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Abstract

The aim of this chapter is to present and describe the R package CoClust, which enables
implementing a clustering algorithm based on the copula function. The copula-based
clustering algorithm, called CoClust, was introduced by Di Lascio and Giannerini in 2012
(Journal of Classification, 29(1):50–75), improved in 2016 (Statistical Papers, p.1–17, DOI
10.1007/s00362-016-0822-3), and is able to find clusters according to the complex multivar-
iate dependence structure of the data-generating process. Hence, among other advan-
tages, the CoClust overcomes the limitations of classic approaches that only deal with
linear bivariate relationships. The first part of the chapter briefly describes the clustering
algorithm. The second part illustrates the clustering procedure through the R package
CoClust and presents numerical examples showing how the main R commands can be
used to perform a fully developed clustering of multivariate dependent data.

Keywords: clustering algorithm, CoClust, copula function, multivariate dependence
structure, R package

1. Introduction

Cluster analysis is an unsupervised classification method that aims to detect a structure within

data by assigning a set of objects (observations or variables) into groups, called clusters,

whereby objects in the same cluster are in some sense more closely related to each other than

objects assigned to different clusters.

Literature on clustering methods is very extensive and different criteria are taken into

account to organize and present these methods. One such criterion is the mathematical

object of the clustering methods: a distance or dissimilarity measure versus a probability

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



model. In this chapter, we consider the model-based clustering methods that assume the

data matrix is generated according to a specific data generating process (henceforth DGP).

The classic model-based clustering method in [1, 2] is based on a mixture of multivariate

probability distributions, such as the multivariate normal. However, this approach only

accounts for the linear dependence between objects so that it inherits all the limitations of

the linear correlation coefficient. Hence, we here focus on clustering methods that assume

the data matrix is generated by a K-dimensional copula [3] such that each of the K clusters is

represented by a (continuous) univariate density function and the complex multivariate

relationship among clusters is expressed by the copula and its dependence parameter.

Specifically, this chapter aims to describe the copula-based clustering algorithm first intro-

duced by [4] and improved by [5], presenting in detail its implementation in the R package

called CoClust. The CoClust approach inspired the work of [6], while different copula-

based clustering approaches can be found in [7–9], [10–13], [14], and in [15, 16]. To the best

of our knowledge, none of these methods have been implemented in software available to

the scientific community.

Most clustering algorithms take as input some parameters, such as number of clusters, the

distance or density of clusters, or the number of points in a cluster, and a starting classification.

Some important benefits of the R function CoClust, which implements the copula-based

clustering algorithm in [5], are that (i) the user can simultaneously test a multiple number of

clusters in a single function call, (ii) there is no need for a starting classification, and (iii) the

algorithm can nonparametrically estimate the density of the clusters, which are distributional

free. The package is available from the Comprehensive R Archive Network (CRAN) at https://

cran.r-project.org/web/packages/CoClust/index.html.

The chapter is organized as follows. Section 2 presents the theoretical tools of copula theory

essential to understanding the copula-based clustering algorithm introduced and described in

Section 3. Section 4 describes in detail the R implementation of the CoClust algorithm and

illustrates its use on simulated DGPs. In Section 5, an application to a real dataset is presented,

while a brief conclusion follows in Section 6.

2. Copula theory

The copula function [17–20] was born in the probabilistic metric space with Sklar’s theorem [3]

stating that every joint distribution function F �ð Þ can be expressed in terms of K marginal

distribution function Fk and the copula distribution function C as follows:

F x1;…; xk;…; xKð Þ ¼ C F1 x1ð Þ;…; Fk xkð Þ;…; FK xKð Þð Þ (1)

for all x1;…; xk;…; xKð Þ∈R
K

(where R denotes the extended real line). According to this

theorem, any joint probability function f �ð Þ can be split into the margins f k �ð Þ and a copula

c �ð Þ, so that the latter represents the association among variables, that is, the multivariate

dependence structure of a joint density function [17–20]:

Recent Applications in Data Clustering94



f x1;…; xk;…; xKð Þ ¼ c F1 x1ð Þ;…; Fk xkð Þ;…; FK xKð Þð Þ
YK

k¼1

f k xkð Þ: (2)

Such separation determines the modeling flexibility of copulas, since it enables (i) freely choosing

the distribution of the margins and, separately, that of the copula, (ii) decomposing the estima-

tion problem into two steps: in the first step, the margins are estimated, in the second step, the

copula model is estimated, and (iii) combining different estimation methods or approaches.

