
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4

Probabilistic Analysis of Transportation Systems for Oil
and Natural Gas

Yuriy V. Lisin, Nikolay A. Makhutov,
Vladimir A. Nadein and Dmitriy A. Neganov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75078

Abstract

In this chapter, the need of probabilistic modeling for design, construction, and operation
of oil and gas pipelines is justified. Such modeling should use information and databases
on deterministic and statistical dependencies related to deformation, damage accumula-
tion, failure, fracture accidents, and catastrophes. The probabilistic design equations and
their parameters for the characteristics of strength, durability, fracture toughness, risks of
accidents, and manmade catastrophes are given. The economic efficiency of pipeline
management based on controlling probabilistic characteristics through conducting diag-
nostic, repair-and-renewal operations while ensuring the acceptable levels of reliability
and safety parameters is substantiated. The results of studies in the field of statistics and
probabilities of emergency situations during manufacturing, construction, and operation
conducted by Russian and foreign specialists are presented.

Keywords: oil and gas transportation, pipeline transport, main pipelines system,
pipe steel, pipeline strength, yield strength

1. Introduction

Oil, gas and chemical complex (OGCC) is one of the system and fund forming in our country. It

includes tens of thousands of oil and gas production facilities, over 500,000 km of field and

main pipelines for transportation of liquid and gaseous hydrocarbons, thousands of large oil

and gas storage facilities, and hundreds of major oil and gas refineries for fuel and chemical

products for civil and military use.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



These figures indicate the exceptional importance of the integrated safety and security of the

national oil, gas, and chemical complex, which constitute a significant part of the national and

international safety problems. The scientific analysis of these problems, and the solution of

fundamental, practical and economically significant tasks in the field of safety are becoming

more relevant as the scope and geography of OGCC expands in Russia.

In the second half of the twentieth century and the beginning of the twenty-first century,

environmental and economic damage, accidents, and injuries at the facilities of the OGCC

(including objects of the main pipeline systems (MPS)) became the subject of active interaction

between state authorities, sectorial scientists, and design, technological, construction, and

operating organizations. The leading roles in this interaction belong to the Security Council,

Rostekhnadzor, the Russian Academy of Sciences, the research centers of the largest compa-

nies (Transneft, Gazprom, Rosneft), and the leading universities in the country.

In the traditional and advanced safety developments for OGCC and MPS facilities, the priority

will be under scientifically grounded combination of research, rationale, regulation, and exper-

tise, as well as improvement of strength, durability, and safety of the technologies in the light

of the emerging spectrum of threats and risks in the context of diversifying economy.

The solution of these problems mainly lies in deterministic, statistical, and probabilistic

methods of modeling, calculations, tests, and justification of performance of OGCC and MPS

facilities.

Therefore, the major focus is on the probabilistic, statistical, and deterministic analysis of

strength and durability of the main pipelines for oil and gas transportation.

2. Basic design dependencies

In the second half of the twentieth century and the beginning of the twenty-first century in

Russia and abroad, branched pipeline systems for hydrocarbons transportation, including the

main and field oil and gas product pipelines have been constructed. At present, one of the

world’s largest pipeline systems operates in Russia (Table 1) with a total length of more than

500,000 km.

Design, construction, and operation of pipelines for many decades were based [1–5] mainly on

the strength standards. These standards (in the form of state standards (GOST), industry

standards (OST), building norms and rules (SNiP), guidelines (RD), technical regulations

(TR), federal rules and regulations (FNiP), methodological recommendations (MR)) were

based on:

• Classical strength theories (I) maximum normal stresses (II) maximum deformations

(III) maximum tangential stresses (IV) maximum forming energy

• Analysis of designed operational nominal stresses by methods of material resistance

and the theory of rods, plates, and shells
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• Use of the calculations of allowable stresses [ ] or limiting resistances Rи

• Basic characteristics of the mechanical properties of pipe steels that determine the resis-

tance to plastic deformation, failure, and loss of stability

Generally, the conditions of pipeline’s strength, at present, can be described (Figure 1) [1–3] by

the functional relation:

ð1Þ

where —maximum designed stress for the most dangerous operating conditions (taking

into account internal and external pressure р, axial forces N, bending , and torque in a

critical section and a critical point); —critical (ultimate) stress, determined from the test

No. Type Purpose Length (ths. km)

1 Main pipelines Gas pipelines 180.2

Oil pipelines 55.3

Product pipelines include:

Ammonia pipelines

NGL pipelines

22.2

1.4

4.3

Total 257.8

2 Field pipelines General purpose 250.0

Total 507.2

Table 1. Types, purposes, and length of pipeline systems.

