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Abstract

During the last three decades, intensive campaigns and experiments have been con-
ducted for acquiring micrometeorological data in the Amazonian ecosystems, which has 
increased our understanding of the variation, especially seasonally, of the total energy 
available for the atmospheric heating process by the surface, evapotranspiration and 
carbon exchanges. However, the measurements obtained by such experiments generally 
cover small areas and are not representative of the spatial variability of these processes. 
This chapter aims to discuss several algorithms developed to estimate surface energy 
and carbon fluxes combining satellite data and micrometeorological observations, high-
lighting the potentialities and limitations of such models for applications in the Amazon 
region. We show that the use of these models presents an important role in understand-
ing the spatial and temporal patterns of biophysical surface parameters in a region where 
most of the information is local. Data generated may be used as inputs in earth system 
surface models allowing the evaluation of the impact, both in regional as well as global 
scales, caused by land-use and land-cover changes.

Keywords: surface energy budget, CO
2
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Amazon region
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1. Introduction

Amazon rainforests directly influences the terrestrial climate system due to the emission or 
absorption of carbon dioxide (CO

2
) and evapotranspiration (ET), that is, through the processes 

of transpiration of plants and evaporation of water contained in leaves, stems, litter and soil 
[1, 2]. In addition to providing water vapor to the environment, influencing the general cir-

culation in the tropics and contributing to regional precipitation, the Amazon rainforests are 

important in the atmospheric carbon cycle [3, 4]. Consequently, deforestation in the Amazon 

can lead to changes in surface net radiation (R
n
), resulting in higher or lower availability of 

energy for the evapotranspiration processes and in the amount of CO
2
 absorbed or released 

by the atmosphere [5–7].

The relevance of physical phenomena related to energy exchanges between the surface and 

atmosphere under climate change leads to the need for improving studies on both temporal 

as well as spatial scales [8, 9]. During the last three decades, intensive campaigns and experi-

ments have been developed for acquiring micrometeorological data in the Amazonian ecosys-

tems, which has increased our understanding of the variations, especially seasonally, of the 

total energy available for the atmospheric heating process by the surface, ET and atmospheric 

CO
2
 exchanges [10, 11]. However, measurements obtained by such experiments are usually 

local and representative of small areas, and therefore not representative of the spatial vari-

ability of these processes [12, 13].

In this context, new methodologies have been developed to obtain the components related to 

energy and CO
2
 exchanges between the surface and atmosphere, such as the use of remote sens-

ing (RS). Usually, the use of orbital sensors to estimate energy and CO
2
 fluxes are performed 

using models that consider information obtained directly from the satellite images as inputs, 

such as reflectance and land surface temperature (LST) [14, 15]. Regarding the estimation of 

surface energy fluxes, several algorithms have been developed, such as the Simplified Surface 
Energy Balance Index (S-SEBI) [16] and Evapotranspiration Assessment from Space (EVASPA) 

[17]. To estimate CO
2
 fluxes, we can highlight Parametric Production Efficiency Model (C-Fix) 

[18] and Temperature and Greenness Rectangle Model (TGR) [19]. These models were applied 

in different terrestrial biomes; however, it is worth mentioning that in the Amazon region such 
approach for the determination of energy and CO

2
 fluxes using RS data is still incipient [20–25].

Based on the considerations above, this chapter aims to present and discuss several models 

developed to estimate surface energy and CO
2
 fluxes by combining satellite data and micro-

meteorological observations, highlighting the potentialities and limitations of such models for 

applications in the Amazon region.

2. Biosphere-atmosphere interactions studies in the Amazon region 

using in-situ measurements

Since the 1980s, a series of micrometeorological experiments have been conducted in the 

Amazon region aiming to better understand the interactions between the rainforests and 
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the atmosphere (i.e. Amazonian Research Micrometeorological Experiment (ARME, 1983–
1985) [26], Amazonian Boundary-Layer Experiment (ABLE, 1985–1987) [27], Anglo-Brazilian 

Amazonian Climate Observational Study (ABRACOS, 1991–1995) [28], and Green Ocean 

Amazon Experiment (GO-AMAZON, 2014–2015) [29]). Currently, the main source of sur-

face measurements in the region is the Large-Scale Biosphere-Atmosphere Experiment in 
Amazonia (LBA) [30]. LBA has sites on different land-use locations in the states of Rondonia 
(RO), Amazonas (AM), Para (PA) and Tocantins (TO). LBA data have been used to analyze the 
current state of the Amazonian ecosystem, as well as to serve as input and validation param-

eters for climate prediction numerical models [31].

Typical variables collected at these surface experiments are incoming solar radiation (K↓), 

outgoing solar radiation (K↑), albedo (α
s
) [32, 33], incoming (L↓) thermal infrared (TIR) radia-

tion, emitted TIR (L↑), net radiation (R
n
) [34, 35], soil heat flux (G), sensible heat flux (H), 

latent heat flux (λE) [10, 36], and the net ecosystem exchange (NEE) [5, 37]. It is important to 

mention that most of the observational studies in the Amazon region have been performed 

over primary forest and pasture areas. In this context, one way to extend such analyses to the 

diverse ecosystems of the Amazon is the combined use of surface measurements (i.e. plot-

level and flux towers biometric studies) and RS data [38, 39].

