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Abstract

Acoustic monitoring for bats along driving transects typically involves recording call 
sequences (bat passes) continuously while driving. While this offers benefits over other 
survey techniques, it also poses challenges, including background noise on recordings. 
An alternative approach that may rectify this involves conducting sampling at discrete 
points along each transect instead. We compared these methods using the same bat 
detector, along with an additional higher sensitivity detector to determine which method 
yields the highest amount and quality of data per unit of time. Results from 26 18 km 
transects, each sampled continuously and at 10 point count sites indicate that, with a 
lower sensitivity detector, the two methods yield a similar number of passes per min-
ute, percent of passes identified to species, and species documented. The higher sensi-
tivity bat detector could not be used for continuous sampling due to background noise. 
However, at point count sites, the higher sensitivity detector recorded 17 times more 
passes per minute, 44 times more passes identified to species, and documented nearly 
twice as many species. Thus, while both sampling designs appear comparable, for most 
applications, a higher sensitivity detector trumps sampling design.

Keywords: acoustic monitoring, bats, continuous sampling, point count sampling, 
driving transects

1. Introduction

1.1. Importance and status of bats

Bats are an extremely important part of ecosystems across the globe, providing a variety of eco-

logical services such as pollination, seed dispersal, and regulation of insect populations [1–3]. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Their role in many ecosystems is so vital that some have suggested using bats as bio-indicators 
[4]. As most bats are insectivorous, one of their most significant contributions lies in reduc-

ing vegetation damage from insect herbivory in native ecosystems [2, 5, 6]. This has profound 
economic and social ramifications for human civilization as well. One of the biggest challenges 
faced by humanity in the coming decades will be the production of enough food to feed a 

growing population without dramatic losses in habitat and biodiversity [7]. While bats alone 

will not solve this problem, by devouring large numbers of agricultural pests, these small flying 
mammals reduce crop losses, thereby enhancing food production on existing agricultural lands 

[3, 8]. This, in turn, provides significant economic benefits by saving farmers billions of dollars 
(in US dollars, [9, 10]).

In light of the value bats have to ecosystems and modern civilization, it should be of great 
concern that they face a growing array of threats. These include persecution, hibernacula 
damage and disturbance, loss of foraging and roosting habitat, pesticide exposure, and many 

others [4, 11]. The net effect of all these threats is that roughly a quarter of all bat species 
are threatened [12]. In North America, aside from habitat loss, two of the biggest emerging 

threats are White Nose Syndrome (WNS) and wind turbine facilities. WNS is caused by a 

fungal infection spread among bats in their winter hibernacula [13]. First observed at a hiber-

naculum in New York in 2006, WNS has since spread across eastern North America, killing 

millions of bats and wiping out entire populations in some cases [14, 15]. Similar threats may 

be posed by wind power. With the recent push toward renewable energy, many countries 

have seen a tremendous growth in the number of wind power facilities. While wind tur-

bines vary widely in their impact on bats depending on their geographic location, in some 

parts of North American, turbine facilities are estimated to be killing bats in the hundreds of 

thousands annually [16, 17]. With the slow rate at which bats reproduce [18], these numbers 

could be devastating to bat populations over the long term. For these and many other reasons, 

extensive monitoring of the status of bat populations in all affected areas is needed. Given the 
highly variable and broad geographic distribution of these threats, effective techniques for 
systematically surveying bats across large geographic areas are needed.

1.2. Challenges in studying bats across large geographic areas

As nocturnal, flying mammals, bats are uniquely challenging animals to study. However, 
a variety of survey techniques have been developed to overcome many of these challenges, 

including mist nets, radio telemetry, and ultrasonic detectors [19–21]. While each technique 

has its own benefits and drawbacks, ultrasonic detectors (also known as “bat detectors”) have 
proven to be a powerful tool for examining insectivorous bat species composition and habitat 

use, and are among the most widely utilized tools for these purposes [22, 23].