Figure 1. Scheme of operational loading of the pipeline.
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data of standard specimens on strain (compression) at the stages of the beginning of fluidity

(yield point ), reaching the ultimate strength (ultimate stress limit ) or the beginning of

buckling (critical stress ); —longitudinal force along the x-axis; —

bending moments around the y- and z-axes; —torque around the x axis; —

margin of safety ( ); —pipeline wall thickness; D—diameter of the pipeline (external,

internal, or mean); Е—modulus of longitudinal elasticity; —Poisson’s ratio; and Rв—bend

radius of the pipeline axis.

All the calculated parameters of Eq. (1) can be considered in deterministic, statistical, and

probabilistic formulation, taking into account the complication of operational conditions and

the improvement of engineering methods of mathematical modeling, physical experimenta-

tion, and normative calculations.

The calculation of stresses as a function in Eq. (1) is the initial independent goal of

solving boundary value problems—analysis of nominal stress-strain states under complex oper-

ational and exploitational loading regimes at all stages of the life cycle of pipes and pipelines.

In expression (1), based on the static tension diagram of a standard sample (Figure 2) in the

conditional coordinates (without taking into account the reduction in the cross-

sectional area and increasing the sample length), as critical stress is used [3–5]

• In the yield zone: the yield strength as the ultimate resistance to elastic deformation—the

limit of proportionality , the yield strength at the yield plateau, the conditional yield

strength corresponding to the achievement of a given plastic deformation, for example, 0.2%

( ), or a specified elastoplastic deformation, for example, 0.5 ( ) or 1% ( 0)

Figure 2. Static tension diagram of a standard sample.
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• In the ultimate stress zone: ultimate strength-ultimate resistance as the maximum

engineering stress at the stage of uniformity loss of plastic deformations and neck forma-

tion under tension

The calculated plastic (еp = 0.2%) and elastoplastic deformations (е = 0.5% and е = 1%) for

modern tube steels are substantially smaller than the relative elongation in case of failure.

In this connection, for tube steels .

Introduction to calculation (1) stresses in the form of the above characteristics makes

it possible to exclude the appearance of mechanical properties of three dangerous limit

states:

• Beginning of fluidity and formation of plastic deformations ( , , , , ).

• Failure after reaching the ultimate strength ( ).

• Total loss of stability after reaching critical stresses.

This required the use of three safety margins :

• Yield strength .

• Tensile strength .

• Critical stress under loss of stability .

Hence, in accordance with Eq. (1), the allowable stress must be minimal:

ð2Þ

Since for the first two limiting states ≤ for tube steels hardening in the elastoplastic

range, then safety margins are ≤ .

According to the third limiting state, there are two possible cases:

If then ≤ .

If then ≤ .

When calculating pipeline’s strength in limiting states in accordance with national standards

and when the design resistances Ry (inadmissibility of plastic deformation development) and

R
и
(inadmissibility of destruction) are used, then

ð3Þ

where m—condition load effect factor; K
н
—design safety factor; n—load safety factor; K1, K2—

material resistance factor; and —factor for biaxial stress states.
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From Eqs. (2) and (3), it follows that margins and in the calculations for the allowed

stresses are related to the factors m, K1, K2, and Kн, in Eq. (3) for calculations on the limiting

states at and :

ð4Þ

.In essence, the safety margins and stability according to Eqs. (2)–(4) reflect the role

of statistical and probabilistic uncertainties, inaccuracies, ignorance, and responsibility of

pipeline systems.

Based on strength and stability calculations under Eq. (1) with addition of Eqs. (2) and (3) for

the pipeline with given p,N,M
в
,Mt, Rв

, andD, the wall thickness is chosen to be greater than

the minimum ratio of yield strength and strength to margins and with subsequent

binding of stability with and .

Equation (2) defines the area of allowable stresses for deterministic normative calculations of

pipeline strength (Figure 1).

The values of the factors in the calculations according to the norms [2] are given in Table 2.

3. Trends in improving methods of rationing, calculation, and management

of mechanical properties of pipe steels

In the evolution ( ) of pipeline transport in Russia and abroad, three trends have been and are

currently dominant (Figure 3) in view of Eqs. (1)–(4) in deterministic formulation [3–7]:

• Increase of the diameter of pipelines D (from 250–300 to 1200–1400 mm) and pressures p

(from 2.0–2.5 to 14.0–16.0 MPa)

• Increase of mechanical properties of pipe steels (yield strength ) (from 200–250 to 600–

800 MPa) and strength (from 400–450 to 700–900 MPa)

• Decrease in safety margins (from 1.8–3.2 to 1.2–1.5) and (from 2.4–3.5 to 1.6–1.8)

At the first stages (1930–1960) of the development of pipeline systems, carbon (with a carbon

content of 0.22–0.35%), unalloyed steels with larger of the abovementioned margins and ,

№. Factor Symbol Value

1. Condition load effect factor m 0.6–0.9

2. Load reliability factor K1 1.1–1.5

3. Material resistance factor K2 1.34–1.55

4. Design safety factor K
н

1.0–1.05

Table 2. Calculated normative values of factors.
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and lesser p, D, , and were predominantly used. Under these conditions, when deter-

mining the thickness of the pipe wall , the margins and yield strength proved to be key

factors, because they gave smaller permissible stresses under Eqs. (2) and (3).