The log-likelihood function of f �ð Þ is composed of two positive terms as follows:

l Θð Þ ¼
Xn

i¼1

log c F1 X1i; β1
� �

;…; Fk Xki; βk
� �

;…; FK XKi; βK
� �

;θ
� �

þ
Xn

i¼1

XK

k¼1

log f k Xki; βk
� �

(3)

where the first term involves the copula density c �ð Þ and its parameter θ, and the second

involves marginal densities f k �ð Þ and their parameters βk, and the whole set of parameters to

be estimated is Θ ¼ β1;…; βk;…; βK;θ
� �

. Thus, it is possible to estimate f �ð Þ by exploiting the

decomposition into two terms of Eq. (2) [20, Chapter 4] using a sequential two-step maximum

likelihood method, called inference for margins (henceforth IFM) [21]. This method estimates

the marginal parameters in the first step and uses them to estimate the parameter of the copula

function in the second step, in either a full or semi-parametric approach.

A full parametric approach for the IFMmethod is based on the estimation of the marginal param-

eters β1;…; βk;…; βK
� �

in the first step by themaximum likelihood estimation for eachmargin:

bβk ¼ arg max
βk

Xn

i¼1

log f k Xki; βk
� �

(4)

where each marginal distribution f k has its own parameters βk. In the second step, the depen-

dence parameter θ given bβk for k ¼ 1,…, K is estimated by:

bθ ¼ arg max
θ

Xn

i¼1

log c F1 X1i;
bβ1

� �
;…; Fk Xki;

bβk

� �
;…; FK XKi;

bβK

� �
;θ

h i
: (5)

using the maximum likelihood estimation method.

The IFM method can also be used in a semi-parametric approach [22] where the margins are

modeled without assumptions on their parametric form, that is, through the following empir-

ical cumulative distribution function bFk Xkið Þ:

bUki ¼
nbFk Xkið Þ

nþ 1ð Þ
(6)

where bFk Xkið Þ is computed from Xk1;…;Xki;…;Xknð Þ with k ¼ 1, 2,…, K and n is the sample

size, while the copula parameter θ is estimated by using the following maximum log-

likelihood function:
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bθ ¼ argmax
θ

Xn

i¼1

log c bU1i;…; bUki;…; bUKi;θ

h i
: (7)

Note that the scaling factor n= nþ 1ð Þ in Eq. (6) is typically introduced in the nonparametric

computation of the margins to avoid numerical problems at the boundary of 0; 1½ �K.

2.1. Copula models

While many different copula models are available in literature (see [18, 19] for details), the

Elliptical and Archimedean families are shown to be the most useful in empirical modeling.

The Elliptical family includes the Gaussian copula and the t-copula: both are symmetric,

exhibit the strongest dependence in the middle of the distribution, and can take into account

both positive and negative dependence, since �1 ≤θ ≤ 1. The Archimedean family enables

describing both left and right asymmetry as well as weak symmetry among the margins using

the Clayton, Gumbel, and Frank models, respectively. Clayton’s copula has the parameter

θ∈ 0;∞ð Þ and as θ approaches zero, the margins become independent. The dependence

parameter θ of a Gumbel model is restricted to the interval 1;þ∞½ Þ where the value 1 means

independence. Finally, the dependence parameter θ of a Frank copula may assume any real

value and as θ approaches zero, the marginal distributions become independent. According to

the type of copula model, the value of θ has a specific meaning and the magnitudes of the

dependence parameter are not comparable across copulas. It is always true that the greater the

value of the dependence parameter, the stronger the association among the margins, but since

the relationship between θ and the concordance measures is well known, it is standard to

convert θ to these, for example, to the Kendall’s τ correlation coefficient. The families of copula

models considered here are described in Table 1 and shown in Figure 1 in their bivariate

version. Note that here only single parameter copula models are considered.

The copula model selection task is still an open research field. Although various statistical tests

enable evaluating whether a specific model is plausible or not, no tool has thus far been

recognized as the best. In the copula-based clustering context, this issue can be overcome,

Copula C u1; u2;θð Þ Parameter range Kendall’s τ

Gaussian ΦG Φ
�1 u1ð Þ;Φ�1 u2ð Þ

� 	
θ∈ �1; 1ð Þ 2

π
arcsin θð Þ

Student-t t2,ν t�1
ν

u1ð Þ; t�1
ν

u2ð Þ;θ
� �

θ∈ �1; 1½ �, ν∈ 2;∞ð Þ 2
π
arcsin θð Þ

Clayton u�θ

1 þ u�θ

2 � 1
� 	�1

θ θ∈ 0;∞ð Þ θ

θþ2

Frank
� 1

θ
ln 1þ

e�θu1�1ð Þ e�θu2�1ð Þ
e�θ�1ð Þ


 �
θ∈ �∞;∞ð Þ 1� 4

θ
1�D1 θð Þ½ �

Gumbel e � � log u1� logu2ð Þ1=θ½ � θ∈ 1;∞½ Þ 1� 1
θ

Table 1. Some standard single parameter bivariate copulas with the range of the dependence parameter θ and its relation

with Kendall’s τ. uk with k ¼ 1, 2 are uniformly distributed variates so that xk ¼ F�1 ukð Þ � Fk. Φ is the cumulative

distribution function (cdf) of the standard normal distribution, ΦG u1; u2ð Þ is the standard bivariate normal distribution,

t2,ν �; �;θð Þ denotes the standard bivariate student-t distribution with ν degrees of freedom, and t�1
ν

the inverse univariate

student-t distribution function. D1 xð Þ denotes the “Debye” function 1=x
Ð x
0 t= expt � 1

