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Abstract

In this chapter, recent advances in the synthesis of carboxylic acid esters are summarized 
based on the utilization of carboxylic acids as electrophiles or nucleophiles in reactions. 
Condensation reagents or catalysts connect the carboxylic acids with the alcohols to afford 
the corresponding esters, together with the formation of 1 equiv. of H

2
O, in which the carbox-

ylic acids can be regarded as the electrophile. In contrast, the carboxylate ion intermediates 
derived from the carboxylic acids react with alkyl halides, carbocations, or their equivalents 
to produce the esters, in which the carboxylate ions from the carboxylic acids can be regarded 
as the nucleophile. This chapter mainly introduces the recent progress in this field of the 
formation of esters, based on the classification of the role of carboxylic acids in reactions.

Keywords: esterification, carboxylic acids, condensation reagents, catalysts, reaction 
media, reaction methods, S

N
2 reactions, electrochemistry, transition metal catalysts, 

addition reactions

1. Introduction

In organic chemistry, the development of the efficient synthesis of carboxylic acid esters 
using carboxylic acids is still one of central research topics, because the organic material com-

pounds, drug molecules, and natural products often contain ester unit as the functional group 

[1–3]. As for the view point of the synthesis of esters, the corresponding carboxylic acids are 

usually utilized as the key starting material and play an important role [1–3].

So far, many kinds of synthetic methods for the esters from carboxylic acids are well recog-

nized and utilized, but a lot of researchers still have studied to investigate the new methods 

or aspects, because the synthesis of esters is also important from the point of view of green 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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chemistry and industry. In this chapter, recent advances in the synthesis of carboxylic acid 

esters are described. The reactions are classified into two categories, i.e., the reactions utilizing 
carboxylic acids as (1) electrophiles and (2) nucleophiles, in which the reactions are conducted 

by using various chemical reagents and catalysts as well as by using interesting reaction media 

and methods. Although many papers have appeared in this filed, we herein have introduced 
important and selected examples because of the limitation of number of pages.

2. Synthesis of carboxylic acid esters using carboxylic acids as 

electrophiles

The typical and traditional method for the synthesis of carboxylic acid esters is the reaction 

of carboxylic acids with an excess amount of alcohols in the presence of a catalytic amount of 

H
2
SO

4
 by using Dean-Stark apparatus [1–3], in which H

2
SO

4
 catalyzes the addition of the alco-

hol to the carboxylic acid, and the H
2
O thus generated is removed by Dean-Stark apparatus 

(Scheme 1 (a)). This reaction is called as Fischer esterification. However, there are some draw-

backs. The excess amount of alcohols is used. The Dean-Stark apparatus is usually necessary. 

In addition, the substrates bearing the functional group which reacts with the acid cannot be 

utilized in this reaction. The alternative and reliable method to be developed is the use of DCC 

in the presence of a catalytic amount of DMAP (Scheme 1 (b)) [4]. DCC can serve as useful 

condensation reagents. The use of DCC as the condensation reagent realizes the decrease of 

the amount of alcohols. In addition, Mitsunobu reaction is also reliable method [5–8].

Besides the use of DCC, other condensation reagents are also developed. 2-Halo-pyridinium 

salts called Mukaiyama condensation reagent serve as effective reagents [9]. Mukaiyama et al. 

have extensively contributed this research area for the development of useful condensation 

reagents [10]. In addition, BOP ((benzotriazol-1-yloxy)-tris(dimethylamino)phosphonium 

hexafluorophosphate)) [11, 12], CDI (carbonyldiimidazole) [13, 14], DMT-MM (4-(4,6-dime-

thoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride) [15–17], and so on [18, 19] are well 

established and used in the ester formation reactions.

As described above, many condensation reagents have been developed so far. However, there 

are still reports for this filed. Table 1 shows recent and selected reports of condensation reac-

tions between carboxylic acids and alcohols using a stoichiometric amount of condensation 

Scheme 1. Typical and traditional procedures for the synthesis of carboxylic acid esters and their chemical structures 

of reagents.

