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Abstract

A global regularized Gauss-Newton (GN) method is proposed to obtain a zero residual for
square nonlinear problems on an affine subspace built by wavelets, which allows reducing
systems that arise from the discretization of nonlinear elliptic partial differential equations
(PDEs) without performing a priori simulations. This chapter introduces a Petrov-Galerkin
(PG) GN approach together with its standard assumptions that ensure retaining the q-
quadratic rate of convergence. It also proposes a regularization strategy, which maintains
the fast pace of convergence, to avoid singularities and high nonlinearities. It also includes a
line-search method for achieving global convergence. The numerical results manifest the
capability of the algorithm for reproducing the full-order model (FOM) essential features
while decreasing the runtime by a significant magnitude. This chapter refers to a wavelet-
based reduced-order model (ROM) as WROM, while PROM is the proper orthogonal
decomposition (POD)-based counterpart. The authors also implemented the combination
of WROM and PROM as a hybrid method referred herein as (HROM). Preliminary results
with Bratu’s problem show that if theWROM could correctly reproduce the FOM behavior,
then HROM can also reproduce that FOM accurately.

Keywords: Gauss-Newton method, line search, Petrov-Galerkin direction, data
compression, wavelets

1. Introduction

The Newton method for solving square nonlinear problems is one of the most popular tech-

niques used in engineering applications due to its simplicity and fast convergence rate [1–3].

However, the quality of the final numerical results is affected by the possible Jacobian’s

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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singularity and high nonlinearity. Another drawback is that the method depends on the initial

point. Therefore, it is necessary to implement a globalization strategy to get the solution inde-

pendently of the initial guess. One such approach is the line-search method that relies on a

suitable merit function that yields that the iterations progress toward a solution of the problem.

From the numerical point of view, the technique requires solving square linear systems several

times, and it is necessary to carry out function evaluations of the order of the problem, as well

as first-order information of the square law of the function to compute the Jacobians. In the

case of high-dimensional nonlinear problems, the method can overcome the capacity of the

computer memory or decrease speed for solving these linear systems, even in the case of a few

iterations. One of the current research activities focuses on solving large-scale square nonlinear

problems in real time. The purpose of this chapter is to provide an algorithm for solving large-

scale square nonlinear problems, in real time, while retaining the fast convergence rate. One

strategy for addressing such challenges is to characterize an affine subspace, of much lower

dimension than the original one, that contains the initial solution and thus reproduces the

problem’s principal features.

One procedure to characterize the affine subspace consists of solving the full-order model

(FOM) in several input points whose solutions are called snapshots, then using a principal

component analysis method such as singular value decomposition (SVD) to build an ortho-

normal basis that spans the snapshots’ majority of energy. This oblique subspace, where one

seeks a solution, is projected on the original one. Good numerical results have been already

reported in the literature [1, 3–7]. But there are still open questions about this procedure as for

how and when to choose the snapshots and their number [8, 9]. It is important to emphasize

that at every picture it is required solving the FOM regardless of its cost. This chapter thus

promotes a new strategy that is snapshot free. The approach originated in signal processing

and consists of using the notion of wavelets to compress data in a subspace of smaller

dimension which retains the majority of the original energy [10, 11]. The discrete wavelet’s

low-pass matrix is used as the affine subspace; then, the optimization is performed in this

compressed subspace to obtain a cheaper solution that can decompress to its original size.

2. Reduced-order models using wavelet transformations

2.1. Wavelets and data compression

The rationale for using wavelet transformations for model reduction originates from the fields of

image processing, image compression, and transform coding. In these fields, massive amounts of

information, for example, images, are broadcasted over limited bandwidth communication lines

and networks such as the internet. One needs to compress these signals for quick transmission

and to diminish storage requirements [10]. In summary, data compression consists of, given a

signal x∈Rn find a lower dimensional signal bx ∈Rr with r≪ n to broadcast or store those lower

dimensional ones bx: The most widely used techniques for data compression are based on

wavelets transform. The key to using wavelets is to find a lower dimensional signal bx that relies

on a known subspace properly denoted as energy compaction. It is well comprehended that the

Nonlinear Systems - Modeling, Estimation, and Stability108



wavelets tend to accumulate energy in the low-frequency sub-band of the wavelet decomposi-

tion [3, 12–14]. The energy relates to the L2-norm and is defined as e ¼ ∥x∥2 ¼
Pn

i¼1 x
2
i : To

demonstrate the energy compaction, consider Figure 1, in which one has the original image

x∈R512�512
: Notice that the upper left quadrant of the wavelet decomposition is a low-

dimensional approximation bx ∈R256�256 that is one-fourth the size of the original signal and

resembles the low-frequency sub-band wavelet coefficients. Using the previously measured

energy, the energy enclosed in bx is 95:75% using just one-fourth of the coefficients. Since bx
comprises most of the energy, a simple data compression scheme would execute all of the other

wavelet sub-bands to zero and store only the low-frequency information as in Figure 1 (see in the

bottom center). By only employing bx, one can reproduce an approximation of x∈Rn by its

generalized inverse of the sub-band compression [10]. Next section will provide details.