� �
dt.
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since the choice of the type of model would seem less important in terms of the goodness of the

final clustering (see [5], Section 4.3), and a classic information criterion can be used, such as the

Bayesian or the Akaike information criterion. This topic is discussed in detail in Section 3.

3. CoClust algorithm

Di Lascio and Giannerini [4] proposed a clustering algorithm called CoClust that is able to

cluster multivariate observations with a complex dependence structure. The basic underlying

concept of CoClust is clustering multivariate dependent observations based on the likelihood

copula fit estimated on the previously allocated observations. To do so, the CoClust assumes

Figure 1. Contour plots of bivariate copula models with normal standard margins and dependence parameter θ such that

the Kendall’s correlation coefficient is τ ¼ 0:7; upper panel: Gaussian and t-Student copula models for 2 and 4 degrees of

freedom; lower panel: Clayton, Gumbel, and Frank copula models.
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that the data are generated by a multivariate copula function whose arguments represent the

clusters, and each cluster is thus generated by a (marginal) univariate density function. The

type and strength of multivariate dependence across clusters are modeled through a copula

function and its dependence parameter, respectively. Being copula-based, CoClust inherits all

the advantages of copula theory, and the multivariate complex dependence structure of the

DGP can be taken into account to perform the cluster analysis. However, CoClust in its first

version had some significant limitations. For example, it automatically allocated all the obser-

vations to the clusters without discarding potentially irrelevant observations, implying a high

computational burden. Di Lascio and Giannerini [5] proposed a new version of the CoClust

algorithm that satisfactorily overcomes these limitations. This section hereafter describes the

latest version of the CoClust algorithm, which is implemented in the R package CoClust.

The starting point of the CoClust algorithm is the standard n� pð Þ data matrix X:

X ¼

x11 … x1j … x1p

⋮ ⋮ ⋮ ⋮ ⋮

xi1 … xij … xip

⋮ ⋮ ⋮ ⋮ ⋮

xi01 … xi0j … xi0p

⋮ ⋮ ⋮ ⋮ ⋮

xn1 … xnj … xnp

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

x1

⋮

xi

⋮

xi0

⋮

xn

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(8)

in which np-dimensional objects have to be grouped in K groups. CoClust can be applied

either to the row or to the column data matrix according to the purpose of the analysis. In both

cases, CoClust works with vectors and treats each row (column) of the data matrix X as a

single element to be allocated to a cluster. The values within a row (or column) vector are

treated as independent realizations of the same density function, thus observations for each

cluster from the same distribution. Here, CoClust is described as applied to the rows of the

data matrix.

3.1. The basic procedure and selection of the number of clusters

The basic idea behind the CoClust consists in a forward procedure that allocates a K-plet of the

row data matrix at a time, that is, a p-dimensional vector for each cluster at a time, and the

decision on the allocation of each K-plet of rows is based on the value of the log-likelihood of

the copula fit. This likelihood is computed by using the K-plets already allocated and one

allocation candidate, say xi0 ¼ xi01;…; xi0j;…; xi0p

� �

, by varying the permutations of observa-

tions in xi0 in order to find, if it exists, the combination that maximizes the copula fit. If the log-

likelihood of the copula fitted on the observations already allocated plus the permutation of

the selected K-plet increases, then the candidate K-plet is allocated to the clusters; otherwise, it

is discarded, since theoretically it could be either independent from the identified DGP or

derive from another DGP.
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Before describing the clustering algorithm procedure, two aspects of the CoClust merit a

discussion: the construction of the K-plet candidate to the allocation and the selection of

number of clusters K. The K-plet of rows candidate to the allocation is constructed based on

the following function H �ð Þ, which is a sort of multivariate measure of association based on the

pairwise Spearman’s r correlation coefficient:

H Λ2jΛ1ð Þ ¼ max
i0 ∈Λ2

ψ
i∈Λ1

r xi; xi0ð Þð Þ

( )

(9)

where Λ1 is the subset of row index vectors already selected to compose a K-plet, Λ2 is the

subset of the remaining candidate row index vectors to complete it, and ψ is an aggregation

function, for instance, the mean, median, or maximum.

