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Abstract

Extensive research has shown the potential for microorganisms to survive in some of the 
most extreme environments on Earth. Our current understanding of diverse life on Earth 
implies that, even though the surface of Mars is very inhospitable to life, it is possible that 
there may be indigenous microorganisms on Mars, especially in the protective subsurface. 
Ultimately, a better understanding of microbial diversity on Earth is needed to determine 
the limits of life to help determine the potential for life on Mars and other exoplanets.

Keywords: microorganisms, extreme environments, life on Mars, exoplanets

1. Introduction

The search for extraterrestrial life is bolstered by our long-standing quest to determine if we 

are alone in the Universe. Mars and Europa are two likely candidates to target in the search 

for extraterrestrial life, since both have carbon, potential energy sources, and water in some 

form [1–4]. The current focus to search for life on Mars is supported by the fact that although 

Mars is quite cold and dry, current conditions are thought to be analogous to conditions on 

early Earth when single-celled life was gaining a foothold [5]. Furthermore, because there is a 

diversity of microorganisms known to thrive in the most inhospitable habitats on Earth, it is 

not unreasonable to think that microorganisms could live on Mars.

While continuing Mars explorations confirm that all of the basic necessities for microbial 
life are present, it remains unclear whether microorganisms that are metabolically capable 
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of living on Mars can actually survive in the Mars environment. The Mars surface presents 

a very inhospitable habitat for life because of the intense radiation, highly oxidizing con-

ditions, concentrated evaporative salts, and extremely low water activity. Determining if 

microbes can survive those surface conditions, including tolerance to radiation (both ion-

izing and non-ionizing), desiccation, and oxidizing environments of microorganisms that 

utilize the carbon and energy resources available on Mars is vital. Some information is avail-

able on the survival of spore-forming microbes in a Mars-like environment, but much more 

information is needed regarding survival potential of different types of microorganisms. 
This chapter will focus on the search for life on planetary bodies.

2. The Martian environment

Although Mars is considered to be at the outer edge of the habitable zone of our solar sys-

tem, the idea that there could potentially be life on Mars, especially in the subsurface, is not 

unfathomable. Although it can be expected that different areas of Mars would have some-

what different environments dependent on location, overall the Martian environment is quite 
inhospitable to most life as we know it. Average temperatures on Mars can range from −10 
to −76°C with an average surface temperature of −65°C although temperatures can fluctuate 
from as high as 25°C to −123°C [6–8].

Mars is considered to be quite dry, but recent information suggests otherwise. Studies of the 

Gale Crater by the rover Curiosity found hydration of soils to be as much as 2.25 wt%. This 
finding was consistent with findings by both Viking 1 and 2 and the Mars Odyssey [9]. What 

is unknown is if there is an underground source of water. Geophysical and geochemical features 

on Mars indicate that there may have been water on the surface at some time in the past but it is 

unknown to what extent surface water would have existed. Features include alluvial fans in cra-

ters, dendritic valley networks, and the presence of specific minerals thought to only form in the 
presence of water. One hypothesis is that hydrothermal environments associated with craters 

from impacts and volcanism could have easily provided a source of liquid water on Mars [10].

The Martian atmosphere is much different from that on Earth. Mars has primarily a CO
2
 

atmosphere (95.3%) compared to the CO
2
 content in Earth’s atmosphere (0.04%). Earth’s atmo-

sphere consists mainly of N
2
 (78.1%) while there is only 2.7% N

2
 in the Martian atmosphere. 

The O
2
 concentration on Earth is 20.9% whereas Mars’ atmosphere contains only about 0.1% 

O
2
 [7]. Studies by Mumma et al. [11] showed the presence of methane in extended plumes 

that appeared to be released from discrete regions on Mars. One of the principal plumes 

contained as much as 19,000 metric tons of methane, an amount comparable to that of a mas-

sive hydrocarbon seep in Santa Barbara, California. However, analyses by the Mars rover 
Curiosity found no detectable atmospheric methane. Although results are contradictory, it is 
possible that the location of the rover was too far from the methane seeps and prevented the 

detection of methane in the atmosphere.

