [50]. Apoptosis in the alveoli resulted in airspace enlargement was also attained by a block 
of vascular endothelial cell growth factor (VEGF) receptor-2 [51]. Ceramide production, as 

the second messenger lipid, was induced by apoptosis. Ceramide played a role in induction 

of inflammation by the blockade of apoptosis by a VEGF receptor antibody. Since ceramide 
administration provoked the expression of MMP-12, it was considered to be a link between 
excessive apoptosis and inflammation [52]. Several gene-targeted models demonstrated 

COPD-like changed; however, the changes were developmental abnormalities rather than the 
destruction of mature lung tissue. Tight-skin mice [53, 54], pallid mice [55], and beige mice 

[56] were reported to be models. COPD mimic models by genetically altered techniques have 

been reported such as the overexpression of collagenase in the lung of transgenic mice [57], 

the deficiency of the microfibrillar component fibulin-5 and the deficiency of platelet-derived 
growth factor A (PDGF-A) [58, 59], epithelial restricted integrin αvβ6 knockout mice [60], 

fibroblast growth factor (FGF) receptor (FGFR)-3, and FGFR-4-double knockout mice [61]. 

Mice lacking the surfactant protein D (SP-D) gene [62] and the tissue inhibitor of metallopro-

teinase-3 (TIMP-3) gene [63] showed COPD-like lesions. These gene-targeted mice provided 

useful information for understanding the pathogenesis of COPD. However, none of these 

mice showed the same pathologic changes as those seen with human COPD.

7. Pseudomonas aeruginosa as the pathogenesis for chronic 

obstructive pulmonary disease

Chronic inflammation also plays a pivotal role in its development. Administration of lipo-

polysaccharide (LPS) to the lungs induced severe inflammation and resulted in airspace 
enlargement [64, 65]. COPD-like changes, such as goblet cell metaplasia in the larger air-

ways, thickening of the airway walls, and irreversible alveolar enlargement, were attained by 
repeated administration of LPS [66, 67]. Tumor necrosis factor (TNF)-alpha is a proinflamma-

tory cytokine induced by stimuli such as LPS. We reported that TNF-alpha overexpression 

mice in the lungs demonstrated pulmonary emphysema-like changes [68, 69]. MMP activa-

tion induced alveolar enlargement [68]. Chronic inflammation by TNF-alpha overexpression 
is considered to play an important role in the development of COPD. Several reports have 

found that the overexpression of inflammatory cytokines, such as IL-13 and IFN-gamma, 
resulted in pathologic changes mimicking human COPD [70–72]. These reports also sup-

ported the hypothesis that chronic inflammation in the lungs leads to lung tissue destruction, 
a hallmark of pulmonary emphysema, and chronic bronchitis.
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We therefore investigated the role of chronic inflammation in the pathogenesis of COPD. 
P. aeruginosa induced chronic inflammation as previously described. We hypothesized 
that chronic inflammation, specifically that induced by P. aeruginosa, contributed to the 

pathogenesis of COPD. To test this hypothesis, pathophysiological changes due to chronic 

P. aeruginosa infection in club cell secretory protein (CCSP)-deficient mice were investi-
gated [73]. The nonciliary bronchial epithelium as well as the uterine and urethral ducts 

expresses CCSP proteins [74]. The anti-inflammatory response could be speculated as the 
role of CCSP [75]. Therefore, we consider CCSP-deficient mice to be a model susceptible 
to chronic infection. CCSP-deficient mice with single administration of P. aeruginosa dem-

onstrated similar result to wild-type mice [76]. We used P. aeruginosa-colonized catheter 

methods [73]. This chronic status of P. aeruginosa infection continued for more than 5 weeks. 

As a result, these deficient mice showed more severe inflammation in response to chronic 
P. aeruginosa infection than wild-type (WT) mice, and their bronchi were markedly ste-

notic (Figure 1). The mean linear intercept, destruction index, and lung compliance in the 

CCSP-deficient mice were significantly higher than those in the wild-type mice (Figure 2).  

Severe inflammation leads to the destruction of the alveolar wall, and bronchial stenosis 
leads to air trapping (Figure 3). Chronic infection of P. aeruginosa in CCSP-deficient mice 
demonstrated COPD-like changes [73]. Recent studies attempting to characterize COPD 
have shown that CCSP is strongly related to COPD progression [77, 78]. CCSP has been 

reported to play a role in the modulation of pulmonary inflammation during the infection 
and recovery phases. Our study revealed the important role of CCSP in the chronic infec-

tion phase. Chronic P. aeruginosa infection might play a distinctive role in the pathogen-

esis of COPD. However, several limitations exist. Mice have less airway branching than 
humans and lack respiratory bronchioles. Major species differences between murine and 
human lung morphogenesis and discrepancies in both the innate and adaptive immunity 

between the human and murine immune systems exist [79, 80]. We should consider the 

limitations carefully.

Recently, macrolide treatment has been reported to protect against acute exacerbation. Among 

some subjects with COPD, taking azithromycin daily for 1 year, when added to the usual 

Figure 1. Histology of lungs after chronic P. aeruginosa infection. Inflammatory cells infiltrated around the bronchioles 
and the alveoli septa. The CCSP-deficient model (CCSP−/−) showed bronchial constriction and alveolar enlargement 
compared to the wild-type model.
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treatment regimen, reduced the frequency of exacerbations and improved the quality of life 

[81]. Macrolides are known to modulate the inflammation, the so-called immunomodulatory 
effect, besides antimicrobial effects. In Japan, macrolides are used to treat chronic  infection 

Figure 2. Pulmonary physiology after chronic P. aeruginosa infection. (A) Chronic P. aeruginosa infection in CCSP-

deficient mice (CCSP−/−) resulted in an increase in the mean linear intercept compared to that in wild-type (WT) mice. 
Furthermore, the CCSP-deficient mice demonstrated a severe destructive index (B). (C) CCSP(−/−) induced elevated 
pulmonary compliance compared with WT mice. These results indicate that chronic P. aeruginosa infection in CCSP-

deficient mice induced COPD-like changes.

Figure 3. Schematic illustrations of COPD-like changes induced by chronic P. aeruginosa infection. (A) When P. aeruginosa 

infected the bronchus, CCSP was secreted from club cells to suppress the inflammation. (B) Since CCSP-deficient 
mice could not suppress the inflammation through CCSP secretion, serious inflammation occurred. (C) As a result, 
the bronchus became stenotic, and air trapping occurred. Air trapping progressed, and the alveoli were destroyed. 

(D) Alveolar destruction due to inflammation also occurred. Finally, the CCSP-deficient mice demonstrated COPD-like 
changes.
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with P. aeruginosa, such as diffuse panbronchiolitis (DPB). These agents might therefore mod-

ulate the chronic inflammation induced by P. aeruginosa. Further studies are needed to clarify 

the pathogenesis of COPD. We should seek out direct evidence that chronic P. aeruginosa 

infection is related to the pathogenesis of COPD.

8. Conclusion and future directions

P. aeruginosa infection had never been reported as the pathogenesis of COPD. However, we 

showed that chronic infection of P. aeruginosa contributed to COPD pathogenesis. P. aeru-

ginosa is also a major factor influencing the severity of symptoms, acute exacerbation, and 
progression of COPD. Treating chronic P. aeruginosa infection may become a new strategy for 

treating COPD.
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