Aerial-foraging insectivorous bats, which constitute the majority of species globally, use echo-

location to navigate and find insect prey [24]. They do so by periodically emitting a sequence 
of ultrasonic calls (sounds above the limit of human hearing, roughly 20 kHz) and listening 
for the echo [25]. Information provided in the returning echoes of these call sequences enable 

bats to discern a variety of factors such as size, shape, location, and movement of objects in 
the environment, all of which are crucial for navigation and acquiring prey [26]. Another 
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important aspect of bat calls is that they typically differ between species, likely to ensure spe-

cies have their own “bandwidth” to facilitate effective communication among conspecifics 
[27]. These differences between species mean ultrasonic detectors are not only valuable in 
recording the presence of bats, but also in enabling investigators to determine which species 

are present. Bat detectors offer many other advantages as well. They are also easily deployed, 
they do not disturb bats, they can be used in areas where mist netting is difficult or margin-

ally effective, and if financial resources permit multiple detectors, they can be used to survey 
many sites simultaneously with limited personnel [22, 23, 28]. For these reasons, among many 

others, bat detectors remain one of the most popular tools for studying bats.

However, these devices are not without limitations. For instance, an individual detector 

placed at a single location can only provide data for one site. If one wishes to survey a large 

area or multiple habitats each night, numerous detectors would be needed. This can dramati-
cally increase the cost of a project, placing it out of reach for many investigators [29].

One technique that may help overcome this problem is the use of transects [19, 30, 31]. By 

moving a single detector through different habitats, a larger area can be sampled each night 
compared to stationary approaches. While most transect studies have employed walking 

transects, they are constrained in the amount of area that can be sampled by the slow pace 

of walking. As bats can typically fly faster than a walking observer, no two call sequences 
recorded along a given transect can be viewed as independent of each other. Additionally, 

randomly and systematically sampling across numerous habitat types on a large geographic 

scale becomes exceedingly difficult in areas where most properties are privately owned and 
require permission to sample. Driving transects solve these problems [31–33].

While driving transects represent an important addition to the tools available for studying bats 

in the wild, several questions remain. Most previous studies have used continuous sampling. 

Continuous sampling involves leaving the detector recording while driving along the transect. 

Although this allows for data collection along the entire length of each transect, there are poten-

tial problems. For example, if habitat types vary along each transect (which is often the case in 

many modern mosaic landscapes), the types of statistical techniques that can be used to test 

predictions about habitat use with data collected continuously are limited. In addition, sounds 

from vehicle movements, including airflow over the microphone, may cause significant prob-

lems with the resulting audio files. These include constantly triggering the detector to record in 
the absence of bats or producing extensive background noise that prevents call sequences from 

being detectable or making it impossible for call analysis software to identify the species emit-

ting the calls. One possible solution to these problems would be to restrict sampling to specific 
points along each transect at established intervals (point count sampling). While the latter have 
been used extensively in bird research [34, 35], they are rare for bats. Moreover, the absence of 

direct comparisons of these two methods makes it difficult to determine which sampling meth-

odology is superior. The purpose of this study was to fill this void by comparing continuous 
versus point count sampling along the same driving transects using two detectors varying in 

microphone sensitivity. In particular, we assess whether the two types of detectors and meth-

ods are comparable in number of bat passes recorded per unit of time, percent of recorded bat 

passes able to be identified to species, and total number of species identified.

Comparison of Driving Transect Methods for Acoustic Monitoring of Bats
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2. Methods

2.1. Bat detectors

We recorded bats using an EM3 EchoMeter (Wildlife Acoustics Inc., Maynard, MA, USA) fit-
ted with a Garmin GPS device that stamps all call sequence recordings with the coordinates. 
Since the calls of most aerial foraging insectivorous bats are above 20 kHz [36], we set the 

minimum frequency to begin recording (trigger threshold) to 20 kHz. This minimizes false 
triggers by insects, road noise and other sounds. As bat call sequences typically last only few 

seconds, maximum time length for individual recordings was set to 3 s to ensure file sizes 
of recordings were easily managed by the call-analysis software (see below). To minimize 
triggering by indiscernible, distant, low intensity sounds, we set the threshold amplitude 

to 18 db. Lastly, to determine if detector microphone sensitivity influences whether, and to 
what extent, background noise during driving adversely impacts the number and quality of 

bat passes recorded, we decided to add a second detector known for being highly sensitive. 

