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Abstract

The main purpose of this chapter is to introduce a new type of regular matrix generated
by Fibonacci numbers and we shall investigate its various topological properties. The
concept of mathematical regularity in terms of Fibonacci numbers and phyllotaxy have
been discussed.
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1. Preliminaries, background and notation

In several branches of analysis, for instance, the structural theory of topological vector spaces,

Schauder basis theory, summability theory, and the theory of functions, the study of sequence

spaces occupies a very prominent position. There is an ever-increasing interest in the theory of

sequence spaces that has made remarkable advances in enveloping summability theory via

unified techniques effecting matrix transformations from one sequence space into another.

Thus, we have several important applications of the theory of sequence spaces, and therefore,

we attempt to present a survey on recent developments in sequence spaces and their different

kinds of duals.

In many branches of science and engineering, we deal with different kinds of sequences and

series, and when we deal with these, it is important to check their convergence. The use of

infinite matrices is of great importance, we can bring even the bounded or divergent sequences

and series in the domain of convergence. So we can say that the theory of sequence spaces and

their matrix maps is the bigger scale to measure the convergence property. Summability can be

roughly considered as the study of linear transformations on sequence spaces. The theory
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originated from the attempts of mathematicians to assign limits to divergent sequences. The

classical summability theory deals with the generalization of the convergence of sequences or

series of real or complex numbers. The idea is to assign a limit of some sort to divergent

sequences or series by considering a transform of a sequence or series rather than the original

sequence or series.

The earliest idea of summability theory was perhaps contained in a letter written by Leibnitz to

C. Wolf (1713) in which he attributed the sum 1/2 to the oscillatory series �1 + 1�1 + ….

Frobenius in (1880) introduced the method of summability by arithmetic means, which was

generalized by Cesàro in (1890) as the (C,K) method of summability. Toward the end of the

nineteenth century, study of the general theory of sequences and transformations on them

attracted mathematicians, who were chiefly motivated by problems such as those in summabil-

ity theory, Fourier series, power series and system of equations with infinitely many variables.

Presenting some basic definitions and notations that are involved in the present work, the

author proposes to give a brief resume of the hitherto obtained results against the background

of which the main results studied in the present chapter suggest themselves.

2. Notations and symbols

Here, we state a few conventions which will be used throughout the chapter.

2.1. Symbols N, C, R and A

The symbols are denoted as follows:

N: Set of non-negative integers.

C: Set of complex numbers.

R: Set of real numbers.

A: The infinite matrix ankð Þ, n; k ¼ 1; 2;…ð Þ.

2.2. Summation convention

By
Pβ

α f nð Þ, we mean the sum of all values of f nð Þ for which α ≤n ≤ β. In the case β < α, then we

take this to be zero.

Summations are over 0, 1, 2,…, when there is no indication to the contrary. If xkð Þ ¼ x1; x2;…ð Þ

is a sequence of terms, then, by
P

k xk we mean
P

∞

k¼1 xk and we shall sometimes write as
P

xk
incase where no possible confusion arises.

2.3. The spaces ω, l∞, c, c0, lp

A sequence space is a set of scalar sequences (real or complex) which is closed under

coordinate-wise addition and scalar multiplication. In other words, a sequence space is a linear

subspace of the space ω of all complex sequences, that is,
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ω ¼ x ¼ xkð Þ : xk ∈R or Cf g:

The space l∞: The space l∞ of bounded sequences is defined by

x ¼ xkð Þ : sup
k

jxkj < ∞

( )

The spaces c: The spaces c and c0 of convergent and null sequences are given by

x ¼ xkð Þ : lim
k

xk ¼ l; l∈C

� �

The space c0: The space c0 of all sequences converging to 0 is given by

x ¼ xkð Þ : lim
k

xk ¼ 0

� �

The space lp: The space lp of absolutely p-summable sequences is defined by

x ¼ xkð Þ :

X

k

xkj jp < ∞

( )

, 0 < p < ∞ð Þ

The spaces l∞, c, and c0 are Banach spaces with the norm,

∥x∥
∞
¼ sup

k

∣xk∣

The space lp is a Banach space with the norm,

∥x∥p ¼
X

k

xkj jp
 !1

p

, 1 ≤ p < ∞

2.4. Cauchy sequence

A sequence x ¼ xkð Þ is called a Cauchy sequence if and only if ∣xn � xm∣ ! 0 m; n ! ∞ð Þ that is

for any e > 0, there exists N ¼ N Eð Þ such that ∣xn � xm∣ < E for all n,m ≥N. By C, we denote the

space of all Cauchy sequences, that is,

C : x ¼ xkð Þ : jxn � xmj ! 0 as n;m ! ∞f g

2.5. FK-space

A sequence space X is called an FK-space if it is a complete linear metric space with continuous

coordinates pn : X ! C defined by pn xð Þ ¼ xn for all x∈X and every n∈N [1, 2].

