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Brazil 

1. Introduction 

Systems employing the sound in underwater environments are known as sonar systems. 
SONAR (Sound Navigation and Ranging) systems have been used since the Second World 
War (Waite, 2003), (Nielsen, 1991). These systems have the purpose of examining the 
underwater acoustic waves received from different directions by the sensors and  determine 
whether an important target is within the reach of the system in order to classify it. This 
gives extremely important information for pratical naval operations in different conditions. 
Fig. 1 shows a possible scenario for a sonar operation, in which two targets: the ship that is a 
surface contact and another submarine. In this case, the submarine’s hydrophones are 
receiving the signals from the two targets and the purpose is to identify both targets. 
 

 

Fig. 1. Possible scenario for sonar operation 

Depending on the sonar type, it may be, passive or active. The active sonar system transmits 
an acoustic wave that may be reflected by the target and signal detection, parameter 
estimation and localization can be obtained through the corresponding echoes (Nielsen, O
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1991), (Waite, 2003). A passive sonar system performs detection and estimation using the 
noise irradiated by the target itself (Nielsen, 1991) (Clay & Medwin, 1998), (Jeffsers et al., 
2000). The major difficulty in passive sonar systems is to detect the target in huge 
background noise environments. As much in active and passive mode, the sonar operator, 
(SO) listens to the received signal from one given direction, selected during the 
beamforming, envisaging target identification. This chapter focus on passive sonar systems 
and how the received noise is analysed that may arise. In particular, the signal interference 
in neighbour directions is discussed. Envisaging interference removal, Independent 
Component Analysis (ICA) (Hyvärinen, 2000) is introduce and recent results obtained from 
experimental data are described. The chapter is organised as it follows.  In next Section, the 
analysis performed by passive sonar systems is detailed described. Section 3 introduces ICA 
principles and algorithms. Section 4 shows how ICA may be applied for interference 
removal. Finally, a chapter summary and perspectives of passive sonar signal processing are 
addressed in Section 5. 

2. Passive sonar analysis 

A passive sonar system is typically made from a number of building blocks (see Fig. 2); 
described in terms of its aim and specific signal processing techniques that have been 
applied for signal analysis. 
  

Hydrophone Array Beamforming

Beam select
(Audio)

Detection

Classification

Tracking

Display

Bearing time 

 
Fig. 2. Blocks diagram for passive sonar system 

2.1 Sensors array 
The passive sonar systems rely very much on the ability of their sensors in capturing the 
noise signals arriving in different directions. Typically, sensors (hydrophones) are arranged 
in arrays for fully coverage of detection directions The hydrophone array may be linear, 
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planar, circular or cylindrical. For the experimental results in Section 4, signals, were 
acquired through a cylindrical hydrophone array (CHA) while realizing an omnidirectional 
surveillance. This type of array comprises a number of sensor elements, which are 
distributed along staves. Therefore, the design performance depends on the number of 
staves, the number of hydrophones and the number of vertical elements in a given stave. 
For instance, the CHA from which the experimental tests were derived has 96 staves.  

2.2 Beamforming 
The beamforming operation aims at looking at a given direction of arrival (DOA) with the 
purpose of observing the target energy of a given direction through a bearing time display 
(Krim & Viberg, 1996). The signals are acquired employing the delay and sum (ds) 
technique to realize the DOA, allowing omnidirectional surveillance (Knight et al., 1981). In 
case of the experimental results to be described in Section 4, the directional beam is 
implemented using 32 adjacent sensors as it is shown in Fig. 3. A total of 32 adjacent staves 
were used to compute the direction of interest which gives an angular resolution of 3.75o.  
 

 

Fig. 3. Arrange of hydrophones for beamforming on a determined direction 

Fig. 4 shows a bearing time display. In this figure, the horizontal axis represents the bearing 
position (full coverage, -180 to 180 degrees) and the vertical axis represents time, considering 
one second long acquisition window. This corresponds to waterfall display. The energy 
 

 
Fig. 4. A bearing time display 
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measurement for each bearing at each time window has a gray scale representation. The 
sonar operator relies very much on the bearing time display, the sonar operator relies very 
much on the in the time display for possible target observation. An audio output permits the 
operator to listen to the target noise from a specific direction of interest. 