3. Modeling energy and CO
2
 fluxes combining remote sensing and 

ground data

The frequency at which satellite data are obtained and processed, combined with the pos-

sibility of regional and global studies, provides an excellent cost-benefit ratio. In recent years, 
there has been a gradual advance in the technical characteristics of the sensors onboard orbital 

platforms, which present increasingly improved spatial, temporal, radiometric, and spectral 

resolutions. Within this context, the scientific community has used orbital data to estimate 
surface biophysical and hydrological parameters using different algorithms. Focusing on the 
estimation of energy and CO

2
 fluxes using RS and ground observations, this topic presents the 

main models available in the literature that can be applied in the Amazon region.

3.1. Models to estimate energy fluxes

First studies to estimate energy fluxes using RS date back to the 1970s [40], driven by the 

limited spatial density of surface measurements, which prevented more robust large-scale 

studies [41]. Currently, studies are focused not only in the estimation but also on describing 

the land-vegetation-atmosphere energy exchange processes in order to better understand, for 
example, the feedback mechanisms between the surface and the boundary layer. This issue is 
gaining importance due to potential climate change [42].

Energy fluxes models differ according to the input data, assumptions and accuracy of the 
results [43, 44]. However, a common aspect among the algorithms is the orbital input data, 

once all algorithms require information regarding the visible, near infrared and thermal infra-

red spectral regions. The primary estimates from such models are related to R
n
, G, H, λE and, 
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consequently, ET. ET is considered a key variable in such models, and, likewise, the most com-

plex variable when referring to the accurate estimate. Figure 1 [25] exemplifies ET estimates in 
the Amazon region obtained through MODIS images. Briefly, according to Ruhoff et al. [45], 

such algorithms are based on (1) empirical and statistical methods, (2) residual energy balance 

methods, and (3) other physical methods (i.e. Penmann-Monteith equation [46]).

3.1.1. Surface energy balance algorithms for land (SEBAL)

SEBAL [47] is a model based on empirical relationships and physical parametrizations. It was 

developed to estimate the energy available at surface using daily orbital data and minimal 

field measurements. Input variables are related to air temperature and wind speed during the 
satellite passing. SEBAL has been improved since its conception, for example, with the addi-
tion of new parametrizations such as those for α

s
 [48], and G [49].

The algorithm consists of several steps, with R
n
 being the first component of the energy balance to 

be obtained. Following R
n
, it is possible to estimate G (as a function of R

n
, normalized difference 

Figure 1. Obtained from the study of De Oliveira et al. [25]. Monthly averages of evapotranspiration (ET) (mm month−1), 

between the years 2001 and 2006, in the eastern flank of the Amazon region, using MODIS images. The black dashed 
circles show the spatial pattern of deforestation in the Amazon, known as the fish bone.
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vegetation index (NDVI), α
s
, and land surface temperature (LST)), and H, which requires the deter-

mination of pixels representing extreme conditions of temperature and humidity in the study area, 

referred to as hot and cold pixels. The determination of hot and cold pixels is an issue, where the lack 
of user-experience can introduce errors, such as defining fire pixels as hot pixels and cloud pixels as 
cold pixels [50]. Recent studies proposed statistical approaches to automatically select hot and cold 

pixels [51]. One of the last steps of SEBAL is the estimation of daily actual ET (ET
r24h

):

   ET  
 r  

24h
  
   = 86400   

 ᴧR  
n24h

  
 _____ λ    (1)

where ᴧ is the evaporative fraction, R
n24h

 is the average daily radiation budget, and λ corre-

sponds to the latent heat of water vaporization (λ = 2.45 × 106 J Kg−1).

SEBAL has been applied and validated in different regions [14, 52–54]. This model is sensitive 

to land-use, allowing for evaluations in agricultural areas, deserts, prairies, and forests [55, 

56]. Regarding the accuracy of the estimates, studies indicate relative errors ranging between 

~5 and 17% [14, 57–59]. The error variation was mostly related to the spatial resolution of the 

satellite images used. Also, it should be highlighted that the main sources of uncertainties 

in SEBAL are related to the determination of H and the low sensitivity of the model to soil 
moisture and water stress [47].

Studies using SEBAL have been conducted in the Amazon region, such as in De Oliveira and 
Moraes [21], De Oliveira et al. [22], Liberato et al. [60], Santos et al. [61], and Ferreira et al. 
[62]. These studies were performed in the southwestern and eastern parts of the Amazon 

using LBA data from the following sites: Fazenda Nossa Senhora Aparecida (FNSA) (RO), 
Reserva Biologica do Jaru (RBJ) (RO), Floresta Nacional de Caxiuana (CAX) (PA), and Floresta 
Nacional do Tapajos (FNT) (PA). Orbital input data were acquired from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites 
and the Thematic Mapper (TM) sensor onboard LANDSAT-5. Results found for Rn were sat-
isfactory, presenting relative errors of ~1–16%. For ET, the errors were higher, in the order 
of ~25%. It should be noted that such studies were conducted over relatively small/medium 

areas (~7500.000 hectares) and some of them covered only pixels where the flux towers were 
located due to the difficulty in acquiring cloud free images.