We selected the miniMIC ultrasonic microphone (Binary Acoustic Technology Inc. Tucson, 
Arizona, USA). The miniMIC was connected to a Dell Venue tablet via USB and call sequences 
were recorded using Spectral Analysis, digital Tuning and Recording Software (SPECT’R, 
Binary Acoustic Technology Inc. Tucson, Arizona, USA). Settings were as described for the 
EM3.

2.2. Sampling location

The study was conducted in the states of Maryland and Delaware on the Delmarva Peninsula, 
which is located along the mid-Atlantic coast of the United States between the Atlantic Ocean 
and the Chesapeake Bay. The peninsula consists primarily of a mosaic of agriculture (48%) 
and forests (37%, mostly mixed hardwood-pine and loblolly pine—Pinus taeda—plantations) 
[37]. The remainder is comprised of coastal marshes and scattered suburban and urban devel-
opments [37].

2.3. Sampling protocol

We established 28 transects that were evenly spaced across the Delmarva Peninsula as 
described by McGowan and Hogue [38]. Each transect contained 10 sampling points spaced 

2 km apart (in straight line distance) for a total of 280 sites. We restricted transects to 2 lane 

roads, and sampling points to the nearest safe roadside location to stop for sampling. We 

sampled each transect once between June and August of 2014, yielding a total of 28 sam-

pling nights. Transects were selected randomly for sampling without replacement using the 
random number generator in R Statistical Software [39]. The direction of travel along each 
transect was also randomly chosen. Unfortunately, due to equipment failure, two transects 

had to be excluded from analyses, dropping our total sampling nights (and transects) to 26.

We sampled each transect for bats using two approaches: point count and continuous sam-

pling. Point count sampling occurred for 12 min at each of the 10 sampling points along each 
transect. Continuous sampling was carried out by leaving the detectors to operate as we 
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drove the vehicle at speeds of 32–48 km/h along the transect between point count sites. We 

sampled each transect during peak bat activity, beginning 30 min after sunset and continu-

ing until the transect was completed several hours later. For the continuous approach, we 

allowed the EM3 and miniMIC to operate atop a telescoping pole connected to the vehicle 

at a height of 2 m while we drove between sampling points. This allowed the detectors to 
be at a moderately elevated height while preventing damage from overlying bridges and 

road signs. Upon arriving at sampling points, we stopped the vehicle and extended the pole 

to 4 m and recorded for 12 min. We then collapsed the pole and drove the transect until 

reaching the next sampling point, repeating the process until all 10 points were sampled. 

In all cases, the detectors were pointed toward the immediately adjacent habitat to the right 

the road. Following recommendations of previous studies, we restricted sampling to nights 

without rain, temperatures above 10°C, and wind speeds less than 20 km/h [21, 40]. Call 

sequences recorded while driving were allocated to the continuous sampling data pool. 

Those recorded within the 12 min at each site were allocated to the point count sample. In 
total, we logged 52 h of recording time at stationary sampling points and just over 27 h from 

continuous sampling.

2.4. Analyses

We defined a bat pass as a sequence of one or more echolocation calls with <1 s between 
sequential calls [24]. Based on currently available technology, researchers are not able to dis-

tinguish individual bats of the same species from their calls. As a result, it is not possible to 

determine the absolute number of bats at a given location with bat detectors [19, 41]. Instead, 

the number of bat passes may be viewed as a measure of overall bat activity rather than num-

ber of individuals [19, 41]. We attempted to identify all bat passes to species using Sonobat 
3.2 automated classifier (SonoBat, Arcata, CA, USA). As recommended by official Sonobat 
Guidelines, a probability threshold of 90% was set for accurate species identification.