The idea that increasing the pipe steels yield strength is crucial in those years led to

the desire of metal scientists, technologists, and designers to reduce the material consump-

tion of pipelines by increasing the yield strength by all available methods and means

(alloying steels, thermomechanical processing of sheets and pipes while reducing margins

). The same approach was typical for the development of general engineering, energet-

ics, oil and gas chemistry, transport, and construction.

In the process of accelerated development of pipeline systems, low-alloy steels, low-carbon

low-alloy steels, and low-alloy thermo-hardened steels have been consistently used since

the 1960s.

This aspiration not supported by the necessary scientific justifications led to:

• Significant problems with increased damageability of objects such as pressure vessels

and pipelines with high parameters of pressure P and temperature t in thermal

power engineering, bearing structures of civil and industrial buildings

• Extended brittle fractures and loss of stability of the main pipelines

From the generalized statistical analysis of damage and destruction of various objects (includ-

ing those working under increased pressure), it follows that engineering materials, design, and

technological solutions associated with increase of and decrease of are insufficient to

prevent large-scale emergency and sometimes catastrophic situations. It became clear that the

existing engineering practice of calculation focused on the designation of independent margins

and and the basic characteristics of strength and is entailed with the danger of a

real and reliable operation of pipeline systems.

Figure 3. Basic determinate variations in design parameters of pipelines.
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One of the main problems was a complex, interrelated deterministic, statistical, and probabi-

listic analysis of the determining parameters—safety margins , , and and mechanical

properties and in Eqs. (1)–(4). According to Eqs. (2) and (3), the minimum allowable

stresses give the maximum quantitative coherence between these parameters:

ð5Þ

Managing safety margins and for the purpose of their reduction should be carried out in

accordance with ratio / , which is featuring, as shown on Figure 1, the hardening degree

(or module) of tubular steels in the elastoplastic range beyond the yield point . For the

majority of actually used pipe steels as they are improved with existing hardening methods,

with the growth of and , the ratio / is increased due to preferential growth of

(Figure 4).

In the nomenclature and types of the previously used tube carbon steels (Figures 1 and 2) with

reduced yield strength (less than 300 MPa) and a ratio / (less than 0.6), the traditional

calculations of the yield strength with margins were of primary importance. With a

further increase in the yield strength and decrease in the safety margin , the calculations

for the ultimate strength with margins have become determinative, in accordance with

Eq. (5).

However, in this case, the problem of increasing the danger of stability loss under

and an uncontrolled dangerous transition to large plastic deformations according to Eq. (2)

remains, in fact, not explicitly reflected in Eq. (5), due to a reduction in the degree of hardening

of steels with a simultaneous increase of and the ratio / . Such conclusion in the

framework of modern concepts of strength calculations [1, 3–6] required a gradual transition

from calculations in stresses to calculations in deformations е. This transition already

received not only its scientific justification [6–8] but also its practical implementation in norms

Figure 4. Coherence between strength margins and mechanical properties of pipe steels.
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and substantiation of strength of the vessels and pipelines in nuclear reactors [8–10] and space

and missile systems [11].

4. Modern problems of justifying the strength of pipeline systems

Four strategic tasks are being solved by methods of deterministic, statistical, and probabilistic

modeling and calculation nowadays in Russia:

• Design and construction of new pipelines for liquid and gaseous hydrocarbons transpor-

tation (including marine and harsh climatic conditions of Siberia, the North Sea and the

Arctic Sea)

• Extension of operation of existing pipelines within the limits of modern regulatory

requirements for strength and durability

• Resolving the issues of complex technical diagnostics, repair, and restoration works in the

damage areas beyond the norms of permissible defects for the prolongation of safe exploi-

tation within the assigned terms

• Decommissioning in cases of significant exhaustion and formation of dangerous critical

and un-repairable defects

The solution of these tasks must meet the modern requirements of:

• The federal legislation on justification and ensuring industrial safety by risk criteria

• Industry norms and rules for justifying strength, durability, and reliability

The tasks of justifying and ensuring industrial safety of pipeline systems in accordance

with the criteria of strength, resource, and risks in compliance with the Federal Law No.

116-FZ “On Industrial Safety of Hazardous Production Facilities” are resolved with the

coordinating and decisive role of Rostekhnadzor with the participation of the Russian

Academy of Sciences, leading oil and gas companies as Transneft, Gazprom, Rosneft, the

Russian Union of Oil and Gas Constructors and leading academic and industry institutes

and universities.

The main directions of scientific research and applied developments in this direction are

reflected in the proceedings of the I and II Forums on industrial safety [12].

The solution of problems of formation and development of industry norms and rules for

substantiating the strength, durability, resource, and reliability of pipelines is concentrated in

the research institutes of Transneft and Gazprom.