2.2. Reduced-order models

Let W ∈Rn�n describe an orthonormal wavelet. The transformation encompasses a low-pass

and a high-pass submatrix that is given by

Wn�n ¼
Lr�n

Hs�n

� �
, rþ s ¼ n: (1)

By orthogonality, rank Wð Þ ¼ n, rank Lð Þ ¼ r, and rank Hð Þ ¼ s: Now, by orthogonality of W,

WWT ¼ I, then LLT ¼ Ir, HHT ¼ Is. The energy of a signal x∈Rn is

∥x∥2 ¼ ∥Lx∥2 þ ∥Hx∥2: (2)

Choosing L that contains the majority of the energy such that the energy ∥Hx∥ ≈ 0, one has

∥x∥ ≈ ∥Lx∥: This means that the energy of the original data x∈Rn is approximately equal to the

Figure 1. Sample compression and decompression.
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energy to the compressed data bx ¼ Lx∈Rr
: That is: ∥x∥ ≈ ∥bx∥: The decompressed data are

LTbx ¼ ~x ∈Rn
: On the other hand, the compressed and decompressed energies are equal. That

is ∥bx∥ ¼ ∥~x∥ since LLT ¼ Ir: Therefore, the original, compressed, and decompressed data are

related as follows

∥x∥ ≈ ∥bx∥ ¼ ∥~x∥, (3)

where x∈Rn is the original data, bx ∈Rr is the compressed data, and ~x ∈Rn is the decompressed

data. Thus, once an appropriate low-pass submatrix L is determined, one proposes solving the

corresponding optimization problem in the reduced affine subspace determined by LT and later

coming back to the original size by its generalized inverse.

3. Problem formulation

3.1. Statement of the problem

Given a nonlinear function R from R
n to Rn, find a solution in an affine subspace determined

by an initial displacement point xo ∈R
n and an orthonormal base LTn�r, r < n: That is: find

x∗ ∈Rn with R x∗ð Þ ¼ 0 and x∗ ∈ xo þ η LT
� �

, where η LT
� �

is the subspace generated by the

linear combination of the operator LT.

3.2. Overdetermined problem

This section formulates this problem by using the overdetermined functions H and ϕ from R
r

to Rn

H pð Þ ¼ R ϕ pð Þ
� �

¼ 0, ϕ pð Þ ¼ xo þ LTp, andp∈Rr
: (4)

The fact that finding a solution p∗ of the overdetermined problem draws attention, H p∗ð Þ ¼ 0

for p∗ ∈Rr, is equivalent to finding the solution one is initially seeking. That is: x∗ ¼ ϕ p∗ð Þ and

R x∗ð Þ ¼ 0 is a solution on the affine subspace. Therefore, one studies the problem by finding a

zero residual of the nonlinear least-squares problem associated to H. Problem (4) is called an

overdetermined zero-residual problem.

3.3. Nonlinear least-squares problem

The residual problem (4) is immediately seen to be equivalent to solving the nonlinear zero-

residual least-square problem

minimize f pð Þ ¼
1

2

Xn

i¼1

r2i ϕ pð Þ
� �

, p∈Rr
: (5)
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3.4. First derivatives for the residual functions R and H

The Jacobian of R at x∈Rn is given by

JR xð Þ ¼ J xð Þ ¼ ∇ri xð Þð ÞT
h i

1 ≤ i ≤ n
: (6)

A direct application of the chain rule, since Jϕ pð Þ ¼ LT yields:

JH pð Þ ¼ J ϕ pð Þ
� �

LT : (7)

3.5. First and second derivatives for problem (5)

The gradient of each term of the problem is ∇r2i ϕ pð Þ
� �

¼ 2LTri ϕ pð Þ
� �

∇ri ϕ pð Þ
� �

. Therefore the

gradient of f pð Þ is

∇f pð Þ ¼ J ϕ pð Þ
� �

LT
� �T

R ϕ pð Þ
� �

:

�

(8)

The second-order information is

∇
2f pð Þ ¼ J ϕ pð Þ

� �

LT
� �T

Jϕ pð Þ
� �

LTÞ þ
X

n

i¼1

hi pð Þ∇2hi pð ÞÞ: (9)

4. Gauss-Newton method

This section presents a Gauss-Newton method to solve the nonlinear problem (5) which is

equivalent to solving the overdetermined nonlinear composite function (4). It describes the

standard Newton assumptions for this composite function problems that yield q-quadratic rate

of convergence. The inconvenience to use Newton method is that the second-order informa-

tion associated with the Hessian method is not easily accessible or is impractical for computa-

tional time. The latter makes the Newton method impractical for very large-scale problems.