2.3 Signal processing core 
After beamforming, passive sonar signal processing comprises detection, classification and, 
in some situations, target tracking. For detection, two main analysis are performed; LOFAR 
(LOw Frequency Analysis and Recording) and DEMON (Demodulation of Envelope 
Modulation On Noise). The LOFAR analysis is also used for target classification. 

2.3.1 LOFAR analysis 
The LOFAR is a broadband spectral analysis (Nielsen, 1991) that covers the expected 
frequency range of the target noise as, for instance, machinery noise. The basic LOFAR block 
diagram is shown in Fig. 5.  
 

 
 

Fig. 5. Block diagram of the LOFAR analysis 

As it can be depicted from Fig. 5, at a given direction of interest (bearing), the incoming 

signal is firstly multiplied by a Hanning window (Diniz et al., 2002), In the sequence, short-

time Fast Fourier Transform (FFT) (Brigham, 1988) is applied to obtain signal representation 

in the frequency-domain (Spectral module). The signal normalization follows typically 

employing the TPSW (Two-Pass Split Window) algorithm (Nielsen, 1991) for estimating the 

background noise (see Fig. 6). 
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Fig. 6. TPSW window. 
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Fig. 7. Typical LOFAR display. 

This window will slide along the signal and performing a local average to achieve the 
removal of background noise and making a sign of normalization. This TPSW normalization 
aims at estimation a mean spectrum by computing a local mean for each sample. This makes 
it possible to remove the bias and perform peak equalization, so that the amplitudes in all 
spectrums present similar values.  
Fig. 7 shows a typical display from LOFAR analysis. The horizontal axis corresponds to 
frequency, in this case covering range of 0 to 15.625 Hz, and the vertical axis represents time. 
In this case, 200 acquisition windows (one second long each were accumulated). As can be 
seen in Fig. 7, some rays of often persist over time, thus characterizing the type of target 
being identified. 

2.3.2 DEMON analysis 
DEMON is a narrowband analysis that operates over the cavitation noise of the target 
propeller with the purpose of identifying the number of shafts, shaft rotation frequency and 
the blade rate (Nielsen, 1999), (Trees, 2001). As these parameters provide a detailed 
knowledge about the target propellers and normally the propeller noise is characteristic of 
each contact, this analysis shows good detection capabilities. Fig. 8 shows the block diagram 
of classical DEMON analysis.   
 

 
 

Fig. 8. Block diagram of the DEMON analysis 

Given a direction (bearing) of interest, noise signal is bandpass filtered to limit the cavitation 
frequency range. The cavitation frequency goes from hundreds until thousands of Hz. 
Therefore, it is important to select the cavitation band and obtain the maximum information 
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for ship identification. In sequence, the signal is squared as in traditional demodulation 
(Yang et al., 2007) (Trees, 2001) and the TPSW algorithm is used to reduce the background 
noise (Nielsen, 1991). Using TPSW, it is possible to emphasize target signal peaks. In most 
cases, the signal sampling rate is relatively high, so that the band of interest is sampled with 
coarse resolution with respect to observation needs. Thus, it is necessary to resample the 
signal for better observation in the range. Finally, a short-time Fast Fourier Transform 
algorithm is applied to observe the peaks in frequency domain. Fig. 9 shows a typical 
DEMON plot. The horizontal axis represents the rotation scale (in RPM) while the vertical 
axis correspond to signal amplitude (in dB). This allows target identification, as shaft 
rotation and the number of blades may be obtained. The largest amplitude reveals the speed 
of shaft rotation, while the subsequent harmonics indicate the number of blades. In this 
example, the shaft rotation is about 148 RPM and next hamonics are, 293.6, 441.8, 587.1 and 
735.3 RPM, from which the number of blades can be obtained. 
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Fig. 9. typical DEMON display. 