A possible way to operationalize SEBAL for larger scale studies in the Amazon region is using 
data from 8 or 16 days composites or monthly images from MODIS sensor [63], in which cloud 

cover effects are attenuated. Although considering that the algorithm was developed for daily 
images, difficulties emerge related to the surface input data, which need to be acquired during 
the satellite crossing. In this regard, we highlight the study conducted by De Oliveira et al. [22], 

in which an approach was developed to estimate R
n
 and its components under all-sky conditions 

for the Amazon region through SEBAL model utilizing only RS and reanalysis data. Comparison 
between estimates obtained by the proposed method and observations from LBA towers showed 
errors between ~13–16% and ~11–16% for instantaneous and daily R

n
, respectively. According 

the authors, the approach was an alternative to minimize the problem related to strong cloudi-

ness over the region and allowed for consistently mapping the spatial distribution of net radia-

tion components in Amazonia. In this regard, we highlight that further studies should focus in 

the determination of ET, the most important component of the Amazon hydrological balance.
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3.1.2. Simplified surface energy balance index (S-SEBI)

S-SEBI [16] is a semi-empirical model developed soon after SEBAL, such that both models are 
very similar. The main differences between both models are related to the estimation of ther-

mal infrared radiation emitted from the surface, H and λE [64], which will be discussed further. 

S-SEBI needs spectral radiance orbital data obtained during clear sky conditions from visible, 
near infrared and thermal infrared spectral regions to define the initial variables of the model, 
which are the reflectance, LST and vegetation indices. From these initial variables and the 
inclusion of air temperature data, it is possible to estimate all the energy balance terms [65, 66].

R
n
 is estimated from the residual term of solar radiation and thermal infrared exchanges, and 

G is estimated from the empirical relationship between the characteristics of the surface and 

the vegetation [67]. It is important to highlight that G is one of the components of the energy 

balance equation most difficult to be accurately estimated using RS data. Therefore, regard-

less of the parametrization or the model applied, the equation to obtain G must be adjusted 
locally in order to achieve better results [68]. It is important to mention here that in forested 

areas such variable is not relevant to the energy balance; however, over bare soil or areas with 
sparse vegetation G is an important component of the energy balance.

H and λE are estimated from the evaporative fraction (∋) [16], consisting on the main differ-

ence between SEBAL and S-SEBI models [43]. In S-SEBI, sensible and latent heat fluxes are 
obtained at the same time directly from the ᴧ, while in SEBAL such variables are estimated 
separately. Thus, it is not necessary to select pixels representing the null conditions of the 

fluxes when using S-SEBI. According to Roerink et al. [16], there is a correlation between reflec-

tance and LST in areas presenting constant atmospheric forcings. Therefore, it is assumed that 
the ᴧ varies linearly with LST for a given albedo. By using regressions, it is possible to identify 
the superior (drier, higher H) and inferior (wetter, higher λE) limits of LST. From the instan-

taneous values of H and λE, daily ET can be estimated for the entire image.

Studies based on S-SEBI generally use TM/LANDSAT-5 data and are focused on evaluating 
agricultural areas in Europe and Asia [69–71]. In Brazil, S-SEBI was applied in the semi-arid 

[72] and in the southwestern regions [73]. Errors found in these studies ranged from ~10 to 

30%. It is worth mentioning that S-SEBI usually presents higher errors than those obtained 

from SEBAL, which, according to Sobrino et al. [67], is related to the more robust estimation 

of H in the algorithm proposed by Bastiaanssen et al. [57]. However, there are advantages 

when using S-SEBI, such as the need of only one surface variable input (air temperature). In 

this case, the choice of the algorithm depends on both the availability of surface data and the 

intended application. In relation to Amazonia, a region with a lack of surface observations, 
S-SEBI may be a suitable proposition. Nevertheless, such as pointed out for SEBAL, the ideal 
application of S-SEBI in the region should focus on the use of MODIS composites.

3.1.3. Surface energy balance system (SEBS)

SEBS [74] is a single-source model developed to estimate the atmospheric turbulent fluxes 
using RS data. In single-source models, which also include SEBAL (Section 3.1.1) and S-SEBI 
(Section 3.1.2), the general assumption made is that the radiometric surface temperature 

measured by a radiometer (orbital sensor) is equivalent to aerodynamic surface temperature 

[75]. As discussed in the previous sections, these models are based on the difference between 
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dry and wet limits to estimate ET on a pixel-by-pixel basis. Such limits usually follow these 

characteristics: (1) maximum (minimum) LST, and (2) low or no (high or maximum) ET [41].

To generate such estimates, SEBS requires three types of input datasets. The first dataset 
consists on α

s
, LST, vegetal cover fraction, and leaf area index (LAI) which usually obtained 

from RS images combined with specific information of the study area [76, 77]. Additional 

data includes vapor pressure deficit, air temperature and humidity, as well as wind speed, 
obtained from surface-level stations or reanalysis data. The third dataset is related to the 

incoming solar and thermal infrared radiation fluxes, which can be obtained directly from the 
surface-level measurements or reanalysis data.

Estimates of R
n
 and G follow the same assumptions as SEBAL and S-SEBI, while the estimates of H 

and λE present differences. In SEBS, for the dry limit, λE is assumed as zero (λE
dry

), due to the soil 

moisture limitation, meaning that H reaches its maximum value (H
dry

). Considering the wet limit, 

ET occurs in the potential rate (λE
wet

), and H reaches its maximum value (H
wet

). After the calcula-

tion of H
dry

, H
wet

 and H, based on Monin-Obukhov Similarity Theory [78], the relative evaporation 

and reference evaporation fractions (ᴧ
r
 and ᴧ

ref
, respectively) are obtained from Eqs. (2) and (3).