4.1. Model order-reduction-based Gauss-Newton algorithm

This subsection presents a reduced-order Gauss-Newton algorithm for solving problem (5),

which is the interest herein.

Algorithm 1. Reduced-order Gauss-Newton (ROGN)

Inputs: Given the compressed base LT ∈Rn�r, and an initial displacement xo ∈R
n
:

Output: Approximate solution in the affine subspace x∈Rn
:

1: Initial point of the problem. Given po ∈R
r.

2: Initial point in the affine subspace. ϕ po
� �

¼ xo þ LTpo ∈R
n.
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3: For k ¼ 0 : until convergence ∥R ϕ pk
� �

∥ ≤ e
� ��

.

4: Gauss-Newton direction (compressed direction). Solve for Δpkþ1

J ϕ pk
� �� �

LT
� �T

Jϕ pk
� �� �

LTÞΔpkþ1 ¼ � J ϕ pk
� �� �

LT
� �T

R ϕ pk
� �� �

: (10)

5: Compressed update: pkþ1 ¼ pk þ Δpkþ1.

6: Decompressed update: ϕ pkþ1

� �

¼ xo þ LTpkþ1.

Remarks:

1. The algorithm presents two initial points. The first xo is the displacement to characterize the

affine subspace, and the second one po is the initial point for the algorithm.

2. The update ϕ pkþ1

� �

is the approximation to the solution one is looking for which one

denotes by xkþ1.

3. Finding Gauss-Newton direction Δpkþ1 is equivalent to solving the following linear least-

squares problem:

min
Δpkþ1

1

2
∥ Jϕ pk

� �

LT
� �

Δpþ R ϕ pk
� �� �

∥2
� �

: (11)

4. The Gauss-Newton direction is the Petrov-Galerkin direction obtained by approximating

Newton’s direction of square nonlinear problems for the following weighted problem:

min
Δpkþ1

1

2
∥ LTΔpþ R xð Þ∥2

Q�1 ; Q ¼ J xð ÞTJ xð Þ > 0
� o

:

�

(12)

4.2. Local convergence of reduced Gauss-Newton algorithm

It is known that the Gauss-Newton method retains q-quadratic rate of convergence under

standard assumptions for zero-residual single-function problems [15]. The natural question is:

What are the standard assumptions that guarantee the Gauss-Newton conditions for the

composite function one is working with, that conserve q-quadratic rate of convergence? The

next theorem establishes these assumptions.

Theorem: Let H from R
r to Rn be defined by H pð Þ ¼ R xo þ LTp

� �

, xo ∈R
n, p∈Rr, and L∈Rr�n

are orthonormal operators with r < n: Assume there exists a solution p∗ ∈ ~D ⊂Rr, with ~D

convex and open. Define D ¼ xof g þ LT ~D
� �

, where LT ~D
� �

is the image of ~D under LT ∈Rn�r.

Assume that JR ∈ Lγ Dð Þ, JR is bounded on D, and the minimum eigenvalue of J x∗ð ÞTJ x∗ð Þ is

positive. Then, the sequence pkþ1

	 


given ROGN algorithm 1 is well defined, converges, and

has q-quadratic rate of convergence. That is:
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∥pkþ1 � p∗∥ ≤
1

2
∥pk � p∗∥ (13)

∥pkþ1 � p∗∥ ≤
~c~γ

2~σ
∥pk � p∗∥2 with ~c, ~γ, ~σ ∈Rþ: (14)

Proof: The residual problem R has solution x∗ on D. First, one proves that the Jacobian of H is

Lipchitz on ~D: Since JH pð Þ ¼ J ϕ pð Þ
� �

LT , then

∥JH p1
� �

� JH p2
� �

∥ ¼ ∥ J ϕ p1
� �� �

� J ϕ p2
� �� �� �

LT∥, for p1, p2 ∈
~D: (15)