As for the selection of K, one of the advantages of CoClust with respect to classic clustering

techniques is its ability to automatically choose the number of clusters. Indeed, CoClust

explores all the possibilities among those given by the user and selects the K on the basis of

the log-likelihood of the copula estimated on the subsets of k-plets allocated up to the user’s

predefined step. The technical details are given below.

The main steps of the CoClust algorithm to cluster the n row data matrix are described in the

following:

1. by varying the number of clusters k in the set of possibilities defined by the user and such

that 2 ≤ k ≤n,

a. select a subset of nk k-plets of rows in the data matrix in Eq. (8) on the basis of the

measure in Eq. (9);

b. fit the copula model on the nk k-plets of rows through the semiparametric estimation

method described in Section 2;

2. select the subset of nk k-plets of rows, say nKK-plets, that maximizes the log-likelihood of

the copula; hence, the number of clusters K, that is, the dimension of the copula, is

automatically chosen and nKK-plets are already allocated;

3. select a K-plet of rows among those remaining by using the measure in Eq. (9) and

estimate K! copulas by using the observations already clustered and a permutation of the

candidate to the allocation;

4. allocate the permutation of the selected K-plet to the clustering by assigning each row to

the corresponding cluster only if it increases the log-likelihood of the copula fit, otherwise

drop the entire K-plet of rows;

5. repeat steps 3 and 4 until all the observations are evaluated, that is, either allocated or

discarded.

At the end of the procedure, we obtain a clustering of K clusters each containing a maximum

n=Kð Þp independent observations such that the multivariate dependence relationship across

clusters can be revealed. Hence, attention in recovering the multivariate relationships does not

CoClust: An R Package for Copula-Based Cluster Analysis
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rely on the within-cluster relationships, typical of classic clustering methods. A picture of the

final CoClust clustering is given in Figure 2. Each cluster is a set of independent and identically

distributed realizations from the same marginal distribution while observations across clusters

share the same multivariate dependence structure.

Note that since in each step of the procedure non-nested models are compared, that is, copula

models with a single dependence parameter, the described log-likelihood based criterion is

equivalent to the well-known Bayes information criterion and Akaike information criterion.

Finally, note that in the current CoClust version, the selection of the number of clusters K is

based on a representative subset of nk observations. Hence, the algorithm chooses the number

of clusters K by estimating the
PKmax

k¼Kmin

nk

k

� 

fits required, where Kmin;Kmax½ � is the range of the

number of clusters predefined by the user with Kmin ≥ 2 and nk is chosen by the user with

nk ≪ p. This allows keeping the computational complexity under control since it does not

depend on sample size.

3.2. Selecting the copula model

The CoClust algorithm has not been implemented to automatically perform the selection

copula model task and requires employing an information criterion a posteriori. The Bayesian

information criterion (henceforth BIC) is expressed as follows for a K-dimensional copula

model m:

Figure 2. The basic concept underlying the CoClust algorithm. Each element in a cluster is a row data matrix of p

elements.
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BICK,m ¼ �2 logΠn
i¼1cm

bF1 X1ið Þ;…; bFk Xkið Þ;…; bFK XKið Þ; bθ
n o

þ s log n=Kð Þpð Þ (10)

where bθ is as in Eq. (5) or Eq. (7) with the summation over the number of allocated observa-

tions, which equals maximum n=Kð Þp (i.e., n=K p-dimensional vectors) and s is the number of

parameters. According to [23], we select the copula model that minimizes the BIC. Similarly,

the Akaike information criterion (henceforth AIC) results in:

AICK,m ¼ �2 logΠn
i¼1cm

bF1 X1ið Þ;…; bFk Xkið Þ;…; bFK XKið Þ; bθ
n o

þ 2s (11)

and can also be used to select the copula model.

3.3. Assessing the CoClust performance

The goodness of the CoClust algorithm in finding the true multivariate clustering structure

underlying the data has been extensively investigated. Specifically, the first version of CoClust

[4] was tested on simulated data for different scenarios and compared with model-based

clustering [1, 2]. This shows that, both when the DGP is a copula and when it is misspecified,

CoClust appears to be able to identify both the true number of clusters and their size in most

situations. Moreover, in comparing model-based clustering, CoClust appears better suited to

clustering dependent data. In [5], a more sophisticated Monte Carlo study was carried out,

investigating the new features of the current version of the CoClust algorithm. Here, the

current version of the algorithm clearly outperforms the previous version by [4] and CoClust’s

ability to find the correct number of clusters and to reconstruct the true k-plets by varying

the dimension of the copula, the aggregation function ψ, and the copula model appears to be

very satisfactory. Furthermore, [5] also obtained good results in assessing CoClust’s ability to

drop from the clustering observations that are independent of the true DGP as well as

distinguishing two different DGPs in the same dataset.

