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1. Introduction   

In radar and sonar signal processing it is of interest to achieve accurate estimation of signal 
characteristics. Recorded pulse data have uncertainties due to emitter and receiver noise, 
and due to digital sampling and quantization in the receiver system. It is therefore 
important to quantify these effects through theory and experiment in order to construct 
“smart” pulse processing algorithms which minimize the uncertainties in estimated pulse 
shapes. Averaging reduces noise variance and thus more accurate signal estimates can be 
achieved. Considering a signal processing system that involves sampling, A/D-conversion, 
IQ-demodulation and ensemble averaging, this chapter forms a theoretical basis for the 
statistics of ensemble averaged signals, and summarizes the basic dependencies on bit-
resolution, ensemble size and signal-to-noise ratio.  
Repetitive signals occur in radar and sonar processing, but also in other fields such as 
medicine (Jane et al., 1991; Schijvenaars et al, 1994; Laguna & Sornmo, 2000) and 
environment monitoring (Viciani et al., 2008). Practical ensemble averaging is subject to 
alignment error (jitter) (Meste & Rix, 1996), but we will neglect this effect. The effective bit-
resolution of the system can be increased by ensemble averaging of repetitive, A/D-
converted signals, provided that the signal contains noise (Belchamber & Horlick, 1981; Ai & 
Guoxiang, 1991; Koeck, 2001; Skartlien & Øyehaug, 2005).  
Due to varying radar and sonar cross section for scattering objects, or varying antenna gain 
of a sweeping emitter or receiver, the pulses exhibit variation in scaling. In the case of radar 
or sonar, the cross section of the target may then vary from pulse to pulse, but not 
appreciably over the pulse width. The scanning motion of the radar antenna may also affect 
the pulse scaling regardless of the target model, but we can safely neglect the time variation 
of the scaling due to this effect. In the case of a passive sensor, the signal propagates from an 
unknown radar emitter to the sensor antenna, and there is no radar target involved. Only 
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the scanning motion of the emitter antenna (and possibly the sensor antenna) may in this 
case influence the scaling. In general, we assume that the scaling can be treated as a random 
variable accounted for by a given distribution function (Øyehaug & Skartlien, 2006). 
In the present chapter we briefly review some of the theory of ensemble averaging of 
quantized signals in absence of random scaling (Sect. 2) and summarize results on ensemble 
averaging of randomly scaled pulses (in absence of quantization) modulated into amplitude 
and phase (Sect. 3). Aided by numerical simulations, we subsequently extend the results of 
the preceding sections to amplitude and phase modulations of scaled, quantized pulses 
(Sect. 4).  In Sect. 5 we discuss how the theoretical results can be implemented in practical 
signal processing scenarios and outline some of the issues that still require clarification. 
Finally, in Sect. 6 we draw conclusions. 

 
Fig. 1. The signal chain considered in Sect. 2. After sampling, the signal is quantized (A/D-
converted) followed by ensemble averaging.    

2. Ensemble averaging of quantized signals; benefitting from noise 

This section considers the statistical properties of ensemble averages of quantized, sampled 
signals (Fig. 1), and demonstrates that the expectation of the quantization error diminishes 
with increasing noise, at the cost of a larger error variance. As the ensemble average 
approximates the expectation, it follows that the quantization error (in the ensemble average) 
can be made much smaller than what corresponds to the bit resolution of the system. We will 
also demonstrate that there is an optimum noise level that minimizes the combined effect of 
quantization error and noise. First, consider a basic analog signal with additive noise; 

 = +( ) ( ) ( ),i iy t s t n t   (1) 

where t is time, and n is random noise. We observe N realizations of y, and the index i  

denotes one particular realization i (or sonar or radar pulse i). We assume that s is repetitive 

(independent of i), while n varies with i. We assume a general noise distribution function 

with zero mean and variance 2σ . The recorded signal is sampled at discrete jt  giving ,i jy , 

and these samples are subsequently quantized through a function Q  to obtain the sampled 

and A/D-converted digital signal , ,( )=i j i jx Q y . We consider the quantization to be uniform, 

i.e. the separation between any two neighboring quantization levels is constant and equal to 

Δ. The probability distribution function (pdf) of ,i jx is discrete and generally asymmetric 

even if the pdf of n is continuous and symmetric.  