  ᴧr = 1 −   
H −  H  

wet
  
 ________ 

 H  
dry

   −  H  
wet

  
    (2)

  ᴧref =   
ᴧr  𝜆E  

wet
  
 _____ 

 R  
n
   − G

    (3)

By inverting Eq. (3), it is possible to determinate λE for all pixels of the image. It is worth 
mentioning that during the parametrization of the turbulent processes in the layer immedi-

ately above the vegetation is necessary to define the surface roughness length [79]. Most of 
the algorithms consider a fixed value for the surface roughness length, while SEBS proposed 
a new formulation to define such variable, which, according to Li et al. [43], is one important 

advantage of using SEBS, since H is estimated more accurately.

Several studies have shown the potential of SEBS in daily, monthly and annually estimates of 

ET on local and regional scales [80–83]. Among the studies presented above, we highlight the 

work developed by Jia et al. [80] to estimate ET in the delta of the Yellow river in China. The 

authors used MODIS composites of reflectance, LST, and LAI to obtain ET values for 14 differ-

ent land-use types, achieving mean square errors of ~0.9–1.3 mm. Overall, studies show that the 

errors between SEBS estimates and in situ measurements range between ~8 and 15% [84, 85]. 

Summarizing, SEBS presents advantages when compared to other algorithms, such as the surface 

roughness length estimate and the possibility of using MODIS composites; however, it requires a 
large number of surface parameters, which in regions like the Amazon can be an important issue.

3.1.4. Evapotranspiration assessment from space (EVASPA)

EVASPA [17] is a model developed to estimate ET using RS data considering spatial and 

temporal scales relevant for hydrological studies. Important characteristics of this algorithm 

include: (1) possibility of integrating data from multi-sensors, (2) estimation of the uncertain-

ties, and (3) production of ET maps for days when there are no RS images available. EVASPA 

is based on S-SEBI [16] (Section 3.1.2) and the triangle method [85], which are very similar 
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in general. The study of Gillies et al. [86] provides a review of the principles of the triangle 

method to estimate ET.

EVASPA model is focused on generate ET estimates on the kilometric scale using MODIS sen-

sor data from both Terra and Aqua satellites. However, the algorithm enables the generation 

of estimates using higher spatial resolution sensors, such as TM/LANDSAT 5 and ASTER/
Terra. In this regard, we highlight that this is a relatively recent model where equations for 

higher spatial resolution sensors are still not implemented. EVASPA estimates are generated 

using MODIS daily and eight- or 16-day data regarding α
s
, LST, emissivity, LAI, and vegeta-

tion indices. The surface-level input data required consist in incoming solar and thermal infra-

red radiation. Numerical terrain information is also necessary and is usually obtained from 
the global digital elevation model GTOPO30 (http://edcdaac.usgs.gov/gtopo30/gtopo30.asp).

The model has several equations for each parameter necessary to estimate ET, such as R
n
 [65], 

G [87], and ᴧ [88]. Therefore, different estimates of ET are provided depending on the input 
data, enabling the evaluation of the uncertainties in the estimates of ET. Still, the model con-

tains algorithms to interpolate ET estimates in days without orbital data or cloud cover [89]. 

Consequently, the model is an interesting option for applications in the Amazon, where it is 

difficult to obtain cloud free data in the region. Finally, it is worth mentioning the possibility 
of comparing EVASPA estimates with MODIS global ET product (MOD16) [90], which will be 

discussed in sequence. EVASPA generates as outputs graphics of accumulated monthly and 

annual ET, difference maps, and dispersion diagrams.

Initially, EVASPA validation was performed using in situ data acquired from a site located 

in southern France between 2009 and 2011 [17]. Mean square error corresponded to 0.78 mm, 
while R2 was 0.76. It is noteworthy that both the characteristics of the model (i.e. reduced sur-

face data required and the possibility of estimates for days without RS images available) and 

initial validation results are promising, therefore EVASPA presents a considerable potential 

for application in the Amazon region.

3.2. Models to estimate CO
2
 fluxes

The eddy covariance system is the most common way to evaluate the carbon balance over ter-

restrial ecosystems [91]. However, estimates obtained from such system represent only fluxes 
at the tower scale, which ranges from hundreds of meters to a few kilometers. Therefore, 
many studies have been conducted aiming to understand the processes involving the car-

bon gained from ecosystems through photosynthesis and the carbon loss through respiration 

using RS data and modeling [53].

Most of the models are based on a radiation use efficiency (RUE) approach, although there 
are other empirical approaches. The concept of RUE was proposed by Monteith [92] and later 

became the basis for the use of RS to quantify the vegetation productivity. The algorithms 

are based on the relationship between RUE, absorbed photosynthetically active radiation 

(APAR), fraction of absorbed photosynthetically active radiation (fAPAR), and additional 

environmental variables that may limit photosynthesis [93]. Major difficulties in estimating 
RUE at large areas include dependency of environmental variables and the vegetation charac-

teristics, as well as issues to estimating APAR (i.e. dependency of atmosphere dynamics) [94]. 

