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Abstract

Obtaining surface spatio-temporal data rapidly, automatically and accurately is an impor-
tant issue in agriculture informationization and intellectualization. Samples obtained 
by conventional manual visual interpretation are difficult to adapt the demands of land 
resources information extraction. Low altitude remote sensing technology as a kind of 
emerging technology for earth observation in recent years. Based on this, spatio-temporal 
data mining technology was introduced, and knowledge transfer learning mechanism 
was used, a novel landuse information classification method based on knowledge transfer 
learning (KTLC) was proposed. Firstly, new image was segmented by improved mean 
shift algorithm to obtain image objects. Secondly, the vector boundary of the objects 
and former historical landuse thematic map were matched and nested, invariant objects 
were obtained through overlay analysis, and purification of invariant object was finished 
by spectral and spatial information threshold filtering. The historical features category 
knowledge of thematic map was transferred to the new image objects. Finally, current 
images classification mapping was completed based on decision tree, and landuse clas-
sification mapping results were completed by the KTLC and eCognition for landuse infor-
mation mapping classification (EC). The experimental results showed that KTLC could 
obtain accuracies equivalent to EC, and also outperforms EC in terms of efficiency.

Keywords: low-altitude remote sensing technology, land use information, classification 
mapping, invariant objects acquisition, knowledge transfer learning, prior knowledge
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1. Introduction

It is an issue in agricultural informatization and intellectualization to collect surface spatio-

temporal data rapidly and accurately. In general, the data sources selected during agricul-
tural information background investigations (such as basic farmland area monitoring and 
crop planting structure investigation) are satellite images [1–5]. However, it is hard to collect 
the required image data continuously in cloudy and foggy regions (such as Sichuan Basin, 
China) as satellite sensors are affected by weather conditions. Satellite images generally have 
low spatial resolution, so it is hard to identify the scattered and discontinuous small pieces 
of cultivated land for precise agricultural land monitoring [6, 7]. Meanwhile, land use infor-

mation is still obtained and updated by means of manual interpretation currently, resulting 

in large workload and low efficiency. Although some scholars have proposed the automatic 
interpretation method, and large workload is also required for manual sampling. Therefore, it 
is far behind real automation. In consequence, higher requirements are placed on data source 
resolution and information extraction technologies. Under such circumstance, low-altitude 
remote sensing technology is represented by UAVs emerges. Compared with the conventional 
aerial photography crafts, UAVs have the following advantages: rapid take-off and landing, 
repetitive operations, low cost for image collection, and high spatial resolution of collected 
images [8–10]. As the UAV equipped with the low-altitude remote sensing technology can pro-

vide images with centimeter-level resolution at low cost, it has great application potential for 
basic farmland protection areas with high requirements on accuracy of land use information.

With rapid development of remote sensing technologies, the spatial resolution of collected 
remote sensing images is increasingly high. On the high-resolution images collected by apply-

ing low-altitude remote sensing technology, more spectral information of surface features can 
be obtained, and spectra difference of similar surface features become large while that of dif-
ferent land types is reduced. Besides, the phenomenon of same feature with different spectra 
and different features with same spectrum becomes more common. Due to the number of 
details identified on images and the complication of spectral characteristics of surface features, 
the accuracy of classification methods (such as maximum likelihood method, minimum dis-

tance method, and k-means clustering algorithm) based on conventional spectrum statistics 
characteristics is lowered [11]. Baatz and Schape [12] put forward the object-oriented remote 
sensing image classification method based on the characteristics of high-resolution images. 
With the growing popularity of images with high spatial resolution, the object-oriented analy-

sis method is gradually replacing the conventional pixel-based analysis method [13]. With 
the objectification technology, spectra, shape, and texture information can be collected effec-

tively and further integration of hierarchical relationships or semantic information can be real-
ized. Therefore, it is more aligned with the visual image interpretation principles and process 
[14, 15]. A number of studies [16–18] prove that the object-oriented classification method has 
great potential in the improvement of automatic extraction of high-resolution remote sensing 
images, and that it is an ideal choice for automatic classification of high-resolution images.