2.1 Error statistics  

We define the error in the quantized signal as , ,= −i j i j je x s  accounting for both noise and 

quantization effects. The noise in different samples is uncorrelated and we assume that the 
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correlation time is sufficiently small such that the noise between different time-samples is 

also uncorrelated.  
To illuminate the effect of ensemble averaging, we consider the one-bit case for which the 
quantizer has two levels: 0 and 1. If the input is larger than 1/2 the output will be 1, 

otherwise the output is 0. Consider a constant “signal” 1/ 2=js . For zero noise the output is 

always 1, giving an error of 1/2. If we introduce noise with a symmetric pdf with zero 
mean, the quantizer output “flips” between 0 and 1 randomly.  The expectation value of the 
output is then 1/2, since we expect an equal number of zeroes and ones on the output, hence 
the expectation value of the error is zero. If the input signal is larger or smaller than 1/2, 
there will be an error such that the expected error of the output is nonzero.  
For Gaussian noise combined with a uniform quantizer with many levels, Carbone and Petri 
(1994) derived  

 
2 2 2

,

1

( 1)
[ ; ] exp[ 2 ( / ) ]sin(2 / ).

k

i j j j

k

E e s k ks
k

π σ π
π

∞

=

Δ −
= − Δ Δ∑  (2) 

It is easy to see that the expected error is reduced and goes to zero for increasing noise. The 

reason for this is that for increasing noise, the discrete pdf of the quantized signal becomes 

an increasingly more accurate representation of the continuous pdf of ,i jy (with expectation 

js ). The pdf of ,i jy  gets “broader” and is thus better resolved on the fixed grid defined by 

the quantizer cells. The expected error attains its largest values for zero noise where it 

becomes a “sawtooth” function of js  and, for intermediate noise, it becomes roughly 

sinusoidal as function of js  (Fig. 2, left), since only the first few terms in the series 

expansion are significant.  
Along with the expectation value of the error, there is an error variance, defined by 

2 2

, , ,Var[ ; ] [ ; ] [ ; ]= −i j j i j j i j je s E e s E e s , which can also be derived in terms of a trigonometric 

series. For Gaussian noise, 

 

22
2 2 2 2 2 2

, 2
1

1
[ ; ] ( 1) 4 ( / ) exp[ 2 ( / ) ]cos(2 / ).

12

k

i j j j

k

E e s k ks
k

σ π σ π σ π
π

∞

=

Δ Δ⎛ ⎞ ⎛ ⎞= + + − + Δ − Δ Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (3) 

It is apparent from the exponential factors that in the large noise limit the error variance 

goes to 
2 2/12 σΔ +  (Fig. 2, right), i.e. the variance is signal-independent. Both a vanishing 

error expectation, and a variance of σ2 in the large noise limit, are exactly the properties of 
the analog signal before quantization.  

2.2 Expectation of the sample mean  

In the following we consider the ensemble average of ,i jx , 

,

1

1
.

=

= ∑
N

j i j

i

x x
N

 (4) 

Ensemble averaging has the beneficial effect of reducing the variance, as we expect from 
basic statistics. Using the asymptotical relations above, one can show that the variance 
follows the usual 1/N-law in the large noise limit, i.e. the ensemble average variance goes to  
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Fig. 2. Signal-dependent expected error (left) and variance (right) for Δ = 1 and three noise 

levels; σ = 0.05 (full line) σ = 0.2 (dashed) and σ = 0.5 (dash-dotted). In (B), the straight line 

Δ2/12+σ2 is plotted to indicate the convergence towards this value with increasing noise. 

( )2 2/12 /σΔ + N  with increasing noise. Thus, the variance of the ensemble average can be 

made arbitrarily small for increasing ensemble size N. It is important to note that the 
expectation of the ensemble average converges to the input signal for increasing noise level. 
Noise is therefore beneficial in this respect, at the cost of a larger variance that can of course 
be compensated by increasing N. 
Furthermore, for small noise, the expectation of the ensemble average differs from the input 
signal. Ensemble averaging will not remove this difference, since it originates from the 
deterministic property of the quantizer and not from the noise. We illustrate the effect of 
noise in Fig. 3, where we compute the average of a sinusoidal with Gaussian noise with 

variance σ2 and use a simple roundoff to integer numbers as the quantizer function (i.e. 