The primary outputs of these models are related to gross primary productivity (GPP), net 
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primary productivity (NPP), ecosystem respiration (R
eco

), and net ecosystem carbon exchange 

(NEE). Figure 2 [25] illustrates GPP estimates in the Amazon region using MODIS images.

3.2.1. Carnegie-Ames-Stanford approach (CASA)

CASA [95] is a model based on the processes of carbon assimilation and respiration to esti-

mate NPP using satellite observations. The model incorporates assumptions of most biogeo-

chemical algorithms, that is, CO
2
 fluxes are controlled by ecosystem properties and driven by 

climate variability. The CASA formulation is based on the concept of vegetation greenness 

[96, 97]. Vegetation greenness level can be estimated from vegetation indices derived from 

RS, e.g. NDVI, given the good correlation between these indices with different biophysical 
parameters of the vegetation (i.e. fAPAR, LAI) [98].

CASA estimates NPP from RUE [92]. Thus, plant biomass production is estimated as a product 

of incoming solar radiation (K↓), fAPAR, and a term of radiation use efficiency (ε) (ε = 0.389 g 
C m−2 MJ−1), which is multiplied by scale factors (f) of air temperature (T

air
) and soil moisture 

(w), according to Eq. (4):

Figure 2. Obtained from the study of De Oliveira et al. [25]. Monthly averages of gross primary production (GPP) 
(g C m−2 month−1), between the years 2001 and 2006, in the eastern flank of the Amazon region, using MODIS images. 
The black dashed circles show the spatial pattern of deforestation in the Amazon, known as the fish bone.
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   NPP = K ↓  fAPAR𝜀f ( T  
air

  ) f (w)    (4)

As noted, air temperature and soil moisture are used to reduce the RUE from the maximum 

value. CASA requires surface measurements related to solar radiation, air temperature and 

precipitation as input data. The estimates generated from the model are usually well corre-

lated with NPP obtained from the regional scale field observations; however, when compared 
to specific ecosystems (i.e. agricultural crops, forests and pastures) the correlations are low 
[99]. According to Yu et al. [100], this occurs because maximum RUE from CASA (ε = 0.389 g 
C m−2 MJ−1) is not comparable to the RUE from diverse biomes.

3.2.2. Parametric production efficiency model (C-Fix)

C-Fix [18] is a model based on Monteith [92] and developed to quantify carbon fluxes on 
local, regional and global scales [101, 102]. Similar to CASA (Section 3.2.1), the key-element 
of C-Fix is that the biophysical state of the vegetation cover can be inferred from RS data. 
Therefore, C-Fix is basically derived from three steps: (1) mapping the vigor of the vegetation 
using NDVI estimated from orbital sensors, (2) estimation of fAPAR based on the relationship 
proposed by Myneni and Williams [103], and (3) inclusion of air temperature and incoming 

solar radiation measurements.

C-Fix provides the estimation of GPP, NPP, and net ecosystem productivity (NEP) according 
to the following equations:

   GPP = f ( T  
air

  ) f ( CO  
2,fert

  ) 𝜀fAPARcK ↓     (5)

  NPP = GPP (1 −  R  
a
  )   (6)

  NEP = NPP −  R  
h
    (7)

In Eqs. (5)–(7), f(T
air

) is a normalized factor of air temperature, f(CO
2,fert

) is a normalized fac-

tor of CO
2
 fertilization, ε is the term of radiation use efficiency (ε = 1.10 g C m−2 MJ−1), c is the 

climatic efficiency (c = 0.48) [104], R
a
 is the autotropic respiration, and R

h
 is the heterotrophic 

respiration. Variables R
a
 and R

h
 are obtained from the algorithms proposed by Veroustraete 

et al. [105]. Maximum RUE in C-Fix is constant (ε = 1.10 g C m−2 MJ−1), reduced by the normal-

izing factors of air temperature and fertilization by CO
2
 dependency. Meteorological input 

data for the model are incoming solar radiation and air temperature.

Regarding C-Fix validation, studies indicate a reasonable correlation between fluxes esti-
mated from the model and eddy covariance measurements (R2~0.75) [18]. Recent upgrades in 

C-Fix, such as the insertion of hydric limitation functions have provided an improvement in 
the model performance when compared to field measurements [106]. However, there is a lack 
of studies to precisely evaluate the main sources of uncertainties in the model.

Studies conducted in Europe, using orbital data derived from AVHRR/NOAA and VEGETATION/
SPOT 4 [18, 107], show that the model provided a solid basis for estimating the temporal and 
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spatial distribution of the main components of the carbon budget in forest ecosystems on a 

regional scale. Such results, combined with the performance assessment and the requirement of 

few in situ information, show the potential of applying C-Fix in Amazonia.

3.2.3. Vegetation photosynthesis model (VPM)

VPM [108] was developed to estimate GPP in forest areas using vegetation indi-

ces obtained from optical sensors. During the last three decades, NDVI time series have 
been used in modeling GPP and NPP [109]; however, NDVI presents limitations, such as 
the sensitivity to atmospheric aerosols [110]. The inclusion of spectral bands located in 

the blue and short wave infrared regions in sensors such as the VEGETATION/SPOT 4 
and MODIS/Terra and Aqua enabled the estimation of different vegetation indices that 
reduced some of the limitations and uncertainties imposed when merely using NDVI. In 
view of that, estimates generated from VPM consider EVI [111] and the land surface water 

index (LSWI) [112].