Current knowledge transfer methods can be classified into four categories, that is, instance trans-

fer, characteristics transfer, parameter transfer, and associated-knowledge transfer [19, 20]. In 

this chapter, by combining associated-knowledge transfer, a transfer method for surface feature 
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category labels (associated knowledge) based on the detection of invariant objects is designed 
for classified mapping of high-resolution images collected by applying the low-altitude remote 
sensing technology. The “category interpretation knowledge of invariant surface features” is 
migrated from the source domain to the target domain by obtaining invariant surface features 
on new images through matching and nesting of the new land use images and the previous 
time-phase thematic vector maps and by transferring the surface feature category label knowl-
edge integrated in the previous time phase to the new images. It is used to set up a new charac-

teristic—surface feature mapping relationship. In this way, this chapter proposes a method for 
classified mapping of land use information on high-resolution remote sensing images.

2. General information on study area and data

The study area is located in the basic farmland protection area in Lianshan Town, Guanghan 
City, Sichuan Province, China. The parent materials of soils in Guanghan City are either weath-

ered bedrock matters or loose deposits. The area with soil thickness greater than 100 cm and less 
than 30 cm, respectively, takes up 7.43 and 1.5% of the total cultivated area. Most soils feature 
good arability, long arable period, and good fertilizer preservation and supply performance, 

providing a large arable area. However, Guanghan City has a large population with relatively 
less land. It covers 548 km2 in total with a total population of 600,000. Its agricultural area is 

Figure 1. Location of the Guanghan City selected for the experimental purpose.

Land Use Information Quick Mapping Based on UAV Low-Altitude Remote Sensing Technology…
http://dx.doi.org/10.5772/intechopen.74475

121



only 34,000 hm2, with cultivated land area of 3.1 hm2 and basic farmland protection area of 

28,000 hm2. Based on the state standards for land use classification and in combination with local 
conditions, the study area mainly includes six categories of land, that is, cultivated land, forest 
land, residential land, road, water, and other land. Figure 1 shows the location of the study area.

Considering that the study area is gentle in terrain and therefore convenient for take-off and 
landing, the ejection-type fixed-wing UAV is selected for the experimental purpose. Canon 
EOS 5D Mark II is carried on the flying platform and the preset forward overlap and side 
overlap are 75 and 45%, respectively. The flight altitude is 600 m, and the camera focal length 
is 24.49 mm. The collected UAV images have a spatial resolution up to 0.2 m. The thematic 
land use maps in previous time phase were drawn in June 2014, as shown in Figure 2a and b. 

They were taken by UAV in July 2015. To better verify the efficiency and applicability of the 
method, two typical hybrid UAV images of different land types (i.e., “complex building—cul-
tivated land” hybrid image as shown in Figure 2c and “forest land—cultivated land” hybrid 
image as shown in Figure 2d) are selected in this chapter.

Figure 2. Preliminary thematic land use map and experimental UAV images. (a) Preliminary thematic land use map 
of experimental image 1. (b) Preliminary thematic land use map of experimental image 2. (c) Experimental image 1.  
(d) Experimental image 2.
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3. Working process and study method

3.1. Working process

The collected original UAV images are preprocessed, including color uniformizing, light uni-
formizing, and generation of orthoimages. After preprocessing, image objects are identified 
after multi-resolution segmentation of the to-be-classified images by applying the improved 
mean shift algorithm. Next, the vector boundaries of segmented objects are matched and 
nested with the thematic land use maps in previous time phase. Invariant objects on current 
images are identified through overlay analysis so as to weed out wrong invariant objects 
based on the spectral and spatial information thresholds. At last, the categories of invari-
ant surface features are transferred to the current target images through transfer learning. 
Classification rules are established with the decision tree so as to carry out classified mapping 
with current images rapidly. In addition, a comparison is made with the classified mapping 
directly using object-oriented classification software (eCognition).

3.2. Preprocessing of image data

The digital camera on UAV is of non-metric type, so the images are subject to serious lens 
distortion. Therefore, distortion correction shall be carried out based on the distortion param-

eters of the camera [21, 22]. Meanwhile, exposure time intervals and different weather condi-
tions in the flight course will result in chromatic aberration, so color and light uniformizing 
shall be carried out with the mask method. Based on the aircraft attitude parameters recorded 
by the flight control system, preliminary image sorting and positioning can be carried out for 
matching homologous points of adjacent image pairs. After matching homologous points, 
block adjustment can be made based on the conditions of collinearity equation. After that, the 
coordinates of ground control points may be incorporated to realize absolute orientation so 

as to obtain the corrected orthoimages. It provides high-accuracy orthoimage data for subse-

quent rapid updating and mapping of land use information.