As for real data applications, the CoClust algorithm has been successfully applied to several

datasets. In relation to biomedical applications, [4] apply the CoClust to microarray data to

formulate hypotheses on the possible co-regulation and functional relations between genes, [5]

use the copula-based clustering method to identify biologically and clinically relevant groups

of tumor samples, and [24] attempt to identify organ type from cancer cell lines from tumors.

Applications in other fields include [25], where the purpose of the analysis is investigating

changes in EU country diets in accordance with common European policies and guidelines on

healthy diets, and [24], where CoClust is used to investigate the geographic distribution of

(annual maxima) rainfall measurements.

4. The R implementation of the CoClust algorithm

The copula-based clustering algorithm procedure is implemented in the R package CoClust

[26]. It must be installed in the usual way, that is:

CoClust: An R Package for Copula-Based Cluster Analysis
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R> install.packages("CoClust")

and then it must be loaded through the usual code:

R> library("CoClust")

The code of the CoClust package is entirely written in R, to enable using an easily accessible

open source system and the input/output facilities.

4.1. List of functions and subroutines

The main R function is CoClust(), which performs the copula-based clustering, while the

following auxiliary R functions.

fit.margin(), fit.margin2(), fit.margin3(), fcond.mod(), CoClust_perm(),

stima_cop() are intended for internal use only and are not documented in the package.

4.2. The CoClust function

The main function of the package CoClust is the R function CoClust(), which performs

copula-based clustering as described in Section 3. Some options are present, which mainly

allow us to:

• fit a variety of copula models (by setting the argument copula) with different types of

estimation procedures for margins and for copulas (arguments method.ma and method.c,

respectively); specifically, all the copula models belonging to the Elliptical and the Archime-

dean family described in Section 2 can be estimated through the estimation methods

implemented in the R package copula [27–30] that are maximum pseudo-likelihood estima-

tors based on two different variance estimators, the inversion of Kendall’s τ estimator and

the inversion of Spearman’s r estimator; as for the margins, two different estimation

methods have been implemented, one parametric and one nonparametric: the maximum

likelihood method as in Eq. (4) and the empirical cumulative distribution function in Eq. (6);

• set the range or set of dimensions for the copula model, that is, number of clusters, for

which the function tries the clustering (argument dimset);

• set the dimension of the sample units used for selecting the number of clusters (argument

noc);

• select the combination function of the pairwise Spearman’s r used to select the k-plets

among the mean, the median, or the maximum (argument fun) as defined in Eq. (9);

• specifies the likelihood criterion used for selecting the number of clusters among the AIC,

the BIC (as defined in Eqs. (10) and (11)), and the log-likelihood without penalty terms

(argument penalty).

The argument copula allows specifying a copula model among those described in Section 2.1.

As for the selection of the “best” model, CoClust can be run by varying the type of models of

Recent Applications in Data Clustering102



interest and selecting the one that fits best a posteriori using one of the criteria introduced in

Section 3.2.

The typical use of the function CoClust is as follows:

CoClust(m, dimset = 2:5, noc = 4, copula = "frank", fun = median,

method.ma = c("empirical", "pseudo"), method.c = c("ml", "mpl",

"irho", "itau"),

dfree = NULL, writeout = 5, penalty = c("BICk", "AICk", "LL"), …)

where m is the entry data matrix and the writeout argument allows monitoring the allocation

process, since it informs on each new allocated observation. Further details on the input

arguments are given in the package help files.

The main output of the function CoClust is an object of S4 class “CoClust”which is a list with

the following elements:

1. Number of Clusters: the number K of selected and identified clusters;

2. Index Matrix: a n:obs� K þ 1ð Þ matrix where n.obs is the number of observations put into

each cluster; the matrix contains the row indexes of the observations of the data matrix m

(Eq. (8)) and in the last column the log-likelihood of the copula fit;

3. Data Clusters: the data matrix of the final clustering; each column contains the observa-

tions allocated in a cluster;

4. Dependence: a list containing:

a. Model: the copula model used for the clustering;

b. Param: the estimated dependence parameter between/among clusters;

c. Std.Err: the standard error of Param;

d. P.val: the p-value associated to the null hypothesis H0 : θ ¼ 0;

5. LogLik: the maximized log-likelihood copula fit;

6. Est.Method: the estimation method used for the copula fit;

7. Opt.Method: the optimization method used for the copula fit;

8. LLC: the value of the log-likelihood criterion for each k in dimset;

9. Index.dimset: a list that, for each k in dimset, contains the index matrix of the initial set of

nk observations used to select the number of clusters, together with the associated maxi-

mized log-likelihood copula fit.

4.3. Simulated examples

This section shows how to use the CoClust package on data simulated from different DGPs.