Since the Jacobian of R is Lipschitz on D, one concludes

∥JH p1
� �

� JH p2
� �

∥ ≤ ~γ∥p1 � p2∥, ~γ ¼ γ∗∥LT∥2 , forp1, p2 ∈
~D: (16)

Second, one proves that the Jacobian of H is bounded on ~D: Since the Jacobian of H at p is

J ϕ pð ÞLT
�

, then

∥JH pð Þ∥ ¼ ∥J ϕ pð ÞLT∥ forp∈ ~D:

�

(17)

Now, since the Jacobian of R is bounded on D, one concludes

∥JH pð Þ∥ ≤~c, ~c ¼ c∗∥LT∥ forp∈ ~D: (18)

Finally, one proves that the smallest eigenvalue of JH p∗ð ÞTJH p∗ð Þ is greater than zero.

JH p∗ð ÞTJH p∗ð Þ ¼ J x∗ð ÞLT
� �T

J x∗ð ÞLT
� �

with x∗ ¼ xo þ LTp∗: (19)

Let p 6¼ 0∈Rk and σ∈R be an eigenvector and eigenvalue associated with the last symmetric

matrix. Then

∥LTp∥2Q ¼ σ∥p∥2 , Q ¼ J x∗ð ÞTJ x∗ð Þ > 0: (20)

Therefore, σ > 0 since LT is a full rank and p 6¼ 0. The convergence and its fast rate of conver-

gence given by the last two inequalities follow from the Theorem 10.2.1 in the Dennis and

Schnabel book [15].

5. Regularization

Despite the advantages of the Gauss-Newton method, the algorithm will not perform well if

either the problem is ill conditioned or in the presence of high nonlinearity of some compo-

nents of it. The purpose of this section is to introduce two regularizations to overcome these

difficulties while retaining the fast rate of convergence of the Gauss-Newton method.
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5.1. Levenberg-Marquardt method

To prevent the Gauss-Newton algorithm to preclude in case some eigenvalues are near zero or

in case of rank deficiency of the linear systems to solve, the least-squares directions are

regularized by

min
Δp

1

2
∥ J ϕ pð Þ

� �

LT
� �

Δpþ R ϕ pð Þ
� �

∥2 þ
μ

2
∥Δp∥2

� �

(21)

where μ > 0. The solution is given by

J ϕ pð Þ
� �

LT
� �T

J ϕ xð Þ
� �

LT
� �

þ μI
� �

Δp ¼ � J ϕ pð Þ
� �

LT
� �T

R ϕ pð Þ
� �

: (22)

Under the standard Gauss-Newton assumptions written before and choosing the regulariza-

tion parameter as μ ¼ O ∥ J ϕ pð Þ
� �

LT
� �T

R ϕ pð Þ∥
� �

�

, the regularized Gauss-Newton algorithm

converges and the q-quadratic rate of convergence is retained; see Theorem 10.2.6 [15].

∥pkþ1 � p∗∥ ≤
1

2

~α~γ

~λ
∥pk � p∗∥2: (23)

5.2. Scaling regularization

To avoid the influence of the high order of magnitude of some components with respect to the

rest of the components of the problem, one presents the following regularization:

min
Δp

1

2
∥ J ϕ pð Þ

� �

LT
� �

Δpþ R ϕ pð Þ
� �

∥2 þ
σ

2
∥LTΔp∥2Q

� �

, (24)

where Q ¼ J ϕ pð Þ
� �

LT
� �T

J ϕ pð Þ
� �

LT
� �

. The solution is given by

J ϕ pð Þ
� �

LT
� �T

J ϕ pð Þ
� �

LT
� �

� �

Δp ¼ � J ϕ pð Þ
� �

LT
� �T R ϕ pð Þ

� �

1þ σ∥R ϕ pð Þ
� �

∥
: (25)

This regularization prevents that large components of the problem affect the behavior of the

algorithm. It is important to observe the Lipschitz constant of the problem is improved.

Considering the preceding two regularizations, one has

J ϕ pð Þ
� �

LT
� �T

J ϕ pð Þ
� �

LT
� �

þ μI
� �

Δp ¼ � J ϕ pð Þ
� �

LT
� �T R ϕ pð Þ

� �

1þ σ∥R ϕ pð Þ
� �

∥
: (26)

This last regularizations prevent the smallest eigenvalue affecting the behavior of the

Gauss-Newton algorithm and at the same time, through rescaling, components with

small values are not considered by the influence of large components while retain its fast

rate of convergence.
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6. Globalization strategy

The good performance of the Gauss-Newton algorithm depends on a suitable initial point that

must be inside its region of convergence. Rather than absorbing the computational cost asso-

ciated with choosing an appropriate initial point, the chapter proposes a line-search method

that provides convergence for initial points outside of the region of convergence. The goal of

this approach is to obtain a sufficient decrease in the merit function. If the direction fails, then a

backtracking is used until a sufficient reduction is obtained. A merit function should allow

moving toward a solution of the problem.