Carboxylic Acid - Key Role in Life Sciences8



reagents. Basically, the amount of alcohols is not excess (Table 1). For examples, polymer-

bounded Ph
3
P (or Ph

3
P)/I

2
/microwave [20–23] and Ph

3
P/I

2
/Zn(OTf)

2
 condition [24] have been 

reported, because the combination of PPh
3
 and I

2
 in the presence of the base has been well 

known so far [25, 26]. In addition, the use of Ph
2
PCl/I

2
/imidazole [27], Ph

3
PBr

2
 [28], POCl

3
/

DMAP/Et
3
N [29], or PPh

3
/BnN

3
/microwave (Staudinger’s phosphazene) [30] systems was 

found to be effective for the esterification. The hypervalent iodine reagents could be utilized 
in coupling reactions [31, 32]. The combination of PPh

3
 and trichloroisocyanuric acid was also 

effective [33]. These reactions are based on the activation of PPh
3
. The catalytic activation of 

PPh
3
 can be achieved by iron [34]. Photo-irradiated procedure in the presence of PPh

3
 with a 

catalytic amount of flavin and azo compound under O
2
 was developed [35]. XtalFluor-E and 

tropylium-based coupling reagents were found to be effective for the esterification [36, 37].

In the view point of green chemistry, the use of a catalytic amount of reagents is one of the attrac-

tive approaches, in which the ratio between carboxylic acids and alcohols is approximately equal. 

In 2000, Yamamoto et al. reported that 0.1 to 1.0 mol% hafnium (IV) salts in toluene at reflux con-

dition catalyzed the condensation reaction of equimolar amount of carboxylic acids and alcohols 

(Table 2, entry 1) [38–47]. Since then, various types of catalysts have been found for the effective 
esterification reactions. Selected examples are summarized in Table 2. Diphenylammonium tri-

flate (entry 2) [48], fluoroalkyldistannoxane (entry 3) [49], HClO
4
-SiO

2
 (entry 4) [50–52], Ti

4
+-mont 

(mont = montmorillonite, entry 5) [53], bulky diarylammonium arenesulfonates (entry 6) [54–

58], Zn(ClO
4
)

2
-6H

2
O (entry 7) [59], pentafluorophenylammonium triflate (entry 8) [60], TsOH or 

CSA (entry 9) [61], phosohorofluoridic acid (entry 10) [62], N,N-diarylammonium pyrosulfates 

in H
2
O (entry 11) [63, 64], TfOH in Solkane365mfc (entry 12) [65], 2-oleamido-5-nitro-pyridin-

ium p-toluenesulfonate (entry 13) [66], zirconocene complex (entry 14) [67], and L-leucine as an 

organocatalyst (entry 15) [68] have been reported for the effective catalyst for the esterification 
using equal or nearly equal amount of carboxylic acids and alcohols.

Table 1. Various condensation reagents and conditions used for the synthesis of carboxylic acid esters under the nearly 

equimolar carboxylic acids and alcohols (recent and selected examples).
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Another approach for the esterification of carboxylic acids with alcohols (2 equiv.) was devel-
oped by Kobayashi and coworkers [69–71], in which p-dodecylbenzenesulfonic acid (DBSA) 

was used as a surfactant-type catalyst in water (Scheme 2). Because the micelles of DBSA 

are produced, the esterification reactions between carboxylic acid and alcohol proceed in the 
micelles. After the reaction, the micelle releases H

2
O. The carboxylic acids and alcohols bear-

ing the longer alkyl chains seem to be favored because of the increase of the hydrophobicity. 

Thus, the equilibrium between starting materials and the product lies in right side.

Scheme 2. The use of DBSA in H
2
O solvent (Kobayashi [69, 70]). The reactions were conducted in the ratio of RCOOH 

(1 equiv.) and R’OH (2 equiv.).