2.6. BK-space

A BK-space is a normed FK-space, that is, a BK-space is a Banach space with continuous

coordinates [3–6].
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2.7. Fibonacci numbers

In the 1202 AD, Leonardo Fibonacci wrote in his book Liber Abaci of a simple numerical

sequence that is the foundation for an incredible mathematical relationship behind phi. This

sequence was known as early as the sixth century AD by Indian mathematicians, but it was

Fibonacci who introduced it to the west after his travels throughout the Mediterranean world

and North Africa. He is also known as Leonardo Bonacci, as his name is derived in Italian from

words meaning son of (the) Bonacci.

The Fibonacci numbers have been introduced [7–14]. The Fibonacci numbers are the sequence

of numbers f n
� �

, n∈N defined by recurrence relations

f 0 ¼ 0, f 1 ¼ 1 and f n ¼ f n�1 þ f n�2; n ≥ 2

First derived from the famous rabbit problem of 1228, the Fibonacci numbers were originally

used to represent the number of pairs of rabbits born of one pair in a certain population. Let us

assume that a pair of rabbits is introduced into a certain place in the first month of the year.

This pair of rabbits will produce one pair of offspring every month, and every pair of rabbits

will begin to reproduce exactly 2 months after being born. No rabbit ever dies, and every pair

of rabbits will reproduce perfectly on schedule.
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So, in the first month, we have only the first pair of rabbits. Likewise, in the second month, we

again have only our initial pair of rabbits. However, by the third month, the pair will give birth

to another pair of rabbits, and there will now be two pairs. Continuing on, we find that in

month 4, we will have 3 pairs, then 5 pairs in month 5, then 8, 13, 21, 34, …, etc., continuing in

this manner. It is quite apparent that this sequence directly corresponds with the Fibonacci

sequence introduced above, and indeed, this is the first problem ever associated with the now-

famous numbers.

Fibonacci numbers have many interesting properties and applications in arts, sciences and

architecture. Also, following [7], some basic properties are as follows

Xn

k¼0

f k ¼ f nþ2 � 1; n∈N,

and

Xn

k¼0

f 2k ¼ f n f nþ1; n∈N

Everything in Nature is subordinated to stringent mathematical laws. Prove to be that leaf’s

disposition on plant’s stems also has stringent mathematical regularity and this phenomenon

is called phyllotaxis in botany. An essence of phyllotaxis consists in a spiral disposition of

leaves on plant’s stems of trees, petals in flower baskets, seeds in pine cone and sunflower

head, etc.

This phenomenon, known already to Kepler, was a subject of discussion of many scientists,

including Leonardo da Vinci, Turing, Veil, and so on. In phyllotaxis phenomenon, more com-

plex concepts of symmetry, in particular, a concept of helical symmetry, are used. The phyllo-

taxis phenomenon reveals itself especially brightly in inflorescences and densely packed

botanical structures such as pine cones, pineapples, cacti, heads of sunflower and cauliflower,

and many other objects [11].

On the surfaces of such objects, their bio-organs (seeds on the disks of sunflower heads and

pine cones, etc.) are placed in the form of the left-twisted and right-twisted spirals. For such
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phyllotaxis objects, it is used usually the number ratios of the left-hand and right-hand spirals

observed on the surface of the phyllotaxis objects. Botanists proved that these ratios are equal

to the ratios of the adjacent Fibonacci numbers, that is,

f iþ1

f i
:

2

1
,
3

2
,
5

3
,
8

5
,
13

8
,… ¼ 1þ

ffiffiffi

5
p

2

By using hyperbolic Fibonacci functions, he had developed an original geometric theory of

phyllotaxis and explained why Fibonacci spirals arise on the surface of the phyllotaxis objects

namely, pine cones, cacti, pine apple, heads of sunflower, and so on, in process of their

growths. Bodnar’s geometry [15] confirms that these functions are ‘natural’ functions of the

nature, which show their value in the botanic phenomenon of phyllotaxis. This fact allows us

to assert that these functions can be attributed to the class of fundamental mathematical

discoveries of contemporary science because they reflect natural phenomena, in particular,

phyllotaxis phenomenon.

From above discussion, it gave us motivation to see the behavior of the infinite matrices

generated by Fibonacci numbers.