In normative documents [13] that are governing the industry, the following assumptions were

made:

• Temporary technological heredity is not explicitly taken into account from the processes of

obtaining the parentmetal and the production of sheets and pipes in factories and enterprises.

Probabilistic Analysis of Transportation Systems for Oil and Natural Gas
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• Mechanical properties (including limits and ) of structural pipe steels in the process

of pipeline transportation, construction, and operation of pipelines are assumed to be

unchanged.

• Strength margins in Eq. (1) and margins and in Eqs. (2), (4), and (5) are accepted

unchanged for all stages of the life cycle .

• Degradation of pipes and pipelines is associated mainly with a decrease in wall thickness

due to corrosion (general and local) and erosion.

• The crucial part in material consumption reduction is in the increase in nominal operating

stresses , yield strength , and strength and reduction of margins and

according to the Eq. (1).

The normative approach has an important development element in comparison with [2, 13]—

in it, the strength and durability evaluation is carried out not only by nominal stresses

but also by local deformations in the concentration zones created by structural, techno-

logical, and operational factors (welds, defects, corrosion). This makes the normative calcula-

tion of the strength of pipelines comply with both the modern deformation criteria [6, 7] and

the norms in nuclear power engineering and rocket and space technology [9–11].

5. Main directions of development of pipeline strength standards

Taking into account parts 1–3, the perspective directions of calculation and experimental

analysis of the strength of pipelines in the deterministic interpretation should include:

• Direct quantitative accounting of the degradation and aging in time of tube steels at

various temperatures t and the number of cycles N, leading to a change in the basic design

characteristics—the yield strength and strength :

ð6Þ

where and —kinetically varying yield and strength limits

for a given time τ, temperature t, stress , and deformation e; —generalized

functionals describing the change in the basic mechanical properties under the influence of

temperature t, time τ, stress σ, cyclic N, and deformation e factors at all stages of the life cycle

of the pipeline.

The functional Fс τ; t; σ; e;Nf g with its parameters τ, t, σ, e, and N essentially reflects the

processes of degradation and aging of pipeline steels in the process of sheet and pipe

manufacturing, their transportation, construction, testing, and exploitation of pipelines.

Despite of a huge number of studies in factory laboratories; scientific institutes; design, con-

struction, and operation organizations; and powerful industry research centers, in Russia and
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abroad, it has not yet been possible to obtain and justify this functional Fc with the appropriate

statistical and probabilistic equations and parameters. The prerequisites for the formation of a

system of initial equations for the functional Fc are presented in [4, 8, 11, 13, 14].

Currently, knowledge on the processes of aging and degradation in time τ of carbonaceous

and low-alloy steels is reduced to the following basic provisions (Figure 5):

• Natural aging (curve 1) of steels in the initial state (е = σ= 0) at room temperature to is

characterized by a slow increase in the yield strength σy, reaching values of 1.1–1.25 in

about 30–40 years τ; furthermore, the ratio of the yield strengths σy τð Þ to the tensile

strengths decreases.

• Thermal aging (curves 2I and 2II) of steels in the initial state (е = σ = 0) at elevated

temperatures t1 and t2 (t1 > t0; t2 > t1) leads to an accelerated growth of the yield point

σт τ; tð Þ at the initial stages of exposure (up to 103–104 h) with its subsequent reduction

(steel over ageing).

• Deformation aging (curve 3) of steels in the riveted state for е > 0 even at room tempera-

ture t0 gives a smaller change of σy τ; eð Þ than the natural one.

• Dynamic aging (curve 4) at elevated temperatures in the plastically deformed state (e > 0)

under stress conditions (σ > 0) can be accompanied at first by an insignificant increase,

while later there is a fall in yield strength σy τ; t; е; σð Þ and strength σи τ; t; е; σð Þ with a

decrease in the degree of hardening of tube steels in the plastic area.

In all cases of aging (curves 1–4), the ratio of the yield strengths σy to the tensile strengths σи

increases (due to a smaller change in the tensile strength σи as compared to the yield point σy).

In the normative strength calculations [10], it is suggested not to take into account the areas of

increase in the yield strength σy τ; t; е; σ;Nð Þ due to aging, which goes to the margin of safety. In

the refined basic and normative calculations of the strength of pipelines, one should take into

account [4–9, 14–16]:

Figure 5. Scheme of aging processes of pipe steels.
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• Continuous σи under all types of aging and degradation and the change in values σy and

σи in Eq. (6)

• Effects of degradation of mechanical properties—decrease in relative yield point

σy ¼ σy=σи; σy τ; t; е; σ;Nð Þ ≤ 1;

• The decrease in plasticity (δк from Figure 2), which accompanies aging and degradation,

as well as the fracture toughness

In accordance with the above, based on Eqs. (2)–(5), and taking into account Figures 2–5

ny ¼
σy τ; t; σ; e;Nð Þ

σsnmax

, (7)

ny=nи ¼ σy τ; t; σ; e;Nð Þ=σи τ; t; σ; e;Nð Þ: (8)

Equations (7) and (8) mean that the safety margins ny and nи are dependent on the aging and

degradation processes of the tubular steels, time-dependent τ, temperature t, the cyclicity N,

and the stress-strain state σ – е. This circumstance, which was not explicitly reflected in

domestic [1, 2] and foreign [11, 12] regulatory materials, is to be taken into account in promis-

ing developments of pipe strength standards.