VPM is also based on an RUE approach, however it presents a key difference which is assum-

ing that forest canopy is composed of photosynthetically active vegetation (PAV) (i.e. chloro-

plasts) and non-photosynthetically vegetation (NPV) (i.e. senescent leaves and branches) [97]. 

GPP estimated using VPM is obtained from the following equation:

  GPP = 𝜀f APAR  
PAV

   IPAR  (8)

In Eq. (8), fAPAR
PAV

 is the fraction of photosynthetically active radiation absorbed by PAV, 

and IPAR represents the incoming photosynthetically active radiation. fAPAR
PAV

 is estimated 

as a linear function of EVI [108]. The contribution of fAPAR in fAPAR
PAV

 and fAPARNPV is 

important, since the presence of NPV significantly affects fAPAR at the canopy scale. For 
example, in forests with LAI < 3.0, NPV increased fAPAR by ~10–40% [113]. Also, it is impor-

tant to point out that only fAPAR
PAV

 is used in photosynthesis. Therefore, it is evident that 

this partition is a critical issue when modeling GPP or NPP in forests, considering fAPAR
PAV

 

may substantially increase the estimates. However, most of the CO
2
 fluxes algorithms do not 

incorporate this assumption.

Another highlight of VPM is that the term ε is not constant, as opposed to CASA and C-Fix, 
varying according to the vegetation. ε parametrization in distinct forest formations is given 
by NEE and IPAR measurements obtained from flux towers located in specific sites. Research 
was conducted to define this variable in the boreal forest (ε = 2.21 g C m−2 MJ−1) [108], and also 

in tropical rainforest (ε = 2.48 g C m−2 MJ−1) [114]. Functions of air temperature, phenology, 
and water content of leaves (estimated from LSWI) are used to reduce the scale of ε. Required 
surface information of VPM are air temperature, NEE and IPAR.

Regarding the validation of VPM, Liu et al. [115] obtained R2~0.88 when comparing the 

model outputs with surface measurements, while Jiang et al. [116] found relative errors of 

~59%. According to Xiao et al. [108], the main sources of errors of VPM are related to the 
low sensitivity to PAR and air temperature, as well as the non-correction of the bidirectional 

effects on vegetation indices. VPM was applied to different forest ecosystems across the globe, 
among them, the Amazon rainforest [114]. The study conducted by Xiao et al. [114] used 
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VEGETATION/SPOT 4 and MODIS/Terra and Aqua (daily and 8-day composites) data to gen-

erate estimates of GPP over the FNT/K67 site in the state of Para, Brazil. The model estimates 
showed high NPP in the end of the dry season, which was consistent with the high ET and 
GPP measured by the micrometeorological tower.

VPM presents a high potential for the seasonal estimation of productivity in tropical for-

ests. However, most of the studies using the model generated estimates only for the tower 

pixel and adjacent areas (i.e. 3x3 pixels) [114, 115]. Despite the possibility to retrieve GPP 
locally with a reasonable accuracy [108], the operationalization of VPM for regional analyzes 
requires modifications to the model, mainly related to the estimation of e for distinct forest 
formations and/or large areas.

3.2.4. Temperature and greenness rectangle model (TGR)

TGR [19] was developed to estimate the productivity of terrestrial ecosystems using MODIS/
Terra and Aqua data. The model is based on studies conducted by Rahman et al. [117], in 

which a strong linear correlation between EVI and GPP in different forest formations was 
shown, and Sims et al. [118], which showed that LST can be used to infer the influence of 
water stress on GPP. Thus, TGR uses as inputs EVI and LST derived from MODIS and in situ 
IPAR measurements to estimate GPP on 16-day intervals. Three major aspects of TGR should 
be highlighted: (1) the algorithm strictly follows the RUE concept, (2) it has a low dependency 

of surface measurements, and (3) the overlapping of information in correlated explanatory 

variables is avoided.

Based on the proposition of Monteith [92], GPP in TGR model is estimated according to Eq. (9):

  GPP = ε ∗ f (EVI, L, ST) IPAR  (9)

The term ε* refers to the amount of carbon fixed per unit of IPAR. It should be noted that this 
assumption is different from the traditional definition of RUE, which is the amount of carbon 
fixed per unit of APAR. In TGR, as well as in most of the vegetation productivity models, the 
term of radiation use efficiency is multiplied by a scale factor, aiming to reduce estimates 
under unfavorable conditions (i.e. high or low temperature and high vapor pressure deficit). 
For this purpose, EVI [119] and LST [108] are used. According to Yang et al. [19], it is inappro-

priate to simply multiply the effect of these two variables, considering that both are physically 
interdependent. Therefore, to define the f value from EVI and LST the algorithm proposes a 
methodology based on the least square method [19]. Studies indicate that IPAR may range 

from ~40 to 50% of the incoming solar radiation [120]. Thus, Yang et al. [19] suggest the use of 

in situ measurements of this variable in order to reduce the uncertainties.