In the present chapter, we have introduced a new type of matrix H ¼ hunk
� �

n, k∈N by using

Fibonacci numbers f n and we call it as H-matrix generated by Fibonacci numbers f n and

introduce some new sequence spaces related to matrix domain of H in the sequence spaces

lp, l∞, c and c0, where 1 ≤ p < ∞.

2.8. The space rq u; pð Þ

Sheikh and Ganie [16] introduced the Riesz sequence space rq u; pð Þ and studied its various

topological properties where u ¼ ukð Þ is a sequence such that uk 6¼ 0 for all k∈N and qk
� �

the

sequence of positive numbers and

Qn ¼
X

n

k¼0

qk,∀n∈N

Then, the matrix R
q
u ¼ r

q
nk

� �

of the Riesz mean Ru; qn
� �

is given by

r
q
nk ¼

ukqk
Qn

if 0 ≤ k ≤n,

0, if k > n:

8

<

:

The Riesz mean Ru; qn
� �

is regular if and only if Qn ! ∞ as n ! ∞.

3. H-matrix generated by Fibonacci numbers

Let X and Y be two subsets of ω. Let A ¼ ankð Þ be an infinite matrix of real or complex numbers

ank, where n, k∈N. Then, the matrix A defines the A-transformation from X into Y, if for every
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sequence x ¼ xkð Þ∈X the sequence Ax ¼ Axð Þn
� �

, the A-transform of x exists and is in Y

where

Axð Þn ¼
X

k

ankxk:

For simplicity in notation, here and in what follows, the summation without limits runs from 0

to ∞. By X;Yð Þ, we denote the class of all such matrices. A sequence x is said to be A-summable

to l if Ax converges to l which is called as the A-limit of x.

For a sequence space X, the matrix domain XA of an infinite matrix A is defined as

XA ¼ x ¼ xkð Þ∈ω : Ax∈Xf g, (1)

which is a sequence space.

An infinite matrix A ¼ ankð Þ is said to be regular if and only if the following conditions (or

Toplitz conditions) hold [17–19]:

i. lim
n!∞

X

∞

k¼0

ank ¼ 1,

ii. lim
n!∞

ank ¼ 0, k ¼ 0; 1; 2;…ð Þ,

iii.
P

∞

k¼0

∣ank∣ < M, M > 0; j ¼ 0; 1; 2;…ð Þ:

In the present paper, we introduce H-matrix with H ¼ hunk
� �

n, k∈N as follows:

hunk ¼

ukf k
2

f n f nþ1

if 0 ≤ k ≤n,

0, if k > n:

8

>

<

>

:

Thus, for uk ¼ 1 and for all k∈N, we have

H ¼

1 0 0 0 0 ⋯

1=2 1=2 0 0 0 ⋯

1=6 1=6 4=6 0 0 ⋯

1=15 1=15 4=15 9=15 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

:

It is obvious that the matrix H is a triangle, that is, hunn 6¼ 0 and hunk ¼ 0 for k > n and for all

n∈N. Also, since it satisfies the conditions of Toeplitz matrix and hence it is regular matrix.

Note that if we take qk ¼ f 2k , then the matrix H is special case of the matrix R
q
u, where

Qn ¼
X

n

k¼0

f 2k ¼ f n f nþ1,

introduced by Sheikh and Ganie [16].
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The approach of constructing a new sequence space by means of matrix domain of a particular

limitation method has been studied by several authors [17–26].

Throughout the text of the chapter, X denotes any of the spaces l∞, c, c0 and lp 1 ≤ p < ∞ð Þ. Then,

the Fibonacci sequence space X Hð Þ is defined by

X Hð Þ ¼ x ¼ xkð Þ∈ω : y ¼ yk
� �

∈X
� �

,

where the sequence y ¼ yk
� �

is the H-transform of the sequence x ¼ xkð Þ and is given by

yk ¼ Hk xð Þ ¼
1

f k f kþ1

X

k

i¼0

f 2i uixi for all k∈N: (2)

With the definition of matrix domain given by Eq. (1), we can redefine the space X Hð Þ as the

matrix domain of the triangle H in the space X, that is,

X Hð Þ ¼ XH:

Theorem 1: The space X Hð Þ is a BK-space with the norm given by

kx ¼ jH xð Þk kX ¼ yk kX ¼

P

∞

k¼0 yk
	

	

	

	

p
 �
1
p for for X∈ lp

� �

:

sup
k

yk for X∈ l∞; c; c0f g:

8

<

:

(3)

Proof: Since the matrix H ¼ hunk
� �

is a triangle, that is, hunn 6¼ 0 and hunk ¼ 0 for k > n for all n. We

have the result by Eq. (3) and Theorem 4.3.2 of Wilansky [6] gives the fact that X Hð Þ is a

BK-space.◊

Theorem 2: The space X Hð Þ is isometrically isomorphic to the space X.