2.3.3 Classification 
Another important task for passive sonar systems is target classification. Usually classification 
is based on extracting relevant features that characterize target classes and using such features 
to decide whether a detected target belongs to a given class. As already mentioned, features 
are typically extracted in frequency domain using the LOFAR analysis. But the stress, many 
directions of interest and high number of classes, automatic classification often uses 
computational intelligence algorithms to obtain the target class. Neural networks (Haykin, 
2001) have successfully been used for passive sonar signal classification. (Moura, 2007), 
(Torres., 2004);(Seixas, 2001) and (Soares Filho, 2001). Other signal processing techniques have 
been applied to realize the classification task.( Peyvandi, 1998) used a hidden Markov model 
with Hausdorff similarity measurement to detect and classify targets. Another way to perform 
the detection and classification of targets is to use the Prony’s method (Marple, 1991), which 
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provides an alternative time-frequency mapping (signals are modelled through a sum of 
damped sinusoidal components) suitable to acoustic signals. 

2.3.4 Tracking 
Eventually, tracking a target over time may be important. Usually this is perfomed after 
target detection at a specific direction. In some situations, the sonar operator performs 
tracking manually, but modern sonars have an automatic system to support this task. 
Although Kalman filters (Lee, 2004) have often been used to implement passive tracking 
(Rao, 2006), other techniques, (Mellema, 2006) have also been obtaining good results in 
target tracking application. 

2.3.5 Interference 
As it may be depicted from Fig. 9, interference from neighbour bins, as it is the case for 
bearings 190o and 205o, and the self-noise produced by the submarine in which the sonar 
system is installed  may mask the original target features. Thus, when such is the case, a 
preprocessing scheme may be developed aiming at reducing signal interference, facilitating 
target identification.This procedure is addopted in Section 4 using the ICA (Hyvärinen, 2001). 

3. Independent component analysis 

The Independent Component Analysis (ICA) considers that a set of N observed signals x(t) 
= [x1(t), ..., xN(t)]T is originally generated from a linear combination of signal sources s(t) = 
[s1(t), ..., sN(t)]T: 

 (t)(t) Asx =   (1) 

where, A is the NxN mixing matrix (Hyvärinen et al., 2001). Formulated this way, ICA is 
also referred to as Blind Source Separation (BSS) (Cardoso, 1998) and its purpose is to 
estimate the original sources s(t) using only observed data, x(t). A solution can be obtained if 
we find the inverse of the mixing matrix B = A-1 and apply this inverse transformation on 
the observed signals to obtain the original sources.  

 (t)(t) Bxs =   (2) 

A general principle for estimating the matrix B can be found by considering that the original 
source signals are statistically independent (or as independent as possible). High-order 
statistics (HOS) information is required during the search for independent components. 
There are many mathematical methods for calculating the coefficients of matrix B. The 
nonlinear decorrelation and the maximally nongaussianity are among the most applied ones 
(Hyvärinen & Oja, 2000).  There are some indeterminacies in the ICA model, the order of 
extraction of the independent components can change and scalar multipliers (positive or 
negative) may be modifying the estimated components. Fortunately these limitations are 
insignificant in most applications (Hyvärinen et al., 2001). 

3.1 Statistical independence 
Considering two random variables x and y, they are statistically independent if and only if 
(Papoulis, 1991): 
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)()(),(, yxyx yxyx ppp =

  (3) 

where px,y (x, y), px (x) and py (y) are, respectively, the joint and marginal probability density 
functions (pdf) of x and y. Equivalent condition is obtained if for all absolutely integrable 
functions g(x) and h(y) the expression on Eq. 4 holds:   