In [2–5], an experimental analysis was made of the time-dependent change in the characteris-

tics of the mechanical properties of tube steels, primarily the yield strength σy and strength σy

from the tensile tests of samples cut from the pipes in the initial state and after prolonged use.

The time τ was varied from τ ffi 5� 10�2 to 3� 105 h, operating temperature from �45 to

+50�C, stress σ from 0.6 σy to 1.0 σy, and deformation e from 0.8 � 10�3 to 3 � 10�3.

The averaged data from these tests showed that the reduction of the yield strength

σy τ; t; е; σ;Nð Þ during exploitation from the initial τ0 to the maximum of τ = 2, 3�105 h was 10–

15% of the yield strength σy:Meanwhile, the ratio of the yield strengths to the tensile strengths

increased by 1.15–1.2. This means that the margin ny of the yield strength σy can be reduced by

1.1–1.17 times, and the margin nи of the ultimate strength σи by 1.20–1.25 times. This corre-

sponds to the generalized statistical experimental data from Transneft, obtained during tests of

laboratory samples from actually operated pipes.

However, it should be borne in mind that the bulk of pipeline damage is associated with the

most severe damage of surface layers of pipes (due to corrosion, erosion, mechanical impacts).

In the standard tensile testing of samples (with surface layers removed during their manufac-

ture), this type of damage has little effect on the strength characteristics σy and σи. For the

experimental evaluation of the effect of surface damages, other tests are carried out. For

example, cyclic bending tests of samples of full-scale gauge without surface treatment showed

a reduction in the endurance limits at basic N = 105–106 by 15–18% [16]. This should affect the

abovementioned decrease in margins nт and nв (up to 10–15%).

For these margins ny and nи, the degradation of pipelines is significant due to a decrease in

time τ because of corrosion and erosion of the wall thickness δ that is included in Eq. (1) for
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determining the nominal maximum operating stresses σsnmax. As shown by laboratory tests and

observations of the actual processes of metal loss while in the operation due to these mecha-

nisms, the rate of corrosion and erosion reduction of the wall thickness dδ=dτ can be from 0.05–

0.1 to 0.3 mm/year. With wall thicknesses from 10 to 30 mm, the decrease of margins can reach

10–30%.

Thus, the aging of tubular steels and the degradation of pipes can, in the course of operation,

with unfavorable combinations of all the abovementioned damaging factors lead to a substan-

tial reduction in determined margins ny and nи and breach of strength as shown by Eqs. (1), (7),

and (8). The number of such cases in real operation [3–5, 14] in the period of 1970–2015

gradually decreased from 1.2–1.0 to 0.12–0.14 damages per 1000 km per year.

6. Analysis of resistance to the development of cracks

A special place in the analysis of the pipeline strength is and will be occupied by the problems

of their crack resistance and survivability, when formation and development of cracks of

technological and operational origin are observed [3–6, 13–19]. In calculating the strength of

pipelines with cracks of depth ℓ in thickness and length a over the surface, equations and

criteria for linear and nonlinear fracture mechanics are used [3–7, 12, 13]. Then, the local stress-

strain state at the crack tip is determined from the solution of the boundary value problem by

numerical methods with defining of stresses σsmaxк and deformations еsmaxк:

σ
s
maxk; е

s
maxk

� �

¼ σ
s
nmax � Kσℓ, (9)

where σsnmax—maximum rated stress in Eq. (1); and Kσℓ—effective coefficient of stress concen-

tration in the zone of cracks.

The value Kσℓ is determined on samples with cracks:

Kσℓ ¼ Fℓ D; σ; ℓ; a; S∗f g, (10)

where Fℓ D; σ; ℓ; a; S∗f g—function of pipe geometry D, δð ) and cracks (ℓ, а); and S∗—the struc-

tural parameter of the material, determined experimentally when testing samples with cracks.

Since σsmaxк > σ
s
nmax and Fk D; δ; ℓ; af g ≥ 1, then safety margins from Eq. (7) for pipes with cracks

taking into account Eq. (9) will be further reduced (Figure 6):

ny
� �

ℓ
; nиð Þ

ℓ

n o

¼ ny; nи
� �

=Fk D; δ; ℓ; S∗; af g: (11)

In general, all the parameters of Eqs. (9)–(11) are deterministic, statistical, and probabilistic.