In TGR, as for VPM (Section 3.2.3), the term RUE is not constant, allowing the calibration 
for different vegetation formulations. The study of Yang et al. [19] described values of this 

term for eight types of vegetation, including pasture, savanna, and mixed forest. This study 

also validated the model considering measurements obtained from 13 different experimental 
sites in the United States. Results showed that estimates from TGR agreed with tower flux 
measurements for almost all types of vegetation, with R2~0.67–0.91. TGR allows to capture 

the GPP patterns over large areas, which is necessary for applications in the Amazon region. 
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In this context, we highlight that the use of IPAR data obtained directly from MODIS [121] 

would eliminate the need of in situ measurements, enhancing the potential of TGR for appli-

cations in Amazonia. According to Yang et al. [19], future studies will focus on validating TGR 

estimates over tropical forest areas.

3.3. Remote sensing global products

RS is the main tool for observing the state and processes of terrestrial surface and atmo-

sphere [122]. LANDSAT, SPOT, NOAA, Terra and Aqua platforms have provided time series 
of data in different spatial and temporal resolutions, which are applied in a wide range of 
studies [123]. One application is related to global climate change, where RS data have been 

used as inputs in climate models to simulate climate dynamics and future projections [124]. 

Accordingly, it is notable an effort of the scientific community in generating RS derived stan-

dardized global products, specially related to the biophysical domain.

Currently, some of the most important global products based on satellite observations are 

derived from MODIS/Terra and Aqua sensors. MODIS was developed by the Goddard 
Space Flight Center (GSFC/NASA) and presents an imaging system composed by 36 spectral 
bands, from the visible to the thermal infrared regions. MODIS temporal resolution is daily 
for latitudes above 30° and 2 days for latitudes below 30° [125]. Surface products derived 

from MODIS are related to α
s
 [126], LST [127], vegetation indices [128], land-use [129] and 

other variables. More specifically, regarding energy and carbon fluxes, we highlight the ET 
(MOD16) [90], GPP and NPP (MOD17) [130] products.

3.3.1. MOD16

The MOD16 [90] product was developed to estimate global surface ET from MODIS/Terra 
and Aqua data and meteorological information obtained from the Global Modeling and 
Assimilation Office (GMAO). The algorithm is based on Penmann-Monteith equation [46]:

  ET =   
∆ ( R  

n
   − G)  +  ρ  

a
    c  

p
   ( e  

s
   −  e  

a
  )  /  r  

a
  
  __________________  

∆  + γ (1 +   r  
s
  ⁄ r  

a
   ) 
    (10)

In Eq. (10), Δ is the gradient of saturated vapor pressure to air temperature, R
n
 is the net radia-

tion, G is the soil heat flux, ρ
a
 is the air density, cρ is the specific heat of air at constant pressure, 

e
s
 and e

a
 are the saturated vapor pressure and actual vapor pressure, respectively, γ is the psy-

chometric constant (0.066 kPa°C−1), and r
s
 and r

a
 are the surface and aerodynamic resistance, 

respectively. MODIS input data in the algorithm include α
s
, LAI, and land-use. Regarding the 

meteorological variables, solar radiation, air temperature, and water vapor pressure reanaly-

sis data are used. Summarizing, MOD16 data are provided with spatial resolution of 500 m 
and 1 km and cover an area of ~109 millions of km2. MOD16 provides potential and actual ET 
fluxes at 8 days, monthly and annual intervals.

MOD16 was initially validated using measurements from 46 different tower fluxes across the 
United States, obtaining R2~0.65 [90]. It is possible to point out main two sources of uncertain-

ties related to MOD16: (1) GMAO reanalysis data, mostly due to the low spatial resolution 
(~100 km) when compared to MOD16 (500 m and 1 km), and (2) LAI and land-use products, 
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which may present reasonable inaccuracies depending on the biome, which, consequently, 

will result in the incorrect determination of parameters to calculate plants transpiration [90]. 

Most studies using MOD16 are focused on Asia and Middle East, aiming to evaluate water-

sheds [131, 132] and different land-uses, especially in agricultural areas [133]. Validation per-

formed on such studies agree with results found by Mu et al. [90].

Recent studies validated MOD16 in the Cerrado and Amazon biomes [45, 25]. Over Cerrado, 

the algorithm presented relative high correlation coefficients, ranging between ~0.78 and 0.81 
[45]. Results obtained for the Amazon were less satisfactory. Validation performed using 

tower fluxes data located over forest and pasture areas showed R2 values between ~0.32 and 

0.76 [25]. It should be noted that simplifications in MOD16 algorithm regarding some parame-

ters such as canopy conductance are defined as constant for a given biome (even in a heteroge-

neous one, such as the Amazon). This may be one of the reasons for low correlations between 

the estimated and observed data in the region. This is actually one of the main challenges of 

global algorithms, which need to be complex to accurately represent the physical processes on 

the surface, and simultaneously simple enough to be implemented globally [45]. Despite this, 

MOD16 was able to represent the spatial variability of ET in the Amazon. This is an important 
result and one interesting way to better evaluate the results of this model for the Amazon 
would be through the comparison between MOD16 outputs with more local estimates based 
on the models described in Sections 3.1.1–3.1.4.

3.3.2. MOD17

The MOD17 product [130] provides continuous estimates of GPP and NPP over the vegetated 
surface of the planet. As well as models described in Sections 3.2.1–3.2.4, the MOD17 algo-

rithm is based on the RUE approach [92]. According to this approach, the productivity of 

vegetation under reasonable water and soil fertility conditions is linearly correlated with the 

amount of APAR. MOD17 is based on three basic relationships (Eqs. (11)–(13)) to estimate 
GPP and net photosynthesis (PSNet), on eight-day and monthly intervals, and annual NPP.