6.1. Merit function

It is natural to think that the merit function for the unconstrained minimization problem (5) is

itself. That is: M pð Þ ¼ f pð Þ.

6.2. Descent direction

One proves that Gauss-Newton direction is a descent direction for the merit function

M pð Þ ¼ f pð Þ.

Property: The regularized Gauss-Newton direction Δp given by (26) is a descent direction for

the merit function M pð Þ ¼ f pð Þ.

Proof: One proves that the directional derivative of f at the direction Δp is less than zero. The

gradient of f pð Þ is given by ∇f xð Þ ¼ J ϕ pð Þ
� �

LT
� �T

R ϕ pð Þ
� �

. Therefore

∇f pð ÞTΔp ¼ �∥ J ϕ pð Þ
� �

LT
� �T

R ϕ pð Þ
� �

∥2Q�1 < 0 (27)

since Q ¼ J ϕ pð Þ
� �

LT
� �T

J ϕ pð Þ
� �

LT
� �

þ μ
� �

is positive definite.

Consequently, it is possible to progress toward a solution of the problem in the Δp direction.

The purpose is to find a step length α∈ 0; 1ð � that yields a sufficient decrease. To that effect one

follows the Armijo-Goldstein conditions given by

f pþ αΔpð Þ ≤ f pð Þ þ α λ∗∇f pð ÞTΔp
� �

(28)

and

∇f pþ αpð ÞTΔp ≥ β∇f pð ÞTΔp, (29)

for fixed values λ, β∈ 0; 1ð Þ: The first inequality allows sufficient decrease of the merit function,

and the second one avoids step lengths that are very small. It is important to observe that if β is

chosen, β∈ λ; 1½ �, then the two inequalities can be satisfied simultaneously. Wolfe proved that

if f is continuously differentiable on R
r,Δp is a descent direction, and assuming the set
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f pþ αΔpð Þ;α∈ 0, 1ð �f g is bounded below, then there exists an α∗ ∈ 0; 1ð � such that the two

inequalities be satisfied simultaneously [16].

It is important to realize that these two inequalities can be reached by using a back-tracking

procedure. Therefore, this work uses a line-search strategy to satisfy the inequalities. Next

section proposes a line-search regularized Gauss-Newton algorithm for solving the zero-

residual composite function problem.

7. A line-search regularized Gauss-Newton method

This section proposes the following regularized Gauss-Newton method with line search to

find a solution on the affine subspace xo þ η LT
� �

for problem (4).

Algorithm 2: A reduced-order regularized Gauss-Newton (RORGN)

Input: Given the compressed base LT ∈Rn�r, and a displacement xo ∈R
n.

Output: The approximate solution in the affine subspace x∈Rn
:

1: Initial point of the problem. Given po ∈R
r
:

2: Initial point in affine subspace. x1 ¼ xo þ LTpo ∈R
n
:

3: For k ¼ 1 : until convergence (∥R xkð Þ∥ ≤ ε:).

4: Choose μk ¼ σk∥R xkð Þ∥, and σk ∈ 0; 1ð �:

5: Regularized Gauss-Newton direction. Solve for Δpk

�

J xkð ÞLT
� �T

J xkð ÞLT
� �

þ μkI
� �

Δpk ¼ �
J xkð ÞLT
� �T

R xkð Þ

1þ σk∥R xkð Þ∥
: (30)

6: Line search (sufficient decrease). Find αk ∈ 0; 1ð � such that

∥R xk þ αkL
TΔpk

� �

∥2 < ∥R xkð Þ∥2 þ 2 � 10�4αk∇f pk
� �T

Δpk: (31)

7: Update. xkþ1 ¼ xk þ αkL
TΔpk.

Remarks: The algorithm is amenable to the use of any suitable basis, not necessarily a wavelet

basis. The algorithm can be tested with different initial displacement points. On the other

hand, the election of the initial point of the algorithm is not limited to the origin.