3.3. Mapping method (KTLC) of land use information based on transfer learning

3.3.1. Calculation of improved mean shift segmentation and image/spectral features of objects

First of all, the preprocessed UAV images are divided into texture domain and homochromatic 
domain. The latter is obtained by applying the mean shift algorithm directly while the former 
is segmented by applying the mean shift algorithm after appropriate bandwidth is obtained 
based on the normalized distribution density. Next, based on the established cost function, 
a decision on merging of adjacent domains is made to eliminate over-segmentation domain. 
Refer to reference [23] for the improved mean shift segmentation algorithm selected in this 
chapter. Afterwards, the vector boundaries of segmented objects are matched and nested with 
the thematic land use maps in previous time phase, allowing them to be under the consis-

tent spatial reference conditions. Invariant objects are further identified on the current images 
through overlay analysis. After image segmentation, object features have to be calculated so as 
to ensure the smooth progress of the subsequent classification work. In this chapter, 18 features 
listed in Table 1 are calculated based on the spectral, shape, and textural features.
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Spectral features Shape features Textural features

Description Spectrum or 

space

Interpretation Description Spectrum or 

space

Interpretation Description Spectrum or 

space

Interpretation

R_Mean Spectrum Mean value of red spectral 

band

L/W Space Length-width 
ratio

GLCM_H Space Homogeneity

G_Mean Spectrum Mean value of green spectral 

band

Geo_L Space Object length GLCM_E Space Entropy

B_Mean Spectrum Mean value of blue spectral 

band

Geo_W Space Object width GLCM_C Space Contrast ratio

R_Dev Spectrum Standard deviation of red 

spectral band

Border_L Space Side length of 
object

GLCM_V Space Variance

G_Dev Spectrum Standard deviation of green 

spectral band

Compact Space Compactness GLCM_D Space Heterogeneity

B_Dev Spectrum Standard deviation of blue 

spectral band

Num_P Space Number of pixels GLCM_A Space Angular second moment 
(ASM)

Table 1. Spatial and spectral features of objects.
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3.3.2. Purification of invariant object samples

It shall be noted that a mistake may be made when invariant objects on the current images are 
identified through overlay analysis. To this point, relevant rules shall be designed to weed out 
wrong invariant objects. In this chapter, invariant objects are purified based on the spectral 
and spatial information. Specifically, object purification is judged by calculating the distance 
(difference value) between the mean brightness of image elements and the center of object 
brightness value (mean value), that is:
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i
      and,   B   x  

i
     —object brightness in red, green, and blue spectral bands, respectively; 

  M   μ  
i
     —mean value of object sample brightness;   δ  

i
   —spectral standard deviation of image ele-

ments in each object.

Considering the spatial information, a wrong object can be judged by checking whether the 
spectral standard deviation of image elements in each object exceeds the limits.
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   —the maximum image brightness in red, green, and blue spectral bands, 

respectively. If the selected invariant object meets both Eqs. (1) and (2), it is a reliable invariant 
object; otherwise, it is an unreliable invariant object and shall be weeded out.

3.3.3. Associated-knowledge transfer learning and rapid classified mapping

After collection and purification of object samples regarding current target images, the best 
feature combination and classification model are selected for supervised classification based 
on the calculated image and spectral features. There are many methods regarding feature 
optimization selection and classification models. To ensure simplification while considering 
efficiency, in this chapter, the practice regarding feature optimization selection and classifica-

tion model are conducted by adopting the decision tree algorithm. Then, judgment rules are 
established for classification purpose so as to complete classified mapping of current images.

3.4. EC method

To verify reliability of the proposed method, classified mapping of land use information is 
carried out with the widely applied eCognition 8, and a comparison is made with the results 
obtained from the KTLC method. Image segmentation shall be conducted, and then classified 
mapping of the segmented image objects may be carried out. Given that the standard nearest 
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neighbor classification method is simple, efficient, and extensively applied, and it is adopted 
for classified mapping with the EC method in this chapter. Specific mapping method is as fol-
lows: first, select a sample object and carry out statistical analysis to obtain textural/spectral/
shape features, information on adjacent domains, etc. for establishment of multi-dimensional 
feature space; second, calculate the distance between the to-be-classified object and the sam-

ple; and finally, judge which one of the to-be-classified objects are closest to a sample based on 
the feature distance relationship and membership function, and then incorporate such object 
into the corresponding category.

4. Results and analysis

4.1. Rapid classified mapping

Based on the principles in Section 2.1, spectral and spatial scale parameters are taken as 7 
and 10, respectively, for the improved mean shift segmentation. The segmentation results 
obtained by applying the improved mean shift algorithm are shown in Figure 3.