  GPP = ε ( T  
air,min

  ) f (VPD) APAR  (11)

   PS  Net   = GPP −  R  
lr
    (12)

  NPP = ∑  ( PS  Net  )  −  R  
g
   −  R  

m
    (13)

In the equations presented above, f(T
air,min

) and f(VPD) are scale factors associated, respec-

tively, to minimum air temperature and vapor pressure deficit, R
lr
 is the maintenance respira-

tion of leaves and thin roots, R
g
 is the growing respiration, and R

m
 represents the maintenance 

respiration of living cells in the woody tissue. It is worth mentioning that the algorithm 

defines distinct values for ε, depending on the vegetation. ε values are distinct for forest, 
savanna, pasture, and agricultural areas. T

air,min
 and VPD values, as well as respiration values, 

are based on a lookup table composed of specific physiological parameters for each terrestrial 
biome [134]. MOD17 product is estimated from MODIS standard products (i.e. fAPAR and 
LAI) and reanalysis data (i.e. air temperature and solar radiation) from the National Center 
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for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). 
MOD17 outputs (GPP, PSNet (eight-day and monthly), and NPP (annual)), as well as MOD16 
outputs, are provided with 500 m and 1 km spatial resolution.

Validation studies comparing MOD17 estimates with flux tower measurements found rela-

tive errors between ~24 and 70%, and correlation coefficients ranging between ~0.26 and 0.88 
[135–137]. Generally, GPP and NPP derived from MOD17 follow the expected seasonal pat-
terns according to the land-use and climate; however, values tend to be overestimated over 
low productivity sites (i.e. croplands), and underestimated over high productivity sites (i.e. 

forests). The main sources of errors in MOD17 are associated with the MODIS fAPAR product 
and reanalysis data [138].

MOD17 product has been validated over different regions [137, 139, 140]. Regarding the 

Amazon, an important area in the global carbon cycle, we highlight the study recently devel-

oped by De Oliveira et al. [25] in Para state, eastern Brazilian Amazonia. The mean relative 

error found for MOD17 GPP was about 13% of the field measurements (LBA flux towers). 
An underestimation was observed for primary and secondary forests (−4.1 and − 3.6 g C m−2, 

respectively) and an overestimation for pasture (2.2 g C m−2). According to the authors, the 

MOD17 product was able to provide reliable information about the spatial and temporal vari-
ability of GPP in the eastern flank of Amazonia.

4. Concluding remarks

Micrometeorological studies in Amazonian ecosystems have limited spatial and temporal 
coverage, and therefore RS becomes a tool to enhance the comprehension of surface processes 

in the region. Models to estimate energy and carbon balance components from orbital data 
differ according to the input data, parametrizations and accuracy of the results. The algo-

rithms to estimate energy fluxes use as inputs images from visible and infrared (near and 
thermal) spectral regions and are based on empirical and physical methods. In situ measure-

ments are typically related to air temperature and wind speed, and most uncertainties are 

concentrated in the estimation of H and ET (when obtained as a residual term of the energy 

budget). On the other hand, CO
2
 fluxes models need data from the visible and near infrared 

spectral regions and are based on the RUE concept. Main challenges of such models consist 
in the estimation of RUE for different ecosystems, as well as to obtain surface solar radiation 
data with a reasonable spatial resolution.

Regarding the use of such models in the Amazon region, some difficulties emerge: (1) obtain-

ing cloud free orbital data, and (2) availability of field observations. Therefore, the choice of 
the algorithm must consider the possibility of using daily composites, and minimal need of 

in situ data. Other issues, such as the complexity and operability of the models may be con-

sidered. It is then possible to point out algorithms that present greater potential of applica-

tion in the region and/or where efforts for implementation should focus. Regarding energy 
balance, two models stand out: SEBAL [47], due to the reduced need for field measurements 
and because the model was previously validated in the region and showed good results, and 

EVASPA [17], due to the operability and possibility of generating estimates during days when 

there are no orbital data available. In relation to the carbon models, it is suggested the use of 
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VPM [108], once the model was applied to distinct forest ecosystems (including the Amazon) 

showing good results, and TGR [19], due to the fact that the model is based on MODIS com-

posites and has a low dependence of field data.

Regarding the use of global RS products in the Amazon, it is important to emphasize that such 

products usually enable the analysis of spatial patterns of surface parameters; however, they 
present inaccuracies when referring to the magnitude of the estimates. A noteworthy aspect 

is that studies conducted in tropical regions, among them the Amazon, have proposed meth-

odologies based on integrating satellite images and reanalysis climate data in hydrological 

and ecosystem models based on local measurements [2, 22, 23, 45, 141, 142]. Although there 

are difficulties, for example those related to representing the ecophysiological processes from 
leaf to canopy scale, such approaches constitute promising opportunities for future research.

The use of models based on satellite images presents an important role in understanding the 

spatial and temporal patterns of biophysical surface parameters in a region where most of 
the information is local. Data generated from such algorithms may be used as inputs in earth 

system surface models allowing, among others, to evaluate the impact, both in regional and 

global scales, caused by land-use and land-cover changes.
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