 )}({)}({)}()({ yxyx hEgEhgE =   (4) 

where E{.} is the expectation operator (Hyvärinen et al., 2001).  
In typical blind signal processing problems, there is very little information on the source 
signals and so direct estimation of the pdfs is a very difficult task. Eq. 4 gives an alternative 
independence measure and is the origin of a class of ICA algorithms that searches for 
nonlinear decorrelation.  
Independent variables are uncorrelated, although, the reciprocal is not always true. Linear 
correlation is verified by second order statistics, while independence needs higher order 
information. In the nonlinear decorrelation methods, nonlinear functions introduce high-
order statistics, making it possible the search for independent components.  
As from Eq. 4, two random variables are statistical independent if they are nonlinearly 
uncorrelated.   As it is not possible to check all integrable functions g(.) and h(.), estimates of 
the independent components are obtained while guaranteeing nonlinear decorrelation 
between a finite set of nonlinear functions (Hyvärinen et al., 2001).  
For example, a well known linear ICA algorithm, proposed by Cichocki and Unbehauen in 
(Hyvärinen & Oja, 2000), searches for independent components while providing 
decorrelation between a hyperbolic tangent and a polynomial function, both applied to the 
input signals (observations). 

3.1.1 Non-gaussianity and independence 
The ICA/BSS model described in Eq. 1 can be re-written as: 

∑
=

==
N

j

jiji Nisax
1

,...,1

 

(5)

Considering the central limit theorem (Spiegel  et al., 2000):  “The sum of two (independent) 
random variables is always closest to a Gaussian distribution than the original variables 
distributions”. As described in Eq. 5, the observed signals xi are formed by an averaged 
summation of the sources si. Thus, xi is closer to Gaussian-distributed variables than si. In 
other words, the independent components can be obtained through maximization of non-
gaussianity (Hyvärinen et al., 2001). 
The gaussianity (and consequently the statistical dependence) of a random variable can be 

measured through higher order cumulants. Considering a random vector x, the moment αk 
and central moment µk of order k are defined by (Spiegel  et al., 2000): 

                                                       dxpE x

kk

k )(}{ xxx ∫
∞

∞−
==α   (6) 
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k )()(}){( 11 xxx ∫
∞

∞−
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where α1=mx is the mean of x. If the random variable x is zero mean (mx=0), than for all k 

holds: αk =µk. 

The cumulant κk of order k is defined as a function of the moments (Spiegel  et al., 2000).  
For a zero mean random variable x, the first four cumulants are:  

 01 =κ ;        
2

2

2 }{ ακ == xE ;       
3

3

3 }{ ακ == xE ;  (8) 

2

24

224

4 3}]{[3}{ αακ −=−= xx EE  

The third and fourth order cumulants are called respectively skewness (κ3) and kurtosis (κ4) 
(Kim & White, 2004). Cumulants of order higher than four are rarely applied in practical 
ICA/BSS problems. Some interesting properties of cumulants are: 

 
(x y) (x) (y)

(x) 0,for k 2 if xis Gaussian 

k k k

k

κ κ κ
κ

+ = +
= >

  (9) 

Therefore, cumulants of order higher than two may be applied to estimate data gaussianity. 
The skewness value, for example, is related to pdf symmetry (κ3=0 indicates symmetry). 
Spanning the interval [−2, ∞), kurtosis is zero for a Gaussian variable. Negative values of 
kurtosis indicate sub-gaussianity (pdf flatter than Gaussian) and positive values super-
gaussianity (pdf sharper than Gaussian) (Spiegel et al., 2000). Examples of Gaussian, sub 
and super-gaussian distributions are illustrated in Figure 10. Kurtosis can be easily 
computed from data substituting expectations in Eq. 8 by sample means.  One disadvantage 
is that kurtosis can be seriously influenced by outliers (observations that are numerically 
distant from the rest of the data), in extreme situations the kurtosis value may be dominated 
by a small number of points (Kim & White, 2004).  Some studies are been conduced with the 
purpose of obtaining robust estimation of high order cumulants, specially the kurtosis 
(Welling, 2005).  
Alternative gaussianity measures can be obtained from information theory (Cover & 
Thomas, 1991). These parameters are usually more robust to outliers than cumulant based 
ones (Hyvärinen et al., 2001). 