Table 2. Representative progresses for the synthesis of esters using equal or nearly equal amount of carboxylic acids and 

alcohols in the presence of the catalyst, since 2000 (selected examples).
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The use of resin was also reported by Uozumi et al., who designed and synthesized the 

porous phenolsulfonic acid formaldehyde resin (PAFR) from 4-hydroxybenzenesulfonic acid 

and formaldehyde (5 equiv.) in H
2
O (Scheme 3). The solid resin was allowed to react with 

RCOOH and R’OH to give the corresponding esters in good yields [72, 73]. The merit of the 

resin is that it can be recovered by the simple filtration and reused without the significant loss 
of the catalytic activity. Other type of solid catalysts bearing SO

3
H unit are also reported. For 

examples, polystyrene-supported sulfonic acid catalyst [74], SBA-15-functionalized propyl-

sulfonic acid catalyst [75], p-sulonic acid calix[n]arenes catalyst [76], β-cyclodextrin-derived 

carbonaceous catalyst [77], and sulfonated hyperbranched poly(aryleneoxindole) acid cata-

lyst [78] are developed and utilized for the esterification.

As for the promising reaction tool for the esterification, the use of the flow chemistry has 
emerged. For example, Uozumi et al. applied the PAFR to the flow method [72, 73]. Fukuyama 

et al. demonstrated Fisher esterification by the flow system, in which silica bearing terminal 
-SO

3
H group was used [79, 80].

3. Synthesis of carboxylic acid esters using carboxylic acids as 

nucleophiles

3.1. Nucleophilic reactions of carboxylate ion intermediates

3.1.1. The use of bases and ionic liquids

Because the acidity of carboxylic acids is relatively high, it is easy to generate and accumulate 

the carboxylate ion intermediates by the deprotonation of carboxylic acids. S
N
2 reaction of 

carboxylate ions with alkyl halides is one of the most popular approaches, when carboxylate 

ions can be used as the nucleophiles. It was found that CsF or KF is the effective base toward 
carboxylic acids by Clark and Miller [81]. Since then, various reactions have been reported 

in these fields. Recent examples of this chemistry utilize the combination of bases (such as 

Huning’s base, Et
3
N and KF) and various ionic liquids (such as imidazolium salts and phos-

phonium salts), summarized in Figure 1 [82–90]. The countercations of carboxylate ions are 

bulky cations such as imidazolium salts and phosphonium salts, which seem to increase the 

reactivity of the carboxylate ions toward electrophiles.

Scheme 3. The use of PAFR as the condensation catalyst (Uozumi [72, 73]).
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It has been well known so far that F− source such as KF and CsF can serve as good base toward car-

boxylic acids, described above [81]. Because of this reason, Bu
4
NF is also the attractive reagent for 

the deprotonation of carboxylic acid. In 2001, Maruoka et al. reported in situ generation of Bu
4
NF 

from the combination of a catalytic amount of Bu
4
NHSO

4
 (5 mol%) and KF-H

2
O (5 equiv.), which 

takes the proton of carboxylic acids to generate reactive carboxylate ion intermediates, whose 

countercation is presumably bulky Bu
4
N+ (Scheme 4 (a)) [91]. In addition, Matsumoto et al. also 

reported the reactions of carboxylic acids with a stoichiometric amount of Bu
4
NF cleanly gener-

ated and accumulated reactive carboxylate ion intermediates, which reacted with various alkyl 

halides to give the corresponding esters in moderate to good yields (Scheme 4 (b)) [92].