8. Numerical examples

The authors run on a MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-

2720QM CPU @ 2.20GHz and 8 GB of RAM. Section 8.2 presents Bratu’s 3D problem. This
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problem is more challenging since the nonlinear systems become ill conditioned where one

approaches the bifurcation point. Therefore, the RORGN algorithm was tested to solve them

efficiently. All these Bratu’s problems utilized wavelets-based ROM. One takes the regulariza-

tion by μ
k
¼ σkkR xkð Þk, with σk ∈ 0; 1ð Þ. One employs as stopping criteria for the algorithm;

either the norm of the residual, ek ¼ ∥R xkð Þ∥, is less than some small positive real value given,

e, or a maximum number of iterations reached, kmax.

8.1. Bratu’s 2D problem

The Bratu’s 1D equation can be generalized by replacing the second derivative by a Laplacian

[1, 17]. This section numerically studies the nonlinear diffusion equation with exponential

source term in two and three dimensions. Let Ω ¼ 0; 1½ �n, n ¼ 2, 3 be a unitary square or cube,

where xi ∈ 0; 1½ �, i ¼ 1,…, n are the spatial variables while n is the space dimension.

Δuþ ζ � eu ¼ 0 on Ω ; u ¼ u xð Þ,

u ¼ 0 on ∂Ω,
(32)

and ζ∈R is a coefficient. The Laplacian is defined by

Δ �ð Þ ¼
Xn

i¼1

∂
2 �ð Þ

∂x2
i

: (33)

One can discretize (32) by means of central finite differences on regular tensor product meshes.

Homogenous Dirichlet boundaries are enforced conditions in all square or cube faces, see [17]

for details.

8.2. Bratu’s 3D problem

Figures 2 and 3 present results from Bratu’s 3D problem. Figure 2 shows the parameter

continuation problem while Figure 3 compares FOM andWROM results in the whole domain.

For visualization purposes, one cuts away the front half of the cube to see inside it. Figure 2

shows the FOM in continuous line while dashed blue and magenta lines correspond to WROM

at 85 and 90%, respectively. The mesh size is 10� 10� 10 and ζ ¼ 1:5 is fixed. In the figure, one

has from left to right the FOM, the WROM, and the absolute error. Neither of these WROM

models could reproduce the FOM behavior beyond ζ > 9. They could not get into neither the

second branch nor close to the bifurcation point, where the system becomes highly nonlinear.

On the other hand, Figure 3 compares FOM versus WROM at 90% in order to show that these

WROM could properly reproduce the FOM behavior in the whole cube. Table 1 summarizes

the performance of the family of Gauss-Newton algorithms applied to FOM Bratu’s 3D prob-

lem. One employs these numerical values, etol ¼ 10�3 and kmax ¼ 32. Once again, one gets close

to the bifurcation point by choosing, ζ ¼ 9:9, to pose a challenging nonlinear system while σ

was tuned to achieve performance for a given rank.

One observes for all ranks reported herein that the regularized method provides convergence

tolerances likewise but it usually spent two iterations less than standard Newton and hence

A Reduced-Order Gauss-Newton Method for Nonlinear Problems Based on Compressed Sensing for PDE Applications
http://dx.doi.org/10.5772/intechopen.74439

117



CPU time reduces as well. One notices for this particular problem that line search is equivalent

to standard Newton as well as combined matches the performance of the combined plus line-

search method.

8.3. Nonlinear benchmark problems

One also considers a benchmark nonlinear problem from the literature in order to challenge

the proposed algorithms. The Yamamura [18] problem is a nonlinear system of equations

defined by:

R : R
n ! R

n, x∈Rn, Ri xð Þ ¼ 0, 1 ≤ i ≤ n,

Ri xð Þ ¼ 2:5x3
i
� 10:5x2i þ 11:8xi � iþ

Xn

i¼1

xi ¼ 0:

(34)

Figure 3. FOM and ROM are compared: FOM (left), WROM at 90% (center), and error (right).

Figure 2. FOM vs. WROM parameter continuation solutions of (32), for n ¼ 3, are shown.

Nonlinear Systems - Modeling, Estimation, and Stability118



where n is the size of the nonlinear system. One implemented the algorithms with etol ¼ 10�6,

kmax ¼ 128, and σ ¼ 0:025.