 

Fig. 10. Examples of Gaussian, sub and super-Gaussian distributions. 
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For instance, Negentropy of a random variable x is calculated through (Cover & Thomas, 
1991): 

 )()()( xxx HHJ gauss −=   (10) 

where H (.) is the entropy, and xgauss  is a Gaussian random variable with the same mean and 

variance of x.  Entropy is one of the basic concepts of information theory and can be 

interpreted as the level of information contained in a random variable.  Entropy H(x) can 

also be viewed as the minimum code length needed to represent the variable x, considering 

a discrete random variable, entropy is defined as (Shannon, 1948):  

 ( ) ( ) log ( )
i i

i

H P a P a= = =∑x x x   (11) 

where ai are the possible values assumed by the variable x, and P(x=ai) is the probability  
that x=ai. 
An important result is that the Gaussian variables have maximum entropy among variables 

of same variance (Hyvärinen et al., 2001). So both entropy and negentropy can be used as 

gaussianity measures. The advantage of J(x) is that it is always non-negative and zero when 

variable x is Gaussian. A problem with the computation of J (.) and H (.) in blind signal 

processing is the pdf estimation (see Eq. 10 and 11). To avoid this, approximations using 

high order cumulants or non-polynomial functions shall be applied  (Hyvärinen et al., 2001;  

Hyvärinen, 1998).   

Another statistical independence measure can be obtained through mutual information. The 

Mutual Information I(x1, x2, ..., xm) between m random variables x = [x1, x2, ..., xm] is 

obtained through (Hyvärinen et al., 2001): 

 ∑
=

−=
m

i

im HxHxxI
1

1 )()(),...,( x   (12) 

 

It is proved elsewhere (Cover & Thomas, 1991) that, more efficient codes are obtained while 

using the set of variables x instead of the individual ones xi, unless when the variables are 

independent ((x1, x2, ..., xm)=0). So, minimization of mutual information leads to statistical 

independence. 

The Kullback-Leiber (KL) divergence, defined through Eq. 13 (Hyvärinen et al., 2001): 

 ∫= dx
P

Q
QPQC

x

x

xKL
)(

)(
log)(),(

x

x
x   (13) 

 

measures the distance between the two probability densities Px(x) and Qx(x), as it is always 

nonnegative with minimum value zero when both densities are the same. If one pdf is 

Gaussian, maximizing CKL is equivalent to maximize non-gaussianity. The KL divergence is 

proved to be equivalent to mutual information (Hyvärinen et al., 2001). 

Using one of these statistical independence measures, several routines have been proposed 

to find the B matrix (Hyvärinen et al., 2001). Here we consider two which are among the 

most successful ICA algorithms. 
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3.2 JADE algorithm 
The start point for JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithms is 
the realization that BSS (Blind Source Separation) algorithms generally require an estimation 
of the distributions of independent sources or have such an assumption built into the 
algorithm (Cardoso, 1998). It is also noted that, optimising cumulant approximations of data 
implicitly perform this, leading to present a number of approximations to information 
theoretic algorithms that operate on second and fourth order cross cumulant. 
The cumulant tensor is a linear operator defined by the cumulant of fourth order cum(xi, xj, 
xk, xl) (Hyvärinen et al., 2001). This linear operation generates a matrix in form of Eq. 14. In 
this algorithm, the eigenvalue decomposition is considered as a preprocessing. 

 F ( ) ( , , , )
i j kl i j k l

kl

m cum x x x x=∑M   (14) 

Where, mkl is an element of the matrix M that is transformed and x is an nx1 random vector. 
The second order cumulant is used to ensure that data are white (decorrelated)  
(Cardoso, 1998). A set of cumulant matrices is estimated from the whitened data, as shown 
in Eq. 4.Then F(M) is made diagonal through W for some Mi. 

 T

i WMWQ )F(=   (15) 

The minimization of the sum of the squares of the non-diagonal elements of Eq. 15 is 
equivalent to maximization of the sum of squares of the diagonal elements, because an 
orthogonal matrix W does not change the total sum of squares of a matrix. The 
maximization of JADE is a method that gives an approximate joint diagonal of F(Mi). 