The vector boundaries of segmented objects are matched and nested with the thematic land 
use maps obtained in June 2014. Invariant objects are identified through overlay analysis and 
purified based on the spectral and spatial information to weed out the wrong ones. In addi-
tion, the categories of invariant surface feature objects are transferred to the current target 
images through knowledge transfer learning. Finally, the image/spectral features of invariant 
objects are subject to optimization selection by using a decision tree. Classification rules are 
established for classified mapping of the land use information. Figure 4a and b shows the 
results of classified mapping with the KTLC method.

In the experimental process, segmentation parameter settings are as follows based on the 
principles in Section 2.3: segmentation scale parameter: 90; color/shape parameter: 0.5/0.5; 
and smoothness/compactness parameter: 0.5/0.5. Figure 4c and d shows the results of classi-
fied mapping of land use information with the EC method.

4.2. Evaluation on precision and efficiency

In general, the precision evaluation of classification results is classified into qualitative eval-
uation and quantitative evaluation. For qualitative evaluation, a consistence comparison 

between the pattern spots after classification and the actual surface feature is mainly carried 
out. It is strongly subjective. For quantitative evaluation, overall precision, Kappa coefficient, 
and the like are mainly calculated [24, 25]. Due to high spatial resolution of UAV images, 
verification data can be directly obtained through visual interpretation. To get more objective 
evaluation results, verification points are obtained with the following method in this chapter: 
first, draw a 20 × 20 regular grid with an area equal to the image area in the experiment; then, 
generate 10 random points in each grid; and finally, determine the land use type at each ran-

dom verification point through visual interpretation. For experimental image 1, totally 395 
valid verification points are obtained; for experimental image 2, totally 382 valid verification 
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Figure 3. Segmentation results based on the improved mean shift method. (a) Segmentation result of experimental 
image 1. (b) Segmentation result of experimental image 2.

Figure 4. Results of classification mapping based on the two methods. (a) Result of experimental image 1 based on the 
KTLC method. (b) Result of experimental image 2 based on the KTLC method. (c) Result of experimental image 1 based 
on the EC method. (d) Result of experimental image 2 based on the EC method.
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points are obtained. These verification points are overlapped with the classification results to 
judge whether the results of classified mapping are correct. Upon calculation, for experimen-

tal image 1, the overall classification precision of the KTLC method is 88.61% and the Kappa 
coefficient is 0.86; the overall classification precision of the EC method is 89.87% and the 
Kappa coefficient is 0.87. Tables 2 and 3 show the detailed results. For experimental image 2,  
the overall classification precision of the KTLC method is 88.30% and the Kappa coefficient is 
0.82; the overall classification precision of the EC method is 84.84% and the Kappa coefficient 
is 0.79. Tables 4 and 5 show the detailed results.

Experimental image 1 is a “complex building-cultivated land” hybrid image. It can be learned 
from Tables 2 and 3 that the KTLC method and the EC method have high separation precision 
in terms of building land and cultivated land with crops and without crops. It indicates that 
these three types of land are highly separable on such images with high spatial resolution. In the 
KTLC method, the classification precision of forest land and roads is 74.14 and 69.23%, respec-

tively, which is lower than that of the EC method. However, its classification precision of any 
land types is not extremely low, and it has high classification precision in terms of cultivated 
land with crops, building land, and waters (98.15, 94.25 and 100%, respectively). As a result, the 
overall precision of the KTLC method is up to 88.61%, which is comparable with that (89.87%) 
of the EC method. Experimental image 2 is a “forest land—cultivated land” hybrid image. It can 
be learned from Tables 4 and 5 that both the KTLC method and the EC method result in many 
errors in separation of forest land and cultivated land with crops due to high spectrum and tex-

ture similarity of these two types of land. The classification precision can be improved if more 
reliable samples are used during transfer learning. The overall precision of the KTLC method is 
88.30%, which is slightly higher than that (84.84%) of the EC method, especially for forest land, 
cultivated land without crops, and waters (91.95, 90.77 and 100%, respectively).