The objective is to challenge the algorithms presented in this research, and the results are

reported in Table 2. One can infer from this table that the standard Newton method could not

converge in any of these realizations except n ¼ 32. Conversely, the regularized method con-

verged for all realizations. This latter method outperformed all others. On the other hand, the

Newton method ek δk #Iter Success

N = 512, σ ¼ 0:03

Standard 1.637075E�04 4.497266E�08 7 True

Combined 5.089393E�04 8.391213E�07 5 True

Regularized 5.089393E�04 8.391213E�07 5 True

Scaled 1.637075E�04 4.497266E�08 7 True

Line search 1.637075E�04 4.497266E�08 7 True

Com. and Line search 5.089393E�04 8.391213E�07 5 True

N = 1000, σ ¼ 0:025

Standard 3.303599E�04 1.682251E�07 7 True

Combined 1.424983E�05 7.450719E�10 6 True

Regularized 1.424983E�05 7.450719E�10 6 True

Scaled 3.303599E�04 1.682251E�07 7 True

Line search 3.303599E�04 1.682251E�07 7 True

Com. and Line search 1.424983E�05 7.450719E�10 6 True

N = 1728, σ ¼ 0:020

Standard 5.792054E�04 4.806531E�07 7 True

Combined 1.197055E�04 6.096723E�08 5 True

Regularized 1.197055E�04 6.096723E�08 5 True

Scaled 5.792054E�04 4.806531E�07 7 True

Line search 5.792054E�04 4.806531E�07 7 True

Com. and Line search 1.197055E�04 6.096723E�08 5 True

N = 2744, σ ¼ 0:015

Standard 1.143068E�05 1.756738E�10 8 True

Combined 1.678400E�04 1.052920E�07 6 True

Regularized 1.678400E�04 1.052920E�07 6 True

Scaled 1.143068E�05 1.756738E�10 8 True

Line search 1.143068E�05 1.756738E�10 8 True

Com. and Line search 1.678400E�04 1.052920E�07 6 True

Table 1. Gauss-Newton results for Bratu’s 3D problem presented in Section 8.2.

A Reduced-Order Gauss-Newton Method for Nonlinear Problems Based on Compressed Sensing for PDE Applications
http://dx.doi.org/10.5772/intechopen.74439

119



regularized and line-search method could consistently converge for all realizations but

n ¼ 2048. For larger ranks, that is, 512 and 1024, the latter method is the more efficient bottom

line; the regularized method performed well in this example.

9. Hybrid method: HROM

The idea is simple since the wavelet subspace is not a function of a priori known snapshots, it

can be determined without executing the so-called, computationally expensive, off-line stage,

in which one thoroughly studies the FOM and can sample the input space to record a

Newton method ek δk #Iter Success

N = 32

Standard 6.643960E�06 1.282327E�07 47 True

Regularized 3.547835E�05 8.310947E�07 32 True

Line search 8.835078E�09 2.415845E�13 78 True

Reg. and Line search 4.271577E�06 8.288108E�09 35 True

N = 256

Standard 2.992259E�01 3.018468E+07 128 False

Regularized 4.260045E�06 5.643326E�08 21 True

Line search 2.569192E�02 2.618397E+03 128 False

Reg. and Line search 2.893999E�06 2.380562E�08 35 True

N = 512

Standard 2.280299E�02 3.448757E+05 128 False

Regularized 2.384802E�07 2.579578E�10 46 True

Line search 1.127484E�01 1.845466E+07 128 False

Reg. and Line search 3.551655E�08 2.368659E�11 42 True

N = 1024

Standard 9.540053E�05 4.501800E+01 128 False

Regularized 1.730306E�06 8.414453E�09 41 True

Line search 7.199610E�05 5.095672E+00 128 False

Reg. and Line search 8.857816E�06 4.250476E�07 35 True

N = 2048

Standard 1.769950E+00 8.504131E+14 128 False

Regularized 7.270952E�08 1.578029E�10 68 True

Line search 6.195869E�02 4.180347E+09 128 False

Reg. and Line search 1.069042E�02 3.229689E�01 128 False

Table 2. Gauss-Newton results for Yamamura problem.
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representative set of snapshots. HROM considers as input snapshots those outputted by a

WROM procedure. As shown below, if this WROM happens to reproduce the FOM behavior

correctly, then one should expect the resulting PROM, that is, HROM, to replicate the original

FOM behavior accurately. At first, glance, depending upon the WROM compression ratio, this

procedure reduces the runtime of the off-line stage.

This section conducts a series of preliminary numerical experiments on the well-known Bratu’s

nonlinear benchmark problem, in particular in one and two dimensions [5] to sell this case.

Figures 4 and 5 depict results for the 1D continuation problem. They utilize the following

WROM compression ratios: 10 and 5%, where the compression ratio is constant during the

continuation problem. All plots display two distinct HROM compression ratios. TheWROM at

20% that is not depicted completely misses the bifurcation zone and the second branch thus the

HROM is also way off. However, as the WROM starts to catch up with the FOM then HROM

too does. Indeed, it is observed that HROM yields comparable results when comparing it to

the version that takes the original snapshots, that is, PROM.