 ∑=
i

T

iJADE diagJ
2

||)F((||)( WMWW   (16) 

3.3 FastICA algorithm 
Independent components can be extracted from a mixture implementing the principles of 
maximization of nongaussianity, described in terms of kurtosis or negentropy (Hyvärinen et 
al., 2001; Hyvärinen & Oja, 2000; Shaolin & Sejnowski, 1995). Considering a mixture x, one 
defines kurtosis in Eq. 8, where W is the weight matrix, and z is a component vector. There 
is a whitening step as a preprocessing, and thus, z = Vx, where V is the whitening matrix 
and the correlation matrix z is equal to identity, E{zzT}= I. So using kurtosis, it is possible to 
estimate the independent components from the cost function presented in Eq. 17. 

zWx T=  

  )}||||3(E{)]sign[kurt(4
|)kurt(| 2WWzWzW

W

zW
−=

∂
∂ TT

T

z   (17) 

To make the algorithm faster, the gradient computation is changed to Eq. 18 a normalization 
was implemented to avoid a W overflow. 

3TT )(E( ))sign(kurt(  zWzzWW ∝Δ  

 ||||/ WWW ←   (18) 

www.intechopen.com



 Advances in Sonar Technology 

 

102 

Then, the FASTICA (PEACH, 2000) optimizes Eq. 19. 

 WzWW 3)}{( −← TE   (19) 

Another possibility for maximizing non-gaussianity is negentropy (Hyvärinen, 1999). The 
classic method of approximating negentropy is using higher order cumulants and 
polynomial density expansions, like G(x) = log[cosh(x)] or –exp(x2/2). Using a gradient 
based method, function derivatives (g)  can be chosen to be applied in FASTICA. 

 WWWzW )}z('{)}z({
TT

gEgE −←   (20) 

4. Interference removal 

As already mentioned in Section 2, passive sonar signals detected at adjacent bearings may 
be masked by cross-channel interference. The complexity of the target identification task 
increases proportionally to the interference level. Considering this, blind source separation 
methods (Cardoso, 1998) may be useful as a preprocessing step in passive sonar signal 
analysis as they project the observed signals into directions of maximum independence.  
 

 
                                         (a)                                                                           (b)  

Fig. 11. DEMON analysis at (a) 190° and (b) 205°. 

Consider a particular problem where two targets are present at adjacent directions (190° and 
205°). As illustrated in Fig. 11, the frequency components of 190° target (FA=148 RPM and its 
multiples) are mixed together with information from the 205° direction (FB=119 RPM). The 
same problem exists in the signal measured at bearing 205°. It was also observed that both 
signals (190° and 205°) are contaminated by FC=305 RPM that is the main frequency present 
at direction 076°, see Fig. 12. It is known from the experimental setup that the last bearing 
(076°) contains information from the noise radiated by the submarine where the 
hydrophones array is allocated (self-noise). It can also be verified that, signal measured at 
direction 076o presents interference from target at 205° (FB).  
Independent component based methods are applied in the following sub-sections aiming at 
reducing signal interference and thus, allow contact identification through DEMON analysis 
performed over cleaner data. Signal processing may be performed in both time-domain and 
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frequency-domain. The main advantage of frequency-domain methods is that, after 
DEMON, the signal-to-noise ratio is significantly improved, producing better separation 
results. 

 

Fig. 12. DEMON analysis at  076°. 

Performance comparisons between ICA algorithms applied to passive sonar signal 

separation were conduced in (Moura et al. 2007b) and it was observed that JADE presents 

slightly better performance. Considering this, the results presented in the next sections were 

derived through the application of JADE algorithm to perform ICA. 

4.1 Time-domain BSS 
A simple and straightforward implementation is to perform independent component 

analysis over raw-data. Signals measured at each direction (076°, 190° and 205°) are put 

together in order to compose a three component observation vector. An ICA algorithm 

(JADE) is applied to estimate three (time-domain) independent components, which will 

further be used as inputs to DEMON analysis block. The method is illustrated in Fig. 13. 

 

 

Fig. 13. Time-domain blind signal separation method. 