In the first example, the data are drawn from a joint density function with different margins,
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whereas in the second example, a misspecified DGP is used. In these examples, we focus only

on the semi-parametric approach described in Section 2 due to its theoretical and computa-

tional advantages with respect to the full parametric approach. Moreover, the latter has only

been implemented for Gaussian margins.

Example 1

In this example, we build a 3-variate joint density function through a 3-dimensional Frank

copula with dependence parameter such that the Kendall’s τ ¼ 0:7 and three different mar-

gins: a Gaussian with parameters μ ¼ 7, σ ¼ 2, a Gamma with shape and rate, respectively, set

to 3 and 4, and a Beta with parameters α ¼ 2, β ¼ 1. To do so, we employ the function mvdc of

the copula package [27–30]. Next, we generate a data matrix X with 15 rows and 21 columns

and build the matrix of the true cluster indexes. Finally, we apply the function CoClust to the

rows of X, recover the multivariate dependence structure of the data and compare the obtained

clustering with the true one.

Code to generate the example dataset is given in the following. We first define the DGP:

R> n.marg <- 3

R> theta <- iTau(frankCopula(), 0.7)

R> copula <- frankCopula(theta, dim = n.marg)

R> mymvdc <- mvdc(copula, c("norm", "gamma", "beta"),list(list(mean=7, sd=2),

+ list(shape=3, rate=4), list(shape1=2, shape2=1)))

and then generate the data and save the true clustering in index.true:

R> set.seed(11)

R> n.col <- 21

R> n.row <- 15

R> n <- n.row*n.col/n.marg

R> x.samp <- rMvdc(n, mymvdc)

R> X <- matrix(x.samp, nrow = n.row, ncol = n.col, byrow=TRUE)

R> index.true <- matrix(1:n.row, n.row/n.marg, n.marg)

R> colnames(index.true) <- c("Cluster 1", "Cluster 2", "Cluster 3")

R> index.true

Note that n is the number of observations for each margin.

We apply the CoClust to the 15� 21 data matrix X using the maximum likelihood estimation

method for the copula, the empirical cumulative distribution function for the three margins,

and leaving by default the remaining arguments:

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="frank", method.

ma="empirical",

+ method.c="ml", writeout=1)

The output is as follows:

R> clust
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An object of class "CoClust"

Slot "Number.of.Clusters":

[1] 3

Slot "Index.Matrix":

Cluster 1 Cluster 2 Cluster 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

[3,] 12 2 7 103.67653

[4,] 14 4 9 136.31506

[5,] 15 5 10 170.36557

Slot "Data.Clusters":

Cluster 1 Cluster 2 Cluster 3

[1,] 0.35776965 4.566417 0.1634203

[2,] 0.36621352 5.532188 0.1470511

[3,] 0.99290268 11.191092 1.4006169

[4,] 0.60411081 6.613533 0.5457595

[5,] 0.13946354 2.658381 0.3489739

[6,] 0.80523424 9.526025 0.6908222

[7,] 0.79477600 8.899494 0.7864765

[..] ....... ....... .......

[102,] 0.36904520 3.629722 0.2763105

[103,] 0.82647042 10.809628 1.3899675

[104,] 0.48283666 5.185873 0.2763133

[105,] 0.90394435 10.583053 0.9962130

Slot "Dependence":

$Copula

[1] "frank"

$Param

[1] 11.95576

$Std.Err

[1] 0.8261832

$P.value

[1] 0

Slot "LogLik":

[1] 170.3656
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Slot "Est.Method":

[1] "maximum likelihood"

Slot "Opt.Method":

[1] "ml"

Slot "LLC":

2 3 4

-70.93179 -136.00532 -41.35904

Slot "Index.dimset":

$`2`

1 2 LogLik

[1,] 11 1 19.75591

[2,] 8 3 37.33473

$`3`

1 2 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

$`4`

1 2 3 4 LogLik

[1,] 11 1 6 12 3.653809

[2,] 7 3 13 8 22.548352

To look at specific objects of the resulting list, it is possible to select, among others, the following

information:

R> clust@"Number.of.Clusters" # Selected number of clusters

R> clust@"Dependence"$Param # Estimated copula parameter

R> clust@"Data.Clusters" # Clustered data

To compare the obtained clustering with the true clustering we can input:

R> index.clust <- clust@"Index.Matrix"

R> index.clust

R> index.true

to obtain as follows:

> index.clust

Cluster 1 Cluster 2 Cluster 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

[3,] 12 2 7 103.67653
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[4,] 14 4 9 136.31506

[5,] 15 5 10 170.36557

> index.true

Cluster 1 Cluster 2 Cluster 3

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

The obtained clustering is perfect, CoClust is able to recognize the exact structure underlying

the data. Note that the label of each cluster, that is, the order of the margins, is not relevant. The

only important aspect is the composition of each cluster, that is, the row indexes in each

column of index.clust and their order that has to be such that it reconstructs the exact 3-

plets across the columns.