For comparisons between continuous versus point count methods (EM3 detector only, see 

Section 3), we tallied the total number of bat passes recorded along each transect while con-

tinuously sampling and separately for point count sampling. We then divided these numbers 

by the amount of time spent recording using each method to yield passes per minute. Since 

the data were not normally distributed, we compared passes per minute between the two 

methods at the 26 transects using a two-tailed Wilcoxon signed-rank test (N = 26, α = 0.05) in 
R Statistical Software [39].

For reasons discussed below (Section 3), comparisons between the two detectors were not 

possible using continuously sampled data. We therefore limited analyses to the point count 

data. Since these data were recorded at 260 discrete sampling points, each sampled simulta-

neously by both detectors for 12 min, we were able to treat each site as a separate data point. 

Specifically, we compared total bat passes recorded at each site between the two detectors. 
Since the data were not normally distributed, we used a two-tailed Wilcoxon signed-rank test 

(N = 260, α = 0.05) in R Statistical Software [39] to test for statistically significant differences. 
We also compared data on percent of bat passes identified to species and total number of spe-

cies identified between the different detectors and sampling methodologies.

Comparison of Driving Transect Methods for Acoustic Monitoring of Bats
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3. Results

The concern that the more sensitive bat detector (miniMIC) would be more adversely 
impacted by road noise or airflow was fully realized. The detector was sensitive to wind 
resistance at speeds over 10 km/h, recording tens of thousands of audio files, all obscured 
with background noise. This made analysis of these data impossible. Therefore, comparisons 
of continuous and point count sampling results could only be performed with data obtained 

from the EM3 detector.

Average passes per minute recorded along the 26 transects was not significantly different 
between continuous sampling versus point count sampling (0.076 vs. 0.067 passes/min, 

respectively, P = 0.097, Table 1). Comparisons of the proportion of bat passes identified to 
species and total number of species documented using the two approaches revealed largely 

similar results as well. Of all the passes recorded for the entire sample during continuous 
sampling, 20% were able to be identified to species, yielding an overall rate of 0.015 passes 
per minute identified to species (Table 1). At point count sites, 24.5% of passes were able to be 
identified to species, yielding a rate of 0.016 passes per minute identified to species (Table 1). 

Both approaches also documented the same four species: big brown bat (Eptesicus fuscus), red 

bat (Lasiurus borealis), evening bat (Nycticeius humeralis), and silver-haired bat (Lasionycteris 

noctivagans).

Since data obtained with the more sensitive miniMIC detector during continuous sampling 

could not be analyzed, comparisons of the two detectors were restricted to point count sam-

pling. Here, considerable differences were uncovered. The average number of bat passes 
recorded at each site were significantly higher using the miniMIC detector compared to the 
less sensitive EM3 detector (mean = 13.17 vs. 0.812 bat passes per site, respectively, N = 260, 

P < 0.001, Table 2). This translates to an average of 1.098 passes per minute for the miniMIC 
versus 0.067 for the EM3 (Table 2). Magnified over 52 hours of recording at the 260 sites, 
this resulted in a considerably higher number of total bat passes recorded with the miniMIC 

(3550) compared to the EM3 (211) (Table 2). Furthermore, due to the superior resolution of the 

audio files obtained with the miniMIC, a considerably higher proportion of bat passes were 
able to be identified to species (64.1% vs. 24.5%, Table 2). The combination of a higher num-

ber of calls recorded with a higher proportion identified to species meant that the miniMIC 

Continuous sampling Point count sampling

Mean (SD) passes/minute 0.076 (0.073) 0.067 (0.128)

Percent passes identified to species 20.0% 24.5%

Passes/minute identified to species 0.015 0.016

Total number of species identified 4 4

Passes per minute were not statistically different between the two approaches (Wilcoxon test, N = 26, P = 0.097).