In calculating the strength of pipelineswith defects, two basic estimated defect sizes are introduced:

• ℓо – Initial size (depth) of the defect, determined by the accepted methods of flaw detec-

tion (with their resolving power, sensitivity)
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• ℓк – The critical size (depth) of the defect at which the margin of safety ny (or nи) in Eq. (10)

becomes less than 1

The calculations ℓк take an elliptical (ℓ=а ≈ 1=3Þ or extended ℓ=а ! ∞ð Þ fracture shape. Typi-

cally, the most dangerous ones are surface cracks, taking into account more intensive accumu-

lation of corrosion, erosion, and mechanical damage in the surface layers.

The second and most common way of assessing the strength of pipelines is to estimate

margins ny
� �

е
and nиð Þ

е
according to the equations and criteria of linear and nonlinear

fracture mechanics [3, 7, 10, 16]. In this approach, the stress intensity factors are determined

by the calculation for the given σ
s
nmax in Eq. (1) and Fk D; δ; ℓ; af g in Eq. (9):

Ks
I ¼ σ

s
nmax

ffiffiffiffiffiffi

πℓ
p

� Fk D; δ; ℓ; af g (12)

When a sample or a pipe with a crack breaks up, a critical value of the stress intensity factor is

reached at the crack tip in accordance with the linear fracture mechanics. Then, in calculating

the crack, resistance (survivability) of pipes with cracks by analogy with Eq. (2) introduced a

margin by the stress intensity factor:

nk ¼
KIc

Ks
I

: (13)

By the values of Ks
I and KIс and Eqs. (9) and (13), the equation below can be obtained:

ny
� �

ℓ
; nиð Þ

ℓ

n o

¼ ny; nи
� �

� KIc

σy; σи
� � ffiffiffiffiffiffi

πℓ
p

� Fk
: (14)

The difference in margins according to Eqs. (11) and (14) should not be significant.

In the event of plastic deformations, instead of the stress intensity factors KI and KIc, the strain

intensity factors should be used [4, 6, 8].

Figure 6. Influence of defects (such as cracks) on safety margins.
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A generalized analysis of the strength, resource, reliability, survivability, and safety of complex

technical systems of pipeline transport is made in one of the volumes [17] of the multivolume

series “Safety of Russia.”

7. Statistical characteristics and probabilistic modeling of pipeline

systems

Multiparameter pipelines with a wide range of service lives are functioning nowadays in

Russia and in various countries across the world, according to parts 1 and 2 (Figure 7).

In further analysis of their initial and residual strength, durability, and crack resistance, both

statistical data on service life τ and statistical data on changes in the mechanical properties of

tubular steels σy, σи, KIc, as well as on developing defects ℓ, should be taken into account. This

consideration can be performed on the basis of Eqs. (1)–(15) in both deterministic and statisti-

cal forms.

According to statistical data [20] on oil pipelines of Russia with a total length of more than

70,000 km (see Table 1), about 70% of them have a service life of more than 30 years. Their age

structure is shown in Figure 7.

Statistical studies of mechanical properties (tensile strength σи) of 29 tube steels were carried

out in 217 pipe sections manufactured at 14 plants. Upward bias from data on technical

conditions was revealed in 8.9% cases and downward bias 2.6%.

Primary and repeated in-tube condition diagnostics on the length of more than 80,000 km of oil

and gas pipelines revealed the presence of unacceptable corrosion and mechanical and erosive

damage in 0.2–0.3% of pipes. This required repair and restoration works, as well as replacement

of pipes or its sections. These works over the past 20 years have made it possible to reduce the

frequency of accidents on pipelines from 0.14–0.16 to 0.09–0.10 per 1000 km per year.

The generally recognized statistical characteristic of the technical condition and safety of pipe-

lines with due regard of their period of operation is [1, 3–7, 17–20] the number of system failures

(failures No
τð Þ) generated per time unit. The failure of a specific section of the pipeline is a very

Figure 7. Statistics on the service life of pipelines.
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rare event, even for a fairly long period of time τ. But taking into account the considerable length

of the whole system (more than 70,000 km), the reduced frequency or failure flow P
o
τð Þ at the

length L (L = 1000 km) will have a finite value depending on the time of operation τ
s:

P
o
τð Þ ¼

dN
o
τð Þ=dτs

L
: (15)

The failure flow P
o
τð Þ, in our country and abroad, of oil and gas pipelines decreases over time

—from 0.3 to 0.4 in the 1960s and 1970s to 0.012–0.015 at the present.

According to Eq. (15), the reliability Ро(τ) of section L at a given time τ can be estimated [1, 4, 6,

7, 18] by the failure flow P
o
τð Þ:

Pо τð Þ ¼ 1� P
o
τð Þ: (16)

In this case, the value of Ро(τ) can be considered as a statistical and probabilistic indicator of

the technical risk Ro(τ) of the failure:

RoðτÞ ¼ 1� P
o
τð Þ (17)

On the basis of (16) and (17), the safety Sо(τ) of the MPS functioning at can be consid-

ered as.