Forest 

land

Cultivated 

land with 

crops

Cultivated 

land without 

crops

Road Residential 

land

Other 

land

Water

Forest land 43 12 1 0 2 0 0

Cultivated land with crops 2 106 0 0 0 0 0

Cultivated land without crop 0 4 36 0 1 2 0

Road 0 0 0 18 5 3 0

Residential land 0 0 0 2 82 3 0

Other land 2 0 5 1 0 53 0

Water 0 0 0 0 0 0 12

Producer’s precision/% 91.49 86.89 85.71 85.71 91.11 86.89 100

User’s precision/% 74.14 98.15 83.72 69.23 94.25 86.89 100

Overall precision = 88.61%; Kappa coefficient = 0.86

Table 2. Confusion matrix of accuracy for experimental image 1(KTLC method).
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Besides, after review of the error-related sample points in the results of classified mapping, 
it is discovered that some of the sample points are located at the boundary of two different 
land types (because random sample points on a 20 × 20 regular grid are adopted in the chap-

ter), and therefore they are difficult to-be-classified. Therefore, if the errors caused by visual 
interpretation can be eliminated, the precision of classified mapping can be higher than that 
listed in Tables 2–5.

Forest 

land

Cultivated 

land with 

crops

Cultivated 

land without 

crops

Road Residential 

land

Other 

land

Water

Forest land 46 6 0 0 0 0 0

Cultivated land with crops 3 101 0 0 0 0 0

Cultivated land without crop 0 4 30 0 0 4 0

Road 0 0 0 14 4 2 0

Residential land 1 0 1 3 90 4 0

Other land 1 0 6 0 0 63 1

Water 0 0 0 0 0 0 11

Producer’s precision/% 90.20 90.99 81.08 82.35 95.74 86.30 91.67

User’s precision/% 88.46 97.12 78.95 70.00 90.91 88.73 100

Overall precision = 89.87%; Kappa coefficient = 0.87

Table 3. Confusion matrix of accuracy for experimental image 1(EC method).

Forest 

land

Cultivated 

land with 

crops

Cultivated 

land without 

crops

Road Residential 

land

Other 

land

Water

Forest land 137 11 0 0 1 0 0

Cultivated land with crops 15 82 2 0 0 0 0

Cultivated land without crop 0 4 59 0 0 2 0

Road 0 0 0 11 2 0 0

Residential land 2 0 0 2 15 1 0

Other land 1 0 6 0 1 12 0

Water 0 0 0 0 0 0 16

Producer’s precision/% 88.39 84.54 88.06 84.62 78.95 80.00 100

User’s precision/% 91.95 82.83 90.77 84.62 75.00 60.00 100

Overall precision = 88.30%; Kappa coefficient = 0.82

Table 4. Confusion matrix of accuracy for experimental image 2(KTLC method).
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Forest 

land

Cultivated 

land with 

crops

Cultivated 

land without 

crops

Road Residential 

land

Other 

land

Water

Forest land 141 10 2 0 0 1 0

Cultivated land with crops 20 74 0 0 0 0 0

Cultivated land without crop 0 1 51 0 1 2 0

Road 0 0 0 8 4 1 0

Residential land 1 0 0 1 16 2 0

Other land 4 0 7 1 0 14 0

Water 0 0 0 0 0 0 15

Producer’s precision/% 84.94 87.06 85.00 80.00 80.00 70.00 100

User’s precision/% 91.56 78.72 92.73 61.54 80.00 53.85 100

Overall precision = 84.8%; Kappa coefficient = 0.79

Table 5. Confusion matrix of accuracy for experimental image 2(EC method).

For efficiency of classified mapping, with two groups of experimental data as examples, the 
efficiency of the KTLC method and the EC method is shown in Table 6 under the conditions of 
Intel Core i7 2.4GHz,4GB memory and Windows 7 environment. It can be discovered that the 
KTLC method saves much time in obtaining object samples on the premise of ensuring high 
precision, so its efficiency is greatly improved when compared with the EC method.

5. Conclusion

In this chapter, a method for rapid classified mapping of land use information on high-resolution 
remote sensing images is studied in the knowledge transfer mechanism. Compared with the 
extensively used methods for classified mapping with the software eCognition, the KTLC method 
proposed in this chapter effectively combines machine learning, knowledge accumulation, and 
agricultural remote sensing field. In addition to providing classification results comparable with 
those of the EC method, the KTLC method also improves efficiency greatly, and thus improving 
the automation level of classified mapping of land use information. It has great application pros-

pect to fully explore the relationship between the historical data and current data. The studies in 
this chapter provide new ideas for quick collection of land use information in key areas in respect 
of agricultural remote sensing field.

Methods Consumption time of experimental image 1/h Consumption time of experimental image 2/h

KTLC 0.5 0.7

EC 1.2 1.3

Table 6. Comparison of efficiency based on two methods.
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