To obtain quantitative measures of the signal separation performance, the peak amplitude 

values of each frequency component (after DEMON analysis) are compared for both raw-

data and separated signals. Moreover, useful information is also obtained from the full-

width at half of the peak value (Full-Width of Half Maximum - FWHM) of a certain 

frequency component Fx. This measure indicates whether Fx is accurately estimated (shorter 

FWHM) or not (larger FWHM). When ICA is applied, can be observed, from Fig. 14, that, 

considering direction 205°, the amplitudes of interfering frequencies FA and FC were 

reduced from -5.9dB and -3.2dB (in raw-data) up to, respectively, -9.1dB and -4.2dB. The 

background noise level (estimated from the high frequency components amplitude) was 

also reduced from -7dB up to -8.5dB.  
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Fig. 14. DEMON analysis at 205°, for independent signal estimation. 

Unfortunately, through this method, at directions 076° and 190° no significant signal 
separation was observed. The half-peak bandwidths were not modified either. 
A main limitation of this approach is that raw-data is usually corrupted by additive 
underwater acoustic environment noise. It is known that, standard ICA algorithms present 
poor performance in the presence of noise (Hyvärinen et al., 2001). Modifications on the 
traditional ICA model in order to consider additive noise may increase the algorithms 
accuracy and thus produce better separation results (Hyvärinen, 1998b). 

4.2 Frequency-domain BSS. 
An alternative approach is to perform signal separation in the frequency domain. As 
illustrated in Fig. 15, DEMON analysis is initially performed over raw-data and frequency 
information from the three directions are used as inputs for an ICA algorithm, producing 
the independent (frequency-domain) components. 
  

 

Fig. 15. Frequency-domain blind signal separation method. 

As described in Section 2, DEMON analysis basically consists in performing demodulation 
and filtering of acoustic data in order to obtain relevant frequency information for target 
characterization. Most of noise and nonrelevant signals are eliminated by DEMON, allowing 
more accurate estimation of the independent components.  
A particular characteristic is that DEMON analysis is usually performed over finite time-
windows (approximate length = 250ms) and the frequency components are estimated within 
these windows. Aiming at reducing the random noise generated in time-frequency 
transformation, an average spectrum is computed using frequency information from these 
time slots.  
In Independent Component Analysis algorithms the order and the amplitude of the 
estimated components are random parameters and thus different initializations may lead to 
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(a) 

 
(b) 

 
(c) 

Fig. 14. DEMON analysis for both raw-data (measured acoustic signal) and frequency 
domain independent components (FD-ICA) at bearings (a) 076°, (b) 190° and (c) 205°. 
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different scaling factors and ordering (Hyvärinen et al., 2001). As in the frequency-domain 
BSS approach the ICA algorithms are executed after DEMON estimation at each time 
window, independent components from a certain direction may appear in different ordering 
at adjacent time-windows in this sequential procedure. Before generating the average 
spectrum, the independent components must be reordered (to guarantee that the averages 
are computed using samples from the same direction) and normalized in amplitude. The 
normalization is performed by converting signal amplitude into dB scale.  The reordering 
procedure is executed by computing the correlation between independent components 
estimated from adjacent time slots. High correlation indicates that these components are 
related to the same direction. 
Separation results obtained through this approach are illustrated in Fig. 14. It can be seen 
that, the interfering frequencies were considerably attenuated at the independent 
components from all three directions. The higher frequency noise levels were also reduced. 
The results obtained from both time (ICA) and frequency domain (FD-ICA) methods are 

summarized in Table 1 (when Fx frequency width is not available it means that half of Fx 

peak amplitude is under the noise level). It can be observed that, for FD-ICA both the 

interference peaks and the width of the frequency components belonging to each direction 

were reduced, allowing better characterization of the target. The time domain method (ICA) 

produced relevant separation results only for 205° signal. 
 