Figure 8. Age structure of long-term running main pipelines of large diameter.
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According to operational statistical data on failures Nо and failure flows dN� / d , the standard

(permissible) operating time [ ] can be established—a resource of reliable operation excluding

the transition of the MPS to the critical (ultimate) state.

Operational experience shows that the service life of the pipeline, as well as of other complex

technical systems, can be conveniently divided into three main periods (Figure 9):

• Run-in period (τI), when there is a high failure rate (Nо), associated with unacceptable

defects in construction and installation works and factory defects in pipes

• Stabilization period (τII), when the number of failures is minimal and their increase is

insignificant

• Wear period (τIII), associated with a steady increase in the number of failures and a

decrease in throughput due to the occurrence of damage accumulation processes and the

formation and development up to critical dimensions (K) of the initial and operational

defects of metal pipes, welded joints, protective coatings, etc.

For mastered deterministic technologies of designing and manufacturing, the following corre-

lations are fulfilled:

τk ¼ τI þ τII þ τIII :

τI << τII < τIII : (19)

The allowed period [ ] of reliable operation of pipelines based on the allowed failure flow may

include periods τI and τII and part of the period:

Figure 9. The failure of technical systems in dependence from the period of operation.

Probabilistic Analysis of Transportation Systems for Oil and Natural Gas
http://dx.doi.org/10.5772/intechopen.75078

97



τ
s
≤ τI þ τII þ kτIII < τk, τ½ � ¼

τk

nτ
(20)

where k—coefficient of using the pipeline with damages (k < 1); and nτ—service life margin.

Equations (15) and (16) are valid both for MPS and for their individual elements when failures

are associated with the development in the length of time of operational defects. At the same

time, for the main pipeline transport, the period of operation and margins nτ with determinis-

tic, statistical, and probabilistic approaches should be taken into account under Eqs. (15)–(20).

The period of stable operation of the pipeline according to Eq. (20) can be increased by carrying

out special organizational and technical measures, including the implementation of local or

major repairs, diagnostic surveys, efficiency improvement of the corrosion protection system,

etc. The most important aim of these measures is the extension of the safe operation period for

the entire system (MPS) as well as for individual sections and pipes (the transition from curve 1

to curve 2 in accordance with Figure 9), subject to specified safety and reliability parameters.

Considering economic consequences Vo τð Þ, failures No
τð Þ, risks Ro

τð Þ, and costs for improving

reliability and safety Z τð Þ allows us to evaluate the economic effectiveness of integrated

measures to improve the working capacity of MPS:

Vо τð Þ ¼ Vo
τð Þ 1� kpP

o
τð Þ

� �

¼ Vo
τð ÞPo

τð Þ, (21)

where Vо τð Þ and Vo
τð Þ—designed throughput of the system with and without consideration

for reliability; and kp—coefficient of influence of failures on the throughput.

Therefore, in accordance with Eqs. (1)–(4), the requirements for MPS operation efficiency are

inextricably linked to the high requirements for ensuring reliability Po τð Þ, safety So τð Þ, and risk

management Ro τð Þ in the process of its operation τ ¼ τ
s, which determines the priority impor-

tance of economic, environmental, and industrial safety of transportation of oil, oil products,

and gas. These issues are assigned to the scope of strategic planning at the federal, regional,

and sectoral levels.

Statistical information on the quantities σs and σи, σy makes it possible to construct the proba-

bility density functions f σ
sð Þ and f σи; σy

� �

(Figure 10) describing the operational loads (nom-

inal σs and strength characteristics) from Eq. (21).

The probability of fracture Рр as an extremely dangerous (critical) failure, accident, and catas-

trophe will be determined by the overlapping of the distribution density functions f σ
sð Þ and

f σи; σy

� �

. In general, all the parameters of Eq. (21) are time-dependent τ ¼ τ
s.

Parameter Рр τð Þ is taken into account when assigning the safety margins {nи, ny}, and Eq. (2)

makes it possible to estimate the strength properties in accordance with the following equation:

Рро τð Þ ¼ 1� Рр τð Þ: (22)

In the calculations for the permissible stress under codes and rules for building [16], this

approach is reflected in the separation from the total factor of margin n factors of homogeneity

ko, overload k
п
, and operating conditions m:
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n ¼ n ko; kп, mð Þ (23)

As a result, the calculated strength (σ
р
и , σ

р
y) and load σ

s
р are calculated by multiplying their

mathematical expectation by the corresponding factors:

σ
р
и,y ¼ ko σи,y

� �

m
; σsр ¼ kп σ

sð Þm: (24)

The values of the factors in Eqs. (23) and (24) will depend on the assumed probability of

fracture Рр, which is determined by the safety characteristic So τð Þ, the shape of the load

distribution curves, and the strength in Figure 9:

ko ¼ 1� zpvи,y; kп ¼ 1þ zpvs, (25)

where vи,y, zp—factors of variability and quantiles of distribution of the strength characteristics

of the material; and vs—variation factor of the operational load.