To apply the CoClust to the 15� 21 data matrix X previously generated by changing the

argument fun in max, or the range of number of clusters to be tried or the copula model, we

can input respectively:

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="frank", fun=max,

+ method.ma="empirical", method.c="ml", writeout=1)

R> clust <- CoClust(X, dimset = 3:5, noc=2, copula="frank",

+ method.ma="empirical", method.c="ml", writeout=1)

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="clayton",

+ method.ma="empirical", method.c="ml", writeout=1)

Example 2

In this example, we use a different DGP from the copula, thus showing the use of CoClust in

the misspecification case. Specifically, a 30� 21 data matrix is drawn from a three-dimensional

skew-normal distribution through the R package sn [31], we then apply CoClust to cluster the

row data matrix:

R> library(sn)

R> n.marg <- 3

R> rho <- 0.7

R> mu <- c(4,6,7)

R> v1 <- 1

R> v2 <- 1

R> v3 <- 1

R>omega <-matrix(c(v1,rho*sqrt(v1*v2),rho*sqrt(v1*v3),rho*sqrt(v1*v2),v2,

+ rho*sqrt(v3*v2), rho*sqrt(v1*v3), rho*sqrt(v3*v2), v3), n.marg)

R> alpha <- c(-1,1,1)

R> n.col <- 21
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R> n.row <- 60

R> n.k <- n.row/n.marg

R> n <- n.row*n.col/n.marg

R> set.seed(11)

R> x.samp <- rmsn(n, xi=mu, Omega=omega, alpha=alpha)

R> X <- matrix(x.samp, nrow=n.row, ncol=n.col, byrow=TRUE)

R> clust <- CoClust(X, dimset=2:5, noc=4, copula="clayton",method.

ma="empirical",

+ method.c="ml", penalty = "BICk", writeout=1)

On the console, it is possible to monitor the number of observations already allocated (argu-

ment writeout). Indeed, while CoClust runs, the following information appears on the console:

Number of clusters selected: 3

Allocated observations: 5

Allocated observations: 10

Allocated observations: 15

To look at the obtained clustering and its details, one has to input:

R> clust

R> index.clust <- clust@"Index.Matrix"

R> index.true <- matrix(1:n.row, n.row/n.marg, n.marg)

R> index.clust; index.true

Note that when the number of K-plets to be allocated is not small, the goodness of the obtained

clustering is difficult to determine. Hence, for example, two functions can be exploited to

assess the quality of the final clustering: pca.coclust, which counts how many K-plets of

the true DGP have been correctly allocated in the final clustering, and pcc.coclust, which

counts how many K-plets of the obtained clustering have been correctly allocated. In Appen-

dix A., the R code of these two functions is shown. Here, we compute the true clustered index

matrix as follows:

R> ind.t <- apply(matrix(1:n.row,n.k), FUN=paste, MARGIN=1, collapse="-")

and the two functions pca.coclust and pcc.coclust after loading the required package

gtools:

R> library(gtools)

R> pca.coclust(clust, ind.t, n.marg)

[1] 65

R> pcc.coclust(clust, ind.t, n.marg)

[1] 86.66667

The obtained values inform us that 65% of 3-plets deriving from the true DGP are correctly

allocated and 86:7% of 3-plets in the final clustering are correctly allocated.
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5. Application to wine dataset

In this section, an application of the CoClust package to a real dataset is shown. [32] analyze a

set of Italian wines by observing the chemical properties of 178 specimens of three types of

wines (Barolo, Grignolino, and Barbera) produced in the Piedmont region in Italy. The data are

available in the package sn under the name wines.

A subset of randomly selected wines has been analyzed through CoClust by varying the

number of clusters from 2 to 7 and the copula model among the three models of the

Archimedean family. Since Grignolino is a type of wine with characteristics between those

of Barolo and Barbera, we work with a sample of only these two last types of wines. Code is

as follows:

R> data(wines)

R> n <- 6

R> set.seed(11)

R>ind.sample<-c(sample(1:59,n,replace=FALSE),sample(131:178,n,replace=FALSE))

R> X <- wines[ind.sample,-1]

R> clustF <- CoClust(X, dimset = 2:7, noc=1, copula="frank", method.

ma="empirical",

+ method.c="ml",writeout=1)

R> clustC <- CoClust(X, dimset = 2:7, noc=1, copula="clayton", method.

ma="empirical",

+ method.c="ml",writeout=1)

R> clustG <- CoClust(X, dimset = 2:7, noc=1, copula="gumbel", method.

ma="empirical",

+ method.c = "ml",writeout = 1)

To evaluate the final clustering obtained with a specific copula model, say the Frank model,

and to compare it with the true classification of the 12 selected wines, the code is as follows:

R> Type.wine <- wines[ind.sample,1]

R> Type.wine

R > K < � clustF@"Number.of.Clusters".