Freq. Raw-data ICA FD-ICA Raw-data ICA FD-ICA

FB -1,7 -0,8 -3,6 - - -

FC 0 0 0 8 7,9 8,4

FD -1,4 -3,1 -1,3 - - -

FA 0 0 0 4,9 4,9 4,3

2FA -1,4 -1,4 -1,7 5,3 5,3 4,3

3FA -4,1 -4,1 -5,7 8,8 8,8 6,2

4FA -5 -5 -6,7 - - 7,4

5FA -5,3 -5,4 -7,2 - - 11

FB -4,2 -4,1 -9,8 16,6 15,8 -

FC -4,4 -4,4 -8,6 7,7 7,7 -

FD -8,7 -8,6 -16,5 - - -

FA -5,9 -9,1 -9,9 - - -

FB 0 0 0 16,8 16,3 15,2

FC -3,2 -4,2 -6,4 7 6,6 6,5

FD -5,6 -5,8 -9,3 - - -

Direction 190

Direction 076

Direction 205

Peak (dB) Width (RPM)

 

Table 1. Separation results summary 

4.4 Extensions to the basic BSS model 
In order to obtain better results in signal separation and thus higher interference reduction, 
more realistic models may be assumed for both the propagation channel and measurement 
system. 
For example, it is known that, signal transmission in passive sonar problems may comprise 
different propagation paths, and thus the measured signal may be a sum of delayed and 
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mixed versions of the acoustic sources. This consideration leads to the so-called convolutive 
mixture model for the ICA (Hyvarinen et al., 2001), for which the observed signals xi(t) are 
described through Eq. 10: 

 
1

,  1
n

i ikj j
j k

x (t) a s (t k) for i ,...,n
=

= − =∑∑   (10) 

where sj are the source signals. To obtain the inverse model, usually a finite impulse 
response (FIR) filter architecture is used to describe the measurement channel. 
Another modification that may allow better performance is to consider, in signal separation 
model, that sensors (or propagation channel) may present some source of nonlinear 
behavior (which is the case in most passive sonar applications). The nonlinear ICA 
instantaneous mixing model (Jutten & Karhunen, 2003) is thus defined by: 

 F( )=x s   (11) 

where F(.) is a RN→ RN  nonlinear mapping (the number of sources is assumed to be equal to 
the number of observed signals) and the purpose is to estimate an inverse transformation G : 
RN  → RN :  

 G( )=s x   (12) 

so that the components of y are statistically independent. If G = F −1 the sources are perfectly 
recovered (Hyvärinen & Pajunen, 1999).  
Some algorithms have been proposed for the nonlinear ICA problem (Jutten & Karhunen, 
2003), a limitation inherit to this model is that, in general, there exists multiple solutions for 
the mapping G in a given application. If x and y are independent random variables, it is 
easy to prove that f(x) and g(y), where f(.) and g(.) are differentiable functions, are also 
independent. A complete investigation on the uniqueness of nonlinear ICA solutions can be 
found in (Hyvärinen & Pajunen, 1999). NLICA algorithms have been recently applied in 
different problems such as speech processing (Rojas et al., 2003) and image denoising 
(Haritopoulos et al., 2002). 
Although these extensions to the basic ICA model may allow better signal separation 

performance, the estimation methods usually require considerable large computational 

requirements, as the number of parameters increases (Jutten & Karhunen, 2003) e 

(Hyvarinen., 2001). Thus, an online implementation (which is the case in passive sonar 

signal analysis) may not always be possible. 

5. Summary and perspective 

Sonar systems are very important for several military and civil underwater applications. 

Passive sonar signals are susceptible to cross-interference from acoustic sources present at 

different directions. The noise irradiated from the ship where the hydrophones are installed 

may also interfere with the target signals, producing poor performance in target 

identification efficiency. Independent component analysis (ICA) is a statistical signal 

processing method that aims at recovering source signals from their linearly mixed versions. 

In the framework of passive sonar measurements, ICA is useful to reduce signal interference 

and highlight targets acoustic features.  
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Extensions to the standard ICA model, such as considering the presence of noise, multiple 
propagation paths or nonlinearities may lead to a better description of the underwater 
acoustic environment and thus produce higher interference reduction. Another particular 
characteristic is that the underwater environment is non-stationary (Burdic, 1984). 
Considering this, the ICA mixing matrix becomes a function of time. To solve the non-
stationary ICA problem recurrent neural networks trained using second-order statistic were 
used in (Choi et al., 2002) and a Markov model was assumed for the sources in (Everson & 
Roberts, 1999). 
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