The use of good affinity of F− and metals such as Si and Sn was also developed in order to generate 

and accumulate highly reactive carboxylate ion intermediates. For example, the reaction of silyl-

protected carboxylic acids with Ph
3
CF in the presence of a small amount of SiF

4
 produced the cor-

responding esters, in which SiF
4
 might activate both silyl-protected carboxylic acids (substrates) 

and Ph
3
C-F to generate carboxylate ions and Ph

3
C+, respectively (Scheme 5 (a), Noyori et al.) [93]. 

The combination of silyl-protected carboxylic acids and Bu
4
NF was also reported by Maruoka 

et al. (Scheme 5 (b)) [94]. Nozaki et al. reported the use of Sn in 1992. The intermediate bearing 

COO-Sn bond reacted with alkyl halides in the presence of CsF, as shown in Scheme 5 (c) [95].

Scheme 4. Nucleophilic reactions of carboxylate ion intermediates by using Bu
4
NF as the base. (a) in situ generation of a 

catalytic amount of Bu
4
NF (Maruoka [91]). (b) the use of a stoichiometric amount of Bu

4
NF (Matsumoto [94]).

Figure 1. Recent and selected examples for nucleophilic reactions using carboxylate ion intermediates in various ionic 

liquids.

Carboxylic Acid - Key Role in Life Sciences12



3.1.2. The use of electrochemical reduction methods

Electrochemistry is a clean technique, and basically the electron serves as the reagent instead 

of chemical reagents [96–99]. Therefore, electrochemistry in organic synthesis does not gener-

ate the waste derived from reagents, and is recognized as one of the powerful tools for green 

chemistry. The pioneering work for the esterification of carboxylic acids and alkyl halides 
using electrochemistry was developed by Nonaka et al. (Scheme 6) [100, 101]. The solution 

containing carboxylic acids underwent electrochemical reduction to generate highly reac-

tive carboxylate ions, which reacted with alkyl halides to produce the corresponding esters. 

Matsumoto et al. investigated the detailed reaction condition, the scope and limitations, and 

the mechanism of the electroreductive esterification reaction (Scheme 6) [102].

The use of electro-generated base (EGB) [97] is also effective to generate reactive carboxylate 
ion intermediates, developed by Shono et al. (Scheme 7) [103]. 2-Pyrrolidone was electro-

chemically reduced and 2-pyrrolidone anion was generated and accumulated as the base in 

the solution phase, which reacted with carboxylic acids to generate carboxylate ions bearing 

the quaternary ammonium cation. The reaction was applicable to the formation of macrolides.

3.1.3. The use of electrophile equivalents

Some substrates were found to be effective as the electrophile equivalents, when carboxylic acids 
served as the nucleophile (Figure 2). For example, One of the interesting examples is the use of 

2-benzyloxy-1-methylpyridinium triflate reported by Dudley (Figure 2 (a)) [104]. The benzyl 

cation was gradually generated, which was allowed to react with carboxylic acids. The in situ 

version was also established by Albiniak et al. [105]. Cu-mediated coupling reactions using aryl 

Scheme 5. The use of affinity of F− and metals such as Si and Sn to generate carboxylate ion intermediates.

Scheme 6. Electrochemical reduction condition to generate carboxylate ion intermediates followed by esterification. * The 
electro-reductive esterification of carboxylic acids in the presence of alkyl halides was also examined.
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trialkoxysilanes [106] or arylboronic acids [107] were developed by Cheng et al. (Figure 2 (b)).  

Diaryliodonium salts were found to be good electrophiles for the esterification (Figure 2 (c)) 

[108]. Meier et al. reported the use of diphenyl carbonate as the electrophile to produce phenyl 

esters (Figure 2 (d)) [109, 110]. Kunishima et al. found that 2,4,6-tris(benzyloxy)-1,3,5-triazine 

(TriBOT) serves as the benzyl cation equivalent via S
N
2 mechanism in the presence of a catalytic 

amount of TfOH at room temperature (Figure 2 (e)) [111]. The reaction at high temperature 

also proceeded without TfOH. Thus, O-benzylation of carboxylic acids took place smoothly. 