Δ=1). With no noise we obtain a staircase function as expected (Fig. 3, upper panel). With 
increasing noise, the staircase function is smoothed out to resemble the sine-wave (Fig. 3, 
lower panels). 

2.3 Mean square error (MSE) of the sample mean  

With the sample mean as the measured quantity, the associated error is = −j j je x s . We note 

that as the sample mean tends to the expectation value as N tends to infinity, je  tends to 

,[ ]i jE e . For Gaussian noise and for sufficiently large /σ Δ , the mean square error MSE of 

the sample mean, obtained by averaging ( )2

je  over all discrete samples [1,..., ]∈j M , is 

(Skartlien & Øyehaug, 2005), 
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( ) ( )σ σ π σ
π

Δ
+ Δ + − − Δ0

2
2 2 2 2

2

1 1
MSE( , ) /12 (1 ) exp 4 ( / ) .

2
N

N N
 (5) 

When N is given, one can ask what are the bounds on σ to obtain super-resolution? For 

fixed 2N ≥ , the requirement 2MSE /12< Δ  defines the super-resolution interval 

max(0, ( ))Nσ . In the case of Gaussian noise, the upper bound max( )Nσ  is given implicitly by  

π σ σ
π

⎛ ⎞− Δ − − Δ =⎜ ⎟
⎝ ⎠

2 2 2 2
max max2

1 1
( 1) exp[ 4 ( / ) ] ,

12 2
N  (6) 

for large enough /σ Δ . A remarkable property is that there is an optimal noise optσ  in the 

super-resolution interval max(0, ( ))Nσ  which minimizes the MSE. This optimal noise is 

opt log(2( 1)) /2Nσ π= Δ −  provided that /σ Δ  is sufficiently large and that the noise is 

Gaussian. For N=100, for example, the optimum value for /σ Δ  is close to 0.366, which 

explains the good averaging performance associated with this value in Fig. 3.   
 

 
 

Fig. 3. An example of the effect of ensemble averaging of quantized signals. A sinusoidal 
with unit amplitude (dashed) plus Gaussian white noise is quantized by a simple roundoff 

to the nearest integer (i.e. Δ=1) and then averaged over an ensemble of 100 realizations 
(ensemble average: solid line). In absence of noise we obtain a staircase function (upper 
panel) and, with increasing noise, the staircase function is smoothed out to resemble the 

sine-wave. For the particular value σ/Δ=0.366 the mean square error is a minimum. 
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In summary, the existence of a minimum MSE is a consequence of the balancing between 

quantizer and noise effects. For small noise ( optσ σ< ), the noise tends to remove the effect 

from the quantization error in the sample mean and the MSE decreases with increasing 

noise. For large noise ( optσ σ> ), quantization is roughly negligible compared to the effect of 

the noise itself, and the MSE increases with increasing noise. 

 

Fig. 4. The signal processing chain considered in Sect. 3. After IQ-demodulation, the signal is 
sampled and normalized followed by either (i) ensemble averaging of I and Q and then 
amplitude/phase modulation (in Sect. 3 referred to as Method I, lower branch) or (ii) 
amplitude/phase modulation and then ensemble averaging of amplitude and phase 
(Method II, upper branch).  

3. Ensemble averaging of modulated signals that are randomly scaled  

In this section our focus is on the statistical properties of the ensemble average of amplitude 
and phase of a sequence of randomly scaled, IQ-demodulated pulses. Here we ignore 
quantization effects.  We give the pdf of amplitude and phase modulation of complex 
signals in Gaussian noise, then discuss in which order ensemble averaging of IQ-
demodulated and normalized signals should proceed (whether amplitude and phase should 
be computed for each individual pulse and then averaged or the average of I and Q should 
be used to compute phase and amplitude averages. See Fig. 4 for the two alternative 
methods). Then, we review the theory behind the optimal scaling threshold, which involves 
discarding pulses that have amplitudes below a certain threshold. 
Consider the complex signal ( )Z t  in terms of an IQ-decomposition; = +( ) ( ) ( )Z t I t iQ t . An 

IQ-demodulator provides a signal on this form in a sonar/radar or a radio. Alternatively, 
one may generate the quadrature signal by Hilbert transformation. To include random noise 
and scaling, we adopt the signal model  