Statistical analysis [5, 7] of the distribution functions of the mechanical properties of low-alloy

steels (type 15ХСНD-С 0.12–0.18, Ci 0.4–0.7, Mn 0.4–0.7, Ni 0.3–0 (6%)) on a large number of

n = 2500 laboratory samples from a 15-mm-thick sheet showed the acceptability of the use of

the normal distribution law.

The generalization (Figure 11) of the test results of this steel at n = 22.000 samples with

thickness of 5 to 24 mm revealed while increasing thickness δ, decrease of the yield strength

for the probabilities P = (1%, 50%, 99%), as well as the variation coefficients v.

In the generally accepted normative calculations for the strength of the MPS, the time param-

eters τ are not explicitly introduced in Eqs. (1) and (2). They become necessary in the future

specified calculations of the strength σи τð Þ and σy τð Þ, reliability Po τð Þ, safety So τð Þ, and effi-

ciency Vo τð Þ under Eqs. (15)–(25) in case of assessing the technical condition and extending the

life of the functioning facilities and while designing new MPS:

Figure 10. The scheme for determining the probability of fracture Рр by parameters of reliability and durability.
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The currently developed combined probability statistical method [4] makes it possible to

assess the reliability Po τð Þ as a function of time τ
s on the basis of analysis of the initial

deterministic, statistical, and probabilistic information about the design К τð Þ and technological

Т τð Þ features of MPS objects, the operating loads Q τð Þ and environmental impactsФ τð Þ, stress-

strain states in the coordinates σ τð Þ � е τð Þ and probable mechanisms of accumulation of

damage d τð Þ, and nucleation and development of defects l τð Þ.

The main design parameters will be determined under:

σи τð Þ; σy τð Þ; So τð Þ;Po τð Þ
� �

¼

Fв K τð Þ;T τð Þ;Q τð Þ;Ф τð Þf g;

Fp σ τð Þ; е τð Þf g;

Fn d τð Þ; l τð Þf g,

8

>

>

<

>

>

:

(26)

The abovementioned basic calculated dependencies in equations (1)–(26) allow [1, 3–7, 18–20]

to make the transition from traditional deterministic engineering calculations of strength with

the standard characteristics of mechanical properties σy, σи to calculations of strength, durabil-

ity, crack resistance, reliability, and safety using new developing statistical and probabilistic

methods of mathematical and physical modeling and refined calculations.

8. Conclusion

Ultimately, the problems of functional and strength reliability, resource, and safety of pipeline

systems should cover all stages of the life cycle of facilities, representing three interrelated and

interdependent processes: design, construction, and operation.

Designing while taking into account the prospects of statistical and probabilistic modeling of

reliability and safety criteria should include the development and coordination of the technical

Figure 11. Dependence of yield strength σy, factors of variation v of yield strength σy, strength δи, and elongation δk from the

rolled thickness δ.

Probabilistic Modeling in System Engineering100



assignment with the introduction of basic requirements and criteria for strength, resource, and

safety in accordance with applicable standards and development of physical and mathemati-

cal models for regular, damaged, and emergency situations. When designing facilities of new

generations, strength analysis should be carried out in accordance to the basic standard and

additional verification calculations, based on known internal and external influences and

object characteristics, parameters of stress-strain state, and damaging factors with justification

of initial resources for reliable and safe operation.

In the subsequent stages of design andmanufacturing, reliability problemswill be addressed, inclu-

ding selection, justification, and development of materials technology and control in accordance

with existing norms and rules. Generally, for themanufactured elements ofMPS, the actualmechan-

ical properties and their deviations from the technical requirements, the level of real defectiveness,

the geometry parameters, and their deviations should be established. On their grounds, the basic

design parameters of strength and resource will be refined. At this stage, the issues of stability and

safety of the elements require an analysis of possible failures for reasons of technological heredity.

At the operational stage, the system of routine diagnostics of the main characteristics of the MPS

facility and the external environment that determine reliability will be specified, and information

will be collected on confirming or adjusting design decisions on strength and resource. As the

finalized design resource is exhausted, an evaluation of the residual life of safe operation should

be carried out. To harmonize all deterministic, statistical, and probabilistic information for all

stages of the life cycle of an object, it is necessary to use unified mathematical and physical

models, calculation equations, criteria, and computer programs for MPS.

In the future, considering formation of a new legal and regulatory framework, in which the

standardized requirements for safety So τð Þ, risksRo
τð Þ, as well as economic efficiencyVo τð Þwill be

of decisive importance, reverse solutions will be decided. At the same time, all the scientific and

methodological potential accumulated in previous years will be fully utilized in selecting models,

methods, design equations, and design parameters to achieve the required values So τð Þ,Ro
τð Þ, and

Vo τð Þ in engineering design and technological and operational solutions for pipeline systems for oil

and gas transportation.
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