The surface of Mars is subjected to both cosmic ionizing radiation and solar UV radiation. 
Ionizing radiation on Mars is believed to be 100X higher than on Earth, ranging from 100 to 
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200 mSv/a compared to Earth 1–2 mSv/a [7]. The UV-B and UV-C fluxes on Mars are nearly 
5× higher than they are on Earth with fluences of 361 kJ/m2 and 78 kJ/m2, respectively [12]. On 

Mars, the high atmospheric concentration of CO
2
 neutralizes incoming UV radiation <200 nm, 

however wavelengths >200 nm still reach the Martian surface [7]. Of note is that some of the 

UV radiation may be attenuated at times by the presence of dust storms in a particular region.

Data collected during the Viking missions showed that the surface of Mars was highly oxi-
dized compared to the Mars atmosphere [13]. Mapping of hydrogen peroxide (H

2
O

2
) on Mars 

using infrared high-resolution imaging spectroscopy indicated H
2
O

2
 abundance on Mars is 

15 ± 10 ppb although prior mapping showed concentrations as high as 40 ppb [14]. The for-

mation of peroxides could occur in the presence of hematite, trace amounts of water, and UV 
radiation [7]. A more likely scenario is that radiolysis of ice or water would create a larger 

amount of peroxide formation. It has been reported that the surface ice of Europa contains as 

much as 1,300,000 ppb H
2
O

2
 which is generated from radiolysis of ice [15]. Additionally, per-

chlorate, a strong oxidizing agent, was found by the Phoenix Lander to be present in Martian 

soils in concentrations of 2.1–2.6 mM [16].

Martian soils contain few nutrients to support life as we know it, and the soils themselves 

pose a harsh environment. Martian soils were expected to be acidic, but the Phoenix Lander 

showed that the soils at its landing site were mildly basic with a pH of 7.7 ± 0.5 [17]. Salt toler-

ance would be required for life to survive and grow on Mars due to the high salt concentra-

tions found in Martian soils in the form of NaCl, MgSO
4
, CaSO

4
, FeSO

4
, MgCl and CaCl

2
 [17]. 

The lack of water, the intense radiation and oxidative conditions make the Martian surface 

quite inhospitable to life.

3. Special regions on Mars

3.1. Introduction

Mars Special Regions are regions where organisms are likely to survive. NASA Procedural 

Requirement (NPR) 8020.12D [18] defines these areas as regions that have a high potential for 
the existence of extant Martian life forms, have sufficient water activity (0.5–1.0 aw) and have 
sufficiently warm temperatures (−25° C lower limit) to permit replication of Earth organisms. 
Areas that have observed features that may be associated with the presence of water must 

also be classified as Special Regions. It is noted that these parameters may need to be changed 
as our understanding of Mars and life on Earth evolve and as our technological capabilities 

improve [19, 20].

3.2. Formulating special regions

The COSPAR colloquium on special regions stated that “Preventing terrestrial biological con-

tamination from becoming established and widespread on Mars is essential to our ability to 

protect high-priority science goals on Mars” [20]. The current standards are based solely on 

protecting science goals and not on protecting Mars in and of itself. The NRC study takes a 
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precautionary principle approach by stating that there is insufficient data to determine which 
regions of Mars should be considered “special” and that all of Mars should be considered 
“special” until it can be proven otherwise [19, 20]. The COSPAR disagreed and concluded 
that there was sufficient data to arrive at a conclusion as to which areas of Mars would be 
defined as “Special Regions” [20].

The COSPAR colloquium concluded with the enactment of the standards that are currently 
in NPR 8020.12D [18]. Two main standards, water activity and temperature, are the basis for 

determining which regions should be taken into consideration. One area in need of additional 

research is that of microbial growth and reproduction at low temperatures. It was noted that 

most of the work in this area has been performed on laboratory isolates and more environ-

mental data is needed to begin to define the