 = +0( ) ( ) ( ),k k kZ t a Z t n t  (7) 

where t  is time delay from pulse start and k is pulse number. The scaling ak is accounted for 
by a general distribution p(a), where a  is a positive, real number. The noise is complex and 

Gaussian with variance 2σ . We assume a certain noise correlation function with a 
characteristic correlation time that is sufficiently short such that noise in different pulses is 
uncorrelated. We will in the following consider the phase and amplitude modulations, 
which are 
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( )( ) Arg ( ) ,

( ) Mod( ( )),

k k

k k

t Z t

A t Z t

φ =

=  (8) 

respectively. Both these modulations have a random component due to noise and scaling.  

3.1 Phase and amplitude statistics in general terms  

The starting point to obtain the pdf’s in question, is to consider how the scaled and 
subsequently normalised complex numbers  

 
“

0

( )
( ) ( )/ ( ) k

k k k

k

n t
Z t Z t a Z t

a
= = +  (9) 

are distributed in the complex plane. It is obvious that the phase of “
kZ  is unaffected, and 

that the normalized amplitude is accounted for, by the scaling. The associated amplitude 
and phase distributions are obtained by considering the conditional distributions for given 
ak, and then integrating over the scaling distribution p(a).  

We obtain the conditional distribution by using the scaled variance 2( / )aσ  in place of 2σ  in 

the phase distribution for a Gaussian complex variable of variance 2σ  (see Davenport and 

Root, 1958; Papoulis, 1965),  

 
( ) ( ) ( )φ φ

φ φ
π π
− − ⎡ ⎤= + +⎢ ⎥⎣ ⎦

2 2 2 2

2
exp cos( )exp sin ( )

( ; , ) 1 2Erf 2 cos( ) ,
2 4

a q a q a q
p q a a q  (10) 

where 2 2
0 /(2 )q A σ= , and Erf denotes the usual error function. With given a, the normalised 

amplitude “ /A A a=  obeys a Rician distribution (Davenport and Root, 1958; Papoulis, 1965) 

with variance 2( / )aσ  and amplitude parameter 0 0Mod( )A Z= ,  

 
“ “ “( ) “2

2 2 2 2 2 2
0 0 0 0( ; , , ) ( / )exp ( )/2 ( / ).p A A a a A a A A I a AAσ σ σ σ= − +  (11) 

Here, 0I is the modified Bessel function of zero order.  

Integration over ( )p a  yields the phase and amplitude distributions 

 
0

( ; ) ( ; , ) ( ) ,k kp q p q a p a daφ φ
∞

= ∫  (12) 

 “ “
0 0

0

( ; , ) ( ; , , ) ( ) .k kp A A p A A a p a daσ σ
∞

= ∫  (13) 

The variances 2
Aσ  and 2

φσ can now be obtained by calculation of the second moments of 

“
0( ; , )kp A A σ  and ( ; )kp qφ .  

3.2 Order of ensemble averaging 

Averaging methods: There are two different ways of generating accurate phase and 
amplitude estimates by ensemble averaging (see Fig. 4): 
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•  Method I, which refers to calculating phase and amplitude of ensemble averaged  I/a 
and Q/a.  

• Method II, which refers to calculating phase and amplitude of each individual 
realization of the pair (I/a,Q/a) before ensemble averaging. 

In radar- or sonar-terms, Method I can be regarded as “coherent integration” and Method II 
as “incoherent integration”, where “integration” is to be understood as ensemble averaging.  
Method I: For sufficiently large ensemble N, the averages of the output of the IQ-

demodulator I  and Q  tend to normal distributions (Gaussian random variables) by 

invoking the Central Limit Theorem from basic statistics. For normalized averaging, the 

joint distribution of andI Q  is also symmetric. One can then immediately use the classical 

“Rician” probability distributions (10) and (11) for the amplitude and the phase, 
respectively, which apply to Gaussian and symmetric joint distributions. Then, for Method I, 
the pdf of the amplitude is of the form (11) with σ replaced by Nσ , where  

 

2
2

2

0

( )
,N

p a
da

N a

σσ
∞

= ∫  (14) 

and the pdf of the phase is of the form (10) with q  replaced by 2 2
0 /(2 )N Nq A σ= .  