One can repeat a similar experiment with Bratu’s 2D continuation problem, which produces

the same trend as before. Indeed, if the input WROM is way off targeting then, HROM is off as

well. For instance, 27% compression implies that all HROM miss the second branch, but still,

the 21% model could slightly reproduce the proper FOM trend. Things significantly improve

on models with 21 and 20% as shown in Figures 6 and 7. However, these models still miss the

bifurcation zone. They just render a flat profile there. These insights suggest that if the WROM

can correctly reproduce the FOM behavior, then HROM can do so. One is probably able to

improve the accuracy of the WROM by changing the compression ratio during the online

Figure 4. Bratu’s 1D, 10% compression.
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stage. For Bratu’s problem, one can assume a graded energy distribution which provides more

of it while approaching the bifurcation point. This approach is referred as “adaptive WROM”

or AWROM as shorthand.

Figure 5. Bratu’s 1D, 5% compression.

Figure 6. Bratu’s 2D, 10% compression.
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This section presents an alternative strategy that can rely on insights from the FOM, such

as Newton tolerances and number of iterations, which are in turn indirect error estimates.

Figure 8 plots the energy distribution that was utilized as a function of the continuation

parameter, ζ, for Bratu’s 1D problem. When one approaches the bifurcation point, ζ ¼ 3:5,

one should gradually bump up energy as shown. Notice that the distribution tends to concen-

trate more points toward the bifurcation point. With this energy distribution into account, one

obtains the AWROM results in Figure 9. This ROM accurately reproduces the FOM behavior

as noted. Let now conduct the following experiment. One must run the FOM, and at every

snapshot, one needs to store the number of Newton iterations and the resulting error tolerance.

Figure 7. Bratu’s 2D, 5% compression.

Figure 8. Linear energy distribution.
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One then computes the energy distribution that Figure 10 depicts. The following formula was

employed to do so:

Ei ¼ 1� θð Þ þ θ nItersi=nMaxItersð Þ, (35)

where nItersi is the number of iterations at the current location, and nMaxIters is the maximum

number of iterations reported by the FOM and θ∈ 0; 1½ �. Figure 11 depicts excellent accordance

Figure 9. 10–20% variable compression.

Figure 10. Variable energy distribution.
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between FOM and AWROM θ ¼ 0:2ð Þ. One should expect that if this last AWROM model is

inputted for an HROM simulation, HROM should reproduce the original FOM correctly.

Figures 12 and 13 depict preliminary results of HROM applied over a couple of AWROM

models whose energy distribution was described in Figures 8 and 10, respectively θ ¼ 0:2ð Þ.

These ROM reproduce the FOM behavior accordingly, which proves that there is potential to

study the performance of HROM further. Another important question that arises from further

research is how to improve the compression ratio of the AWROM scheme.

Figure 11. Variable compression.

Figure 12. Linear AWROM.
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10. Concluding remarks

This chapter introduced a global regularized Gauss-Newton method for resolving square

nonlinear algebraic systems in an affine subspace that enable real-time solutions without a

priori simulations. Solving a nonlinear least-squares composite function poses the problem

where the answer is derived from the inside argument. The authors thus presented the stan-

dard Newton assumptions that guarantee a q-quadratic rate of convergence. The findings

include that the Petrov-Galerkin projection directions for the Newton method are no other

than the Gauss-Newton ones for a composite function. The technique uses two initial points,

one that determines the affine subspace and the other is the starting guess for solving the

composition mentioned earlier. The notion of compressed sensing with wavelets produces the

characterization of an affine subspace that comprises the majority of the energy of the problem.

The chapter showed some numerical experimentations that back up the proposed globaliza-

tion methodology for solving highly nonlinear dynamic systems in real time. These last ones

reproduce the principal features of the FOM. Results underline the fact that one does not need

to employ information at any particular point. The Bratu’s 3D FOM results prove that the

proposed RORGN algorithm outperforms the standard GN method while retaining its

q-quadratic rate of convergence. This chapter concludes that the regularized and line-search-

enabled scheme is the most robust and efficient algorithm for the problems presented herein.

The numerical results imply that this approach performs well and it does not significantly

increase the CPU time.

From the numerical results presented in Section 9 for Bratu’s 1D and 2D problems, the data

fusion procedure (HROM) can be used as an alternative procedure when the simulation time

for a problem can be limited. This method uses two different sceneries. In the first, one implies

Figure 13. Variable AWROM.
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that the data come through out of the model, while in the second, the data are obtained

independently of the latter. That is, in the first case the model governs the data, and the other

the input information rules the model.
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