This methodology was extended to the use of 2,4,6-tris(tert-butoxy)-1,3,5-triazine (TriAT-tBu), 

in which carboxylic acids can react with the tert-butyl cation via S
N
1 mechanism to afford the 

corresponding esters (Figure 2 (e)) [112, 113]. The reactions of the diphenylmethyl trichloro-

acetimidate with carboxylic acids were also investigated by Chisholm et al. [114, 115].

Recently, dimethyl sulfoxide (DMSO) was utilized for the source of CH
3
- unit in the reaction 

with carboxylic acids to give the methyl esters shown in Scheme 8. The generation of methyl 

radical was indicated [116].

Figure 2. Selected examples for the use of electrophile equivalents.

Scheme 8. Methyl esterification of carboxylic acids using DMSO (Guo [116]).

Scheme 7. Electrochemical preparation of EGB (electro-generated base) and its utilization for the esterification (Shono 

and Kashimura [103]).

Carboxylic Acid - Key Role in Life Sciences14



In situ generation of benzyl bromide from toluene derivatives by using NaBrO
3
/NaHSO

3
, fol-

lowed by the nucleophilic reactions of the carboxylic acids could be achieved by Khan et al. 

(Scheme 9) [117]. Although aliphatic carboxylic acids were not suitable, the aromatic carbox-

ylic acids can be converted to the corresponding esters.

3.2. The use of the functionalization of C-–H bonds

Recently, the esterification of carboxylic acids and suitable substrates via the functionalization 
of C-H bond has been extensively studied. For example, Zhang et al. found that the reaction 

of carboxylic acids and toluene in the presence Pd(OAc)
2
 (10 mol%), CF

3
SO

3
H (10 mol%) and 

N,N-dimethylacetamide (1 equiv.) under O
2
 (1 atm) afforded the corresponding esters via ben-

zylic C-H bond activation (Scheme 10) [118]. Other interesting examples of this approach have 

been extensively studied [119–125].

3.3. The use of metal catalysts

The addition of carboxylic acids onto C-C multiple bonds proceeds with high atom efficiency 
to afford the corresponding enol or alkyl esters. Hg salts have been used as the catalysts for 
these reactions for a long time; however, the use of these toxic salts should be avoided from 

the view point of green chemistry. Ruthenium complexes have been paid much attention for 
the alternative catalyst for the addition of carboxylic acids onto C-C multiple bonds. These 

ruthenium-catalyzed addition reactions of carboxylic acids to alkynes and several catalytic 

formation of alkyl esters by the addition of carboxylic acids to alkenes are summarized in 

this section.

Scheme 9. In situ formation of benzyl bromide as the electrophile equivalent (Khan [117]).

Scheme 10. Esterification of carboxylic acids and toluene catalyzed by Pd(OAc)
2
 (Zhang [118]).
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3.3.1. The addition of carboxylic acids onto alkynes

The addition reaction of carboxylic acids onto alkynes with ruthenium catalysts through the 

Markovnikov’s rule was well investigated by Mitsudo and Dixneuf, independently [126–

128]. In 1987, Mitsudo and coworkers reported that the reaction of carboxylic acids including 

N-protected α-amino acids with alkynes were performed in the presence of Ru(η5-cod)
2
, phos-

phine ligands and maleic anhydride in toluene to afford the corresponding enol esters in 31–99% 
yields (Scheme 11) [126]. This reaction proceeds with the high regioselectivity (>89% selectivity).

On the other hand, Dixneuf and coworkers developed the simpler catalytic system for the 

Markovnikov addition. Thus, (p-cymene)RuCl
2
(PPh

3
) catalyzed the addition of carboxylic 

acids to the alkynes to give the corresponding adducts in high yields (78–92%), as shown 

in Scheme 12 [127, 128]. They also found the highly selective anti-Markovnikov addition by 

the use of Ru(η3-methallyl)
2
(diphosphine) (diphosphine = dppb or dppe) to obtain the Z-enol 

esters in high yields with regio- and Z-selectivities (Scheme 13) [129–132].