Table 1. Comparison of bat detection rates between continuous versus point count sampling along 26 transects using 

the EM3 bat detector.
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obtained vastly more calls identified to species throughout the study compared to the EM3 
(2276 vs. 52, respectively, Table 2). Lastly, the miniMIC not only documented the four spe-

cies found with the EM3 (see above), but it also uncovered three additional species: hoary bat 

(Lasiurus cinereus), tricolored bat (Perimyotis subflavus), and one or more species in the genus 

Myotis (we were unable to confidently identify the specific species).

4. Discussion

Bats face a growing array of threats. Many of these threats have complex and overlapping 

geographic distributions. Given the uncertainty of how these threats interact and impact bats 
across the landscape, it is becoming increasingly important to monitor populations across 

large geographic areas. Driving transects offer one the most cost effective and least labor-
intensive tools for doing this. However, driving transects can be implemented in different 
ways and it is important to determine which approach is superior in terms of the amount and 

quality of data obtained.

When comparing results from a single detector capable of yielding analyzable audio files 
from both continuous and point count sampling, these two methods appear comparable. 

Specifically, mean number of passes per minute, percent of passes identified to species, passes 
per minute identified to species, and number of species identified were similar between the 
two approaches (Table 1). They also documented the same four species. If this holds with 
other detectors that are similarly unaffected by airflow or driving noises, we conclude that 
either driving transect technique can be a viable option. With such detectors, the needs of the 

particular project should dictate which option is selected. For example, if one seeks to test 

hypotheses about habitat use or other factors, the ability to use a variety of standard statistical 

techniques such as ANOVA (or nonparametric equivalents) for data from discrete sampling 
points may indicate the point count method is preferable. If, on the other hand, one simply 

seeks to document the bat fauna of an area, particularly in places it may not be safe to stop and 

record for extended periods, continuous sampling might be preferable.

EM3 detector miniMIC detector

Mean (SD) passes at each site 0.812 (5.15) 13.17 (24.24)

Mean passes/minute 0.067 1.098

Total passes recorded 211 3550

Percent passes identified to species 24.5% 64.1%

Passes/minute identified to species 0.016 0.724

Total passes identified to species 52 2276

Total number of species identified 4 7

The miniMIC documented significantly more calls than the EM3 (Wilcoxon test, N = 260, P < 0.001).

Table 2. Comparison of bat detection rates between the two different bat detectors at 260 point count sampling sites.

Comparison of Driving Transect Methods for Acoustic Monitoring of Bats
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The above conclusions are based on the use of a detector capable of operating while driving 
at speeds above 10 km/h without significant airflow or driving noise interference. We recom-

mend testing any detectors intended for continuous sampling on driving transects to ensure 

they yield audio files of adequate quality for extracting bat passes and identifying them to 
species. Data obtained from the miniMIC suggests not all bat detectors may be capable of this. 

It remains unclear whether other high-sensitivity detectors are similarly affected, or whether 
accessory devices such as wind screens can mitigate these issues. Future work should test a 

variety of high sensitivity bat detectors with different types of wind screens to determine if it 
is possible to use these devices for continuous sampling. If not, our data suggest overall detec-

tor sensitivity is vastly more important than driving transect sampling design.

Overall, the more sensitive miniMIC recorded nearly 17 times more bat passes than the EM3 
(Table 2). Factoring in that nearly 3 times as many of the miniMIC passes could be identified to 
species, this yielded nearly 44 times more calls identified to species and nearly twice as many 
bat species identified (Table 2). These differences are substantial and have profound implica-

tions for the types of conclusions that can be drawn from comparably designed studies. The 
failure of the less sensitive detector to record numerous bat passes at each site lowers the power 

of a study. It means any differences that may exist in activity among species or habitats may 
fail to be detected or may not be identified as significantly different due to the small amount of 
resulting data. Perhaps even more importantly, the fact that nearly half the species present were 
effectively missed by the less sensitive detector could alter conclusions about species presence, 
distribution, habitat associations, and many other ecological questions. The findings from the 
lower sensitivity detector are particularly troubling for research related to species conservation, 

as the very species typically of greatest concern (rare and threatened species) are the ones most 

likely to be missed. All three of the additional species recorded with the miniMIC are uncom-

mon or rare in the sampled area [38]. This is especially true of the genus Myotis. Most Myotis spe-

cies in eastern North America have been devastated by White Nose Syndrome, with concerns 

that at least one species is in danger of becoming regionally extinct in the coming decades [42]. 