Method II: In Method II we calculate the phase and the amplitude of each individual 
realization of the pair (I/a,Q/a), before ensemble averaging.  The phase and amplitude 
modulations are estimated by performing an ensemble average (pulse to pulse average) 
over all available pulses. The ensemble averaged phase and amplitude are 

 
1

1
( ) ( ),

N

k
k

t t
N

φ φ
=

= ∑  (15) 

 
1

1 ( )
( ) ,

N
k

k k

A t
A t

N A=

= ∑  (16) 

where the amplitude ensemble average is normalized and kA is the time averaged pulse 

amplitude for pulse k. We assume that kA estimates ak  with sufficient accuracy such that we 

can neglect the stochastic component of   kA  in the analysis. We note that kA is the average 

instantaneous pulse amplitude over a single pulse k only. The pdfs of ( )k tφ and ( )/k kA t A  

for fixed delay give the variance of the individual terms in the sum. The variance of the 

ensemble average is found by scaling this variance with 1/N, since the individual terms are 

uncorrelated..  
One can show that the joint pdf of  (I/a,Q/a) is non-Gaussian. This can be handled by treating 
the Rician distributions as conditional distributions for given a, and then integrating over 
p(a)  to obtain the non-Rician amplitude and phase distributions  (12, 13). The resulting 
variances can then be calculated numerically. Finally, the variances for the ensemble 
averages are obtained by scaling with 1/N, using the assumption of uncorrelated 
realizations.  
Large SNR: In the large SNR case, the phase variance for both methods tend to the same 

value for 0A σ4 : In this limit 2 1a q 4  (for not too small a), such that the phase pdf (12) for 

Method II can be replaced by a normal distribution (see Appendix A of Øyehaug & 
Skartlien, 2006) with variance 
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( )

φ

σ
σ

∞

= ∫
2

2 0
,M2 2

0

/ ( )
.

A p a
da

N a
 (17) 

Similarly, the phase distribution for Method I has the variance 1/(2 )Nq  in the same limit, 

and it follows that 2 2
,M1 ,M2φ φσ σ= . We conclude that the two methods give different phase 

variance only for moderate signal to noise ratios, which means a low amplitude radar or 

sonar pulse, or on the rising and falling edges of the pulse in general. 

Also the amplitude variance for both methods tend to the same value for 0A σ4 : In this 

limit, the amplitude distribution tends to a Gaussian near 0A . The integrand of the 

amplitude distribution in (13) is then a Gaussian with expectation 
2

0 0[ ; ] ( / ) /(2 )E A a A a Aσ= +  and it can be shown that 

 

2
2

,M2 2

0

( )
.A

p a
da

N a

σσ
∞

= ∫  (18) 

Similarly, the amplitude distribution (11) for Method I has variance 2
Nσ  in the same limit. It 

then follows that  2 2
,M1 ,M2A Aσ σ→  for 0 /A σ → ∞ . We conclude that the two methods give 

different amplitude variances only for moderate signal to noise ratios. 

Comparison of methods: Which of the two methods gives the smallest amplitude and phase 

variance for moderate signal to noise ratios? The answer is non-trivial,  since the 

computation of amplitude and phase is nonlinear. We need to express how the variances 

depend on the noise, the signal amplitude and N. With the phase and amplitude pdfs (10) 

and (11), we obtain for Method I: 

 

2 2 2
,M1 ,M1 0 0

2 2 2
,M1 ,M1 0

( ,[ / ] / ),

([ / ] / ).

A A A A N

A Nφ φ

σ σ σ

σ σ σ

=

=
 (19) 

For Method II, we can assume that the terms in the averaging sum are uncorrelated, and 
obtain the usual 1/N -law,  

 

2 2 2
,M2 ,M2 0 0

2 2 2
,M2 ,M2 0

( ,( / ) )/ ,

([ / ] )/ .