R > index.clust <� clustF@"Index.Matrix".

R> index.clust

R>index.fin <-matrix(Type.wine[index.clust[,1:K]],nrow=nrow(index.clust),

+ ncol=(ncol(index.clust)-1))

R> index.fin

[,1] [,2] [,3] [,4] [,5] [,6]
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[1,] "Barolo" "Barolo" "Barolo" "Barolo" "Barolo" "Barolo"

[2,] "Barbera" "Barbera" "Barbera" "Barbera" "Barbera" "Barbera"

CoClust selects 6 clusters and allocates to each cluster the two types of wines. Thus, across

clusters, we can perfectly recognize the two types of Italian wines and in each cluster we have

different wines with different (e.g., independent) chemical characteristics.

Similarly, the other two copula models can be used as in clustC and clustG above. The

results appear to not be affected by the type of model used even though, based on the log-

likelihood of the copula fitted on the final clustering, the more appropriate model appears to

be the Gumbel model with a log-likelihood equal to 527.3022 (compared to 500.8835 for the

Frank copula and 429.184 for the Clayton copula).

6. Conclusion

In this chapter, we describe a copula-based clustering algorithm and its implementation in

the R package CoClust. One major advantage of this new package is that it provides an

algorithm that is able to cluster multivariate observations by taking into account their

underlying complex multivariate dependence structure. Being copula-based, the CoClust

algorithm inherits the benefits of the copula. Thus, potentially any type of multivariate

dependence structure can be handled and the most appropriate method can be employed

to estimate both a probability model for each cluster/margin and the copula model.

The current version of the R package implements the clustering algorithm procedure in the main

function CoClust. It enables the user to simultaneously choose the copula model, the estimation

method for the margins and for the copula, the aggregation function for constructing the k-plet of

observation allocation candidates. Moreover, the range (or set) of the number of clusters from

among which the procedure automatically selects the best one and the sample size to be used to

select it can be varied.

As with many other software packages, CoClust package is continually being augmented

and improved. We are currently investigating possible graphical solutions for the final cluster-

ing and implementing some measures to validate the clustering solution. Another future

direction includes expanding the functionality of the CoClust package to allow comparing

the solution of other clustering algorithms, such as mixture-based clustering and hierarchical

clustering methods.
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A. Appendix

The following two functions are useful to evaluate the goodness of the final clustering obtained

through the CoClust algorithm when true clustering or benchmark clustering is available. The

arguments of these two functions are ccfit, which is the object CoClust as given by the

corresponding R function; ind.t, which is the true clustering expressed through the clustered

index matrix with clusters by columns and the row index of matrix in Eq. (8) by rows; and

nmarg, which is the dimension of the copula model, that is, the selected number of clusters.

For an example of the use of these two functions see Section 4.3, “Example 2”.

R> library("gtools")

pca.coclust <- function(ccfit, ind.t, nmarg){

n.marg <- ccfit@"Number.of.Clusters"

ind.perm <- permutations(n.marg,n.marg)

n.comb <- nrow(ind.perm)

if(n.marg==nmarg){

ind.cc <- ccfit@"Index.Matrix"[,1:n.marg]

n.kp <- nrow(ind.cc)

res <- rep(NA,n.kp)

for(i in 1:n.kp){

dum <- ind.cc[i,]

res0 <- rep(NA,n.comb)

for(j in 1:n.comb){

ind.ccs <- dum[ind.perm[j,]]

ind.ccs <- paste(ind.ccs, collapse="-")

res0[j] <- as.integer(ind.ccs%in%ind. t)

}

res[i] <- any(res0)

}

pca.k <- sum(res)/length(ind.t)*100

}

return(pca.k=pca.k)

}

pcc.coclust <- function(ccfit, ind.t, nmarg){

n.marg <- ccfit@"Number.of.Clusters"

ind.perm <- permutations(n.marg,n.marg)

n.comb <- nrow(ind.perm)

if(n.marg==nmarg){

ind.cc <- ccfit@"Index.Matrix"[,1:n.marg]
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n.kp <- nrow(ind.cc)

res <- rep(NA,n.kp)

for(i in 1:n.kp){

dum <- ind.cc[i,]

res0 <- rep(NA,n.comb)

for(j in 1:n.comb) {

ind.ccs <- dum[ind.perm[j,]]

ind.ccs <- paste(ind.ccs, collapse="-")

res0[j] <- sum(ind.ccs%in%ind.it)

}

res[i] <- any(res0)

}

pcc.k <- sum(res)/nrow(ccfit@"Index.Matrix")*100

}

return(pcc.k=pcc.k)

}
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