Proof: To prove the result, we should show the linear bijection between the spaces X Hð Þ and X.

For that, consider the transformation T from X Hð Þ to X by x ! y ¼ Tx. Then, the linearity of T

follows from Eq. (2). Further, we see that x ¼ 0 whenever Tx ¼ 0 and consequently T is injective.

Moreover, let y ¼ yk
� �

∈X be given and define the sequence x ¼ xkð Þ by

xk ¼
f kþ1

uk f k
yk �

f k�1

uk f k
yk�1; k∈N: (4)

Then, by using (2) and (4), we have for every k∈N that

HðxÞ ¼
1

f k f kþ1

X

k

i¼0

f 2i uixi

¼
1

f k f kþ1

X

k

i¼0

f iðf iþ1yi � f i�1yi�1Þ

¼ yk:
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This shows that H xð Þ ¼ y and since y∈X, we conclude that H xð Þ∈X. Thus, we deduce that

x∈X Hð Þ and Tx ¼ y. Hence, T is surjective.

Furthermore, for any x∈X Hð Þ, we have by (3) that

∥T xð Þ∥ ¼ ∥y∥ ¼ ∥H xð Þ∥X ¼ ∥x∥X

which shows that T is norm preserving. Hence, T is isometry. Consequently, the spaces X Hð Þ
and X are isometrically isomorphic. Hence, the proof of the Theorem is complete.◊

Theorem 3: Let f j

n o

be Fibonacci number sequences. Then, we have

sup
i

f 2i

X

∞

j¼i

1

f j f jþ1

0

@

1

A < ∞:

Proof: We have,

X

∞

k¼n

1

f k
� 1

f kþ1

� 

¼ 1

f n

This gives,

1 ¼ f n

X

∞

k¼n

1

f k
� 1

f kþ1

� 

¼ f 2n
1

f n

X

∞

k¼n

f kþ1 � f k
f k f kþ1

� 

¼ f 2n
1

f n

X

∞

k¼n

f k�1

f k f kþ1

� 

≥ f 2n
f n�1

f n

X

∞

k¼n

1

f k f kþ1

� 

and the conclusion follows because f n f n�1 is bounded since it converges to
ffiffi

5
p

þ1
2 .◊

Theorem 4: X⊂X Hð Þ holds.
Proof: It is obvious that c0 ⊂ c0 Hð Þ and c⊂ c Hð Þ, since the matrix H is regular matrix. Now, let

x∈ l∞. Then, there is a constant K > 0 such that ∣xj∣ <
K
∣uj ∣

for all j∈N. Thus, we have for every

i∈N that

∣Hi xð Þ∣ ≤
1

f i f iþ1

X

i

j¼0

f 2j ∣ujxj∣

≤
K

f i f iþ1

X

i

j¼0

f 2j ¼ K

which shows that H xð Þ∈ l∞. Therefore, we deduce that x∈ l∞ implies x∈ l∞ Hð Þ.
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We now consider the case 1 ≤ p < ∞. We only consider the case 1 < p < ∞ and by similar

argument will follow for p ¼ 1. So, let x∈ lp. Then, for every i∈N and by Holder’s inequality,

we have

Hi xð Þj jp ≤
X

i

j¼0

f 2j

f i f iþ1

jujxjj

0

@

1

A

p

≤

X

i

j¼0

f 2j

f i f iþ1

jujxjj

0

@

1

A

p
X

i

j¼0

f 2j

f i f iþ1

0

@

1

A

p�1

¼
1

f i f iþ1

X

i

j¼0

f 2j ujxj
	

	

	

	

p
:

Hence, we have

X

∞

i¼0

Hi xð Þj jp ≤
X

∞

i¼0

1

f i f iþ1

X

i

j¼0

f 2j ujxj
	

	

	

	

p

¼
X

∞

i¼0

xj
	

	

	

	

p
uj
	

	

	

	

p
f 2j

X

∞

i¼j

1

f i f iþ1

:

Hence, the right-hand side of above inequality can be made arbitrary small, since,

supj f 2j
P

∞

i¼j
1

f i f iþ1

� �

< ∞ by Theorem 3 (above) and x∈ lp. This shows that x∈ lp Hð Þ. This com-

pletes the proof of the theorem.◊
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