A A A A N

A Nφ φ

σ σ σ

σ σ σ

=

=
 (20) 

The difference between the methods then arises when we scale the argument with 1/N in 

contrast to scaling the variances with 1/N. Either way, the amplitude as well as the phase 

variance decrease with increasing N. Comparing the performance of Methods I and II then 

comes down to establishing which is the smallest of the functions M1( / )f x N  and M2( )/f x N , 

where 2
0( / )x Aσ=  and the f’s express the phase variance or the amplitude variance. Thus, 

given the value of N we should be able to establish for which signal-to-noise ratios Method I 

is favourable over Method II and vice versa. One can expect that the differences between the 

variances of Method I and II vary as function of N and σ in general. Below, we quantify 

these differences for given signal strength and noise level by integrating over the pdf’s, 

when an explicit form is not available.  
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Amplitude: There are two independent parameters in the amplitude pdf; A0 and σ.  We plot 

the output NSR as function of N (Fig. 5A) for σ = 1 and σ = 0.1. In the former case Method II 
performs best, in the latter the methods are virtually indistinguishable. The plot of output 
NSR as function of SNR (Fig. 5B) gives the same conclusion; Method II is the best choice, this 

time by a clear margin for both values of σ. For high SNR, however, the methods are 
indistinguishable; the variances for the two methods coalesce near SNR=10. 

Phase: The variance of the phase depends only on the input SNR via σ= 2 2
0 /(2 )q A .  Fig. 5C 

displays the standard deviation of the phase as function of N (measured in degrees) for σ = 1 

and σ = 0.1. For the former and for low values of N, Method II is the best, otherwise the 
methods have close to indistinguishable variances. Considering variation in input SNR (Fig. 
5D), for low input SNR, Method I is the best, for moderate SNR, Method II is the best. The 
difference between the two methods converges rapidly to zero with increasing input SNR. 
In summary, Method II appears to achieve the smallest variances, the only exception being 
at low-to-moderate input SNR for the phase variance.  

 

Fig. 5. Comparison of Method I and II. Output amplitude NSR σA/A0 as function of (A) N 

and of (B) input SNR A0/σ using Method I (solid  line) and Method II (dashed) for σ = 1 

(blue) and σ = 0.1 (red). Plots (C) and (D) display the same for the phase standard deviation  
(in degrees).   

3.3 Optimum thresholding 

In the preceding subsection we saw that when one considers moderate to good signal to 
noise ratios it is possible to obtain analytic, approximate expressions for the phase and 
amplitude variances (given in eqs. (17) and (18), respectively). Both these variances are 
proportional to the quantity 
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( )1
.

p a
R da

N a

∞

= ∫  (21) 

One can see the possibility of minimising R by rejecting pulses below a certain threshold a0. 
A new truncated distribution p(a;a0) governs the remaining data and we obtain 

 
0

0 2
0

( )1
( ) ,

( ) a

p a
R a da

n a a

∞

= ∫  (22) 

where 
0

0( ) ( )
a

n a N p a da
∞

= ∫  is the reduced ensemble size. A minimum point exists provided 

that 
0

2( )/
a

p a a da
∞

∫  decreases faster than n(a0) for small a0, and slower than n(a0) for larger a0. 

The existence and location for the optimal threshold depends entirely on the properties of 
p(a). We find that a necessary condition for the existence of a minimum is (Øyehaug & 
Skartlien, 2006),   

 
0

2

min 1
( ) ,

2a

a
p a da

a

∞
⎛ ⎞ <⎜ ⎟
⎝ ⎠∫  (23) 

where p(a) is the original distribution. Optimum thresholding is further investigated below 
in Sect. 4, where the signals are also assumed to be quantized.  

 

Fig. 6. The signal processing chain under consideration in Sect. 4. The input signal is 
demodulated into I and Q, sampled and quantized before it is normalized. The two 
components are then used to estimate amplitude and phase and finally the ensemble 
averages are computed using amplitude and phase from each individual pulse (Method II of 
Sect. 3). 

4. Ensemble averaged randomly scaled amplitude and phase in quantized 
signals 

This section considers the combination of the signal models that we looked at in Sects. 2 and 
3, i.e. the signal under study has undergone IQ-demodulation, sampling, quantization, 
normalization, modulation into amplitude and phase and, finally, ensemble averaging (Fig. 
6). The complex signal to be considered before modulation is  

 [ ] [ ]0

1 1
( ) ( ) ( ) ( ) .k k k k

k k

U t Q Z t Q a Z t n t
a a

= = +  (24) 
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Fig. 7. (A) Typical distribution of the quantization of IQ-demodulated noisy signals in the 
complex (I,Q)-plane. The degree of shading of the markers indicates the frequency of each 
quantization level. (B) Histograms of the distribution (shaded) of noisy signals for I (the 
histogram for Q is similar), amplitude and phase (C, D). The associated discrete 
distributions of the quantized signal are depicted as arrows (not correctly scaled compared 
to the continuous distributions). 