Failing to detect these species in areas where they persist could adversely impact conservation 

efforts. For example, the presumed absence of such species in a given area may fail to trigger 
recovery measures normally implemented by governmental and nongovernmental organiza-

tions when rare or threatened species are detected. It could also lead to the diversion of much 

needed conservation resources away from areas where the species persist because they are pre-

sumed absent. Given these concerns, if future research confirms that higher sensitivity detectors 
are not viable options for continuous sampling, the greater amount and quality of data obtained 

from such detectors strongly suggests priority should be given to using these types of detectors 

at point count sites rather than using lower sensitivity detectors for continuous sampling.

It is important to note that even with a high sensitivity detector operated at point count sites, 

driving transects have limitations. Some areas or habitats may lack adequate road access. 

Depending on how limited road access is, this may put analysis of certain habitats off limits, or 
cause them to be significantly underrepresented in the sample. In such cases, the use of other 
techniques such as walking transects, mist nets, or unmanned stationary bat detectors may be 

indicated. Roads are also, by definition, human-altered environments. Their presence and usage 
can have a variety of impacts on adjacent environments [43]. Even if much of the surrounding 

habitat is largely intact, the presence of roads effectively creates a habitat edge. Some species are 
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adapted to interior habitat conditions and avoid or are otherwise negatively impacted by edge 

conditions [44]. While this is often not a significant problem with insectivorous bats, since many 
species prefer edges like forest edges [30, 45–47], if there is reason to believe research questions 

about focal species in the study area might be adversely impacted by sampling at habitat edges, 

driving transects may not be appropriate. For the region sampled in the present study, driving 

transects have proven comparable in documenting the bat fauna to unmanned stationary bat 

detectors placed in both interior and edge conditions of different habitats [38].

5. Conclusions

Like many mammals, bats across the globe face a variety of threats that imperil their very exis-

tence. In North America, many of these threats are both increasing and span large geographic 

areas. The growing and expansive nature of these threats requires the urgent development 
and deployment of sampling techniques capable of effectively and efficiently documenting 
changes in the status of bat populations across large areas. Driving transects have been pro-

posed and implemented as a tool for doing precisely that. Unfortunately, previous studies 

failed to examine the implications of using different sampling methodologies or detectors on 
the results obtained.

In this study we showed that, with a lower sensitivity detector that is unaffected by wind and 
driving noise, sampling continuously while driving yields similar results to sampling at dis-

crete sampling points. However, detector sensitivity proved to be much more important than 

sampling technique in terms of the amount and quality of data obtained. That is, the higher 
sensitivity detector documented substantially higher numbers of bat passes and species than 

the lower sensitivity detector. The downside to the former is that data obtained while driving 
could not be analyzed due to significant interference from driving noise and airflow over the 
microphone at speeds above 10 km/h. Based on our findings, for most studies using driving 
transects to study bat populations, we suggest detector sensitivity should take priority over 

sampling design. If future studies are unable to resolve the problems of using high sensitivity 

detectors while continuously sampling along driving transects, this would necessitate using 

point count sampling instead. We recommend selecting the detector capable of obtaining the 

greatest amount and quality of call sequence recordings under a given research design, then 

conducting preliminary trials with continuous and point count sampling. If airflow or driving 
noises significantly diminish the data available with continuous sampling, as in the current 
study, point count sampling would be the more appropriate sampling regime to use for most 

applications.
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