The reaction mechanisms for both regioselective additions were proposed by Dixneuf et al. 

(Scheme 14), and the formation of vinylidene complex is crucial for the anti-Markovnikov 

addition. Thus, the Markovnikov adducts are formed through the activation of alkynes by the 

formation of π-complex with ruthenium catalyst, followed by the nucleophilic attack of the 
carboxylate ion onto the internal carbon atom of alkynes and the protonolysis of Ru-C δ-bond  
[128]. On the other hand, the anti-Markovnikov adducts are afforded by the vinylidene com-

plex formation between the ruthenium catalyst and alkynes, followed by the nucleophilic 

attack of the carboxylate ion to the terminal carbon of alkynes and the protonolysis of the 
resulting intermediate [129].

Scheme 11. Markovnikov addition (Mitsudo [126]).

Scheme 12. Markovnikov addition (Dixneuf [127, 128]).

Carboxylic Acid - Key Role in Life Sciences16



Two simple catalytic systems, in which the regioselectivity is easily controlled by the use of 

the same or similar catalyst, have been reported [133, 134]. Goossen et al. found that the reac-

tion of carboxylic acids and alkenes with RuCl
2
(p-cymene)/phosphine catalyst in the presence 

of K
2
CO

3
 gave the corresponding Markovnikov adducts in good to excellent yields, whereas 

the use of DMAP instead of K
2
CO

3
 afforded the anti-Markovnikov (Z) esters in high yields 

(Scheme 15) [133]. The reactions with RuClH(CO)(PCy)
3
 catalyst showed the interesting sol-

vent-controlled regioselectivity (Scheme 16) [134]. Thus, the reaction of benzoic acid with aryl 

acetylene in the presence of RuClH(CO)(PCy)
3
 as a catalyst in CH

2
Cl

2
 gave the Markovnikov 

adducts in high yields. On the other hand, the use of THF as a solvent instead of CH
2
Cl

2
 led to 

the inverse of the selectivity to afford the corresponding anti-Markovnikov (Z) esters in high 

Scheme 13. Anti-Markovnikov addition of carboxylic acids onto terminal alkynes (Dixneuf [129–132]).

Scheme 14. Reaction mechanisms of the present enol ester formations.
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yields together with the high selectivity. It is considered that the use of THF accelerated the 

formation of vinylidene complex intermediates. Unfortunately, this interesting effect was not 
observed in the reaction of aliphatic alkynes.

The stereoselective formation of anti-Markovnikov (E) esters is so far limited [135–137]. 

Verpoort [135], Leong [136] and Fan [137] and their coworkers showed the (E)-selective forma-

tion of enol esters with their own ruthenium catalyst (Scheme 17), independently. However, 

the E/Z ratios were dependent on the alkyne and/or substrates of carboxylic acids. The  rhenium 

catalyst showed the E-selectivity, though the selectivity was also strongly dependent on the 

substrates of alkynes. Similar selectivity was obtained when Re(CO)
5
Br was used as a catalyst, 

though the E/Z ratios were moderate (Scheme 18) [138].

Two examples for the regio- and E-selective addition of carboxylic acids onto “internal” alkynes 

have been reported (Scheme 19). Lang et al. found that the reaction of the carboxylic acid with 

Scheme 16. Solvent-controlled selective additions (Yi [134]).

Scheme 15. Regioselective addition (Goossen [133]).

Carboxylic Acid - Key Role in Life Sciences18



symmetrical internal alkynes in the presence of [Ru(CO)
2
{(p-CF

3
C

6
H

4
)

3
P}(O

2
CPh)

2
]/B(C

6
F

5
)

3
 

catalyst afforded the corresponding E-enol esters in up to 99% yield with the extremely high 

E-selectivity [139]. This catalytic system also achieved the regio- and stereoselective addition 

of carboxylic acids to unsymmetrical internal alkynes, in which the E/Z ratio reached up to 

72:28. Kawatsura and Itoh reported the reaction with alkynes having trifluoromethyl and 
aryl group [140]. The reaction proceeded with high regioselectivity and stereoselectivity to 

provide the corresponding (E)-enol esters including trifluoromethyl group in up to 92% yield.

Scheme 17. Ruthenium catalysts for E-selective additions.

Scheme 18. Rhenium catalysis for additions of carboxylic acids onto alkynes (Hua [138]).

Scheme 19. Regio- and stereoselective additions to unsymmetrical internal alkynes.
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3.3.2. The addition of carboxylic acids onto alkenes

In 2004, Oe et al. reported the first transition metal-catalyzed addition of carboxylic acids onto 
alkenes. Thus, the reaction of benzoic acids with norbornene was carried out in the presence 

of [Cp*RuCl
2
]

2
/AgOTf/Dppb catalyst in toluene at 85 °C to obtain the corresponding norbor-

nyl benzoates in good to high yields (Scheme 20) [141]. After that, several metal catalysts for 

the addition of carboxylic acids to alkenes have been reported and are summarized in Table 3.

Norbornene is a generally good substrate due to the strain of the C–C double bond, therefore the 

reported catalyst afforded the corresponding esters in high yields (Table 3) [142–145]. In 2005, 

He et al. reported the Au catalyst, where the four alkenes including unstrained 1-octene were 

transformed into the corresponding esters in 75–95% yields (entry 1) [142]. Hii et al. showed the 

catalytic activity of Cu(OTf)
2
, though only norbornene was used as an alkene substrate (entry 2) 

[143]. In these cases, the addition of phenols onto alkenes was also catalyzed under the similar 

reaction conditions. With only norbornene, In(OTf)
3
 was also found as a good catalyst under the 

solvent-free reaction condition (entry 3) [144]. An ubiquitous iron catalysis has been reported by 

Sakakura et al., where the unstable ester such as acrylates can be synthesized under the solvent-

free reaction conditions (entry 4) [145]. Modified ruthenium(II) catalysis including xantphos 
ligand improved the scope of substrates of alkenes compared to that with ruthenium(III) cata-

lyst to afford the corresponding esters in up to 99% yield by Oe et al. (entry 5) [146].

Scheme 20. Ruthenium-catalyzed additions of carboxylic acids to norbornene (Oe [141]).

Table 3. Recent reported catalysts and generality of alkene substrates.

Carboxylic Acid - Key Role in Life Sciences20



Hartwig and He found that TfOH itself showed the catalytic activity for the present addi-

tion reactions (Scheme 21) [147, 148]. Interestingly, the relatively large amount of catalyst 

and/or higher reaction temperature decreased the chemical yield of the product. It might 

be due to the polymerization of substrates of alkenes. Accompanied with the importance of 

triflate in the metal-catalyzed reaction described above, these metal catalysts might act as a 
TfOH source.

Recently, an organocatalytic addition under the LED light irradiation conditions have been 

reported by Nicewicz et al. (Scheme 22) [149]. The reaction of carboxylic acids and inter-

nal and/or cyclic alkenes proceeds nicely under mild conditions to afford the corresponding 
esters in up to 99% yield regio-selectively.

4. Conclusion

In this chapter, the recent progress of the esterification reactions using carboxylic acids as the 
starting material was overviewed, together with some basic and pioneering works. Various 

reagents, catalysts, synthetic media, and methods have been developed so far, and the qual-

ity of this field seems to be obviously increased. Because the topic of the efficient synthesis of 
esters is still an important task, it is expected that more innovative approach is discovered in 

near future.

Scheme 21. TfOH-catalyzed reactions.

Scheme 22. The additions of carboxylic acids onto alkenes in the presence of the organocatalyst under the LED 

irradiation (Nicewicz [149]).
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