4.1 Statistical properties of randomly scaled and quantized complex signals 

Due to quantization, the complex numbers in (24) follow a discrete pdf depicted as arrows 
in Fig. 7B where the normalized histogram of the Gaussian noise (corresponding to the pdf) 
is drawn for comparison. Deriving a general pdf for amplitude and phase that accounts for 
quantization as well as stochastic noise poses an extremely difficult mathematical problem 
that we do not attempt to solve. Instead we employ a mixture of graphical arguments and 
simulations to shed light on the statistics of these quantities.   
In Fig. 7A there are nine possible complex values for the given noise and quantization levels, 
of which two have identical amplitude and two pairs of points have identical angle, which 
explains that there are eight different attainable values of the amplitude (Fig. 7C) and seven 
different for angle (Fig. 7D). We note that despite the low SNR in this example the 
underlying amplitude and phase pdfs (represented by shaded histograms in Figs. 7C, D) 
resemble very much Gaussian distributions.  
We observe that the amplitude and phase pdfs when quantization is included,  differ both 
qualitatively and quantitatively from the pdfs obtained when quantization is neglected. 
Despite this, the differences between the corresponding variances need not be as large as one 
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might expect when comparing the pdfs. For Gaussian noise and σ/Δ sufficiently large, eqs. 
(2) and (3) give the following approximate expression for the variance of a signal sj with a 
given scaling a (not random); 
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, 2
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a

a s a a s a

 (25) 

With increasing σ/Δ the variance in (25) goes rapidly to ( )2 2 2/12 /σΔ + a  such that the error 

variance becomes signal-independent. In Sect. 3.2 we argued that, in the large SNR limit and 

without taking into account quantization (i.e. Δ=0), this estimate also holds for the 

amplitude variance 2
Aσ and the phase variance multiplied by the squared signal amplitude 

2 2
0A φσ . Thus we expect, at least for small Δ, that eqs. (17) and (18) remain valid with 2σ  

replaced by 2 2/12 σΔ + . Among other things we examine this validity numerically in Sect. 

4.2 below. 

Consider random scaling with a uniform scaling pdf; min( ) 1/(1 )p a a= − on min( ,1)a . The 

corresponding truncated pdf is 0 0( ; ) 1/(1 )p a a a= −  on 0( ,1)a . Straightforward calculus 

applied to eqs. (15) and (16) establishes that, in the large SNR and σ/Δ limits,  
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These estimates are subject to numerical investigation below in Sect. 4.2.   

4.2 Numerical results 

Numerical experiments were performed to demonstrate the validity of the asymptotical 

estimates (26) and to examine the effect of quantization on thresholding. We estimated the 

variances numerically with a uniform p(a), and compared these to the asymptotic values 

obtained analytically. The numerical results estimate the exact variances for all SNR, 

whereas the analytical results are valid only asymptotically for large SNR and σ/Δ.   

The numerical variance estimates are based on a series of realizations of (24). We conducted 

the experiments as follows. Let , 1,...,ka k N=  be a random sequence where the elements are 

uniformly distributed on min( ,1)a , where amin = 0.01. For a randomly selected Z0 (see below), 

the complex numbers 0k k kZ a Z n= +` ` `  (where kn `  is complex and Gaussian and the real and 

imaginary parts are independent) are computed for 1,..., , 1,...,k N M= =` , where k is the 

pulse index, while `  is a realization index. Different realizations are necessary for 

estimating the variances numerically.   For each ` , we estimated the mean values /A A  

and φ  by summing over k. The variances of these averages were estimated by summing 

over ` .  
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For convenience, the sequence in ak is sorted according to increasing scaling to easily handle 

the thresholding. Each k then corresponds to a scaling threshold ak. Only data with scaling 

ka a≥  were retained and used for signal estimation; for each value of k the mean  

values 〈 /A A 〉 `k
 and 

k
φ `  were computed including ak for indices , 1,...,k k N+ . 

Subsequently, amplitude and phase variance estimates were obtained by averaging over all 

realizations 1,..., M=` ; 
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 (27) 

The simulations were performed for three values of the quantization separation Δ. To avoid 
signal-dependent estimates, which is generally the case (see eq. 25), for each Δ we repeated 
the protocol described above 100 times with Z0 selected at random on the circle in the 
complex plane with modulus 4 and thereafter calculated the mean variance estimate.  
Comparing the asymptotical expressions in (26) with the numerical results in Fig. 8, we 
observe that there is a reasonable agreement between numerical and theoretical estimates, 
with two notable exceptions: (i) for small values of a0 and for large noise the numerical 
variances deviate markedly from the theoretical estimates and (ii) for large Δ and small 
noise (in particular for the phase variance), the numerical variances are clearly larger than 
the theoretical estimate. 

 

Fig. 8. Amplitude and phase variances as function of scaling threshold a0 for the specified 

values of σ and Δ obtained by performing the computations described in the main text (solid 
lines) and corresponding asymptotical estimates (eqs. 26, dashed).  
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5. Discussion 

As the test case in Sect. 4.2 shows, it was justified to apply the asymptotic estimates in Sect. 3 
for both phase and amplitude averaging for sufficient levels of SNR ranging from roughly 
10. Although this SNR is reasonable for many practical purposes, the instantaneous signal to 
noise ratio varies throughout the radar/sonar pulse with the instantaneous amplitude. Parts 
of the rising and falling flanks of the pulses will then correspond to short time intervals in 
which the theory should not be applied.  
We adopted a smooth scaling distribution p(a) in our analysis. In a practical situation, only 
the scaling histogram is available. The normalised histogram approximates p(a;a0) and the 
optimal scaling threshold can be obtained by the discrete analog to eq. (23). On the other 
hand, the optimum scaling threshold can of course be computed by brute force, i.e. by 
straightforward estimation of the variance based on available pulse signals and rejecting 
those pulses that contribute to a degraded ensemble average. One interesting possible future 
investigation is to evaluate the brute force and theoretically driven approaches in practical 
situations and compare them in terms of efficiency and reliability.  
In Sect. 2.3 we defined and obtained a mathematical expression for the mean square error 
(MSE) of the ensemble average of a quantized, noisy signal. The MSE is a signal-
independent measure of the average signal variance. When the signals over which we 
average are randomly scaled, there is no obvious way of defining the MSE. One way of 
circumventing this problem is to, as we did in Sect. 4.2 above, calculate variances of a large 
number of randomly selected points and then taking the average in order to achieve 
variances that are roughly signal-independent (Fig. 8). In the future, more sophisticated 
definitions of average variance that account for random scaling as well as quantization and 
stochastic noise should be developed.    
Direct averaging with subsequent amplitude and phase calculation (Method I) provides the 
same results as Method II in the large SNR limit. Method I is potentially a more efficient 
averaging method, since amplitude and phase need not be computed for each pulse. 
However, signal degradation is more sensitive to alignment errors of the pulses before 
averaging; the sensitivity to precise alignment increases for increased carrier frequency due 
to larger phase errors for the same time lag error. This problem is much reduced when one 
performs averaging on amplitude and phase modulations directly (Method II).  

6. Conclusion 

We have reviewed the statistics of (i) averaged quantized pulses and (ii) averaged 
amplitude and phase modulated pulses that are randomly scaled, but not quantized. We 
showed that ensemble averaging should be performed on the amplitude and phase 
modulations rather than on I and Q. In the final point (iii), we analyzed the asymptotic 
statistics for ensemble averaged amplitude and phase modulated pulses that are both 
randomly scaled and quantized after IQ-demodulation. We studied the effect of 
thresholding (rejecting pulses below a certain amplitude) and found that theoretical 
estimates of the variance as function of threshold, closely agree with numerical estimates. 
We believe that our analysis is applicable to radar and sonar systems that rely on accurate 
estimation of pulse characteristics. We have covered three key aspects of the problem, with 
the goal of reducing statistical errors in amplitude and phase modulations.  Extensions or 
modifications of our work may be necessary to account for the signal chain in a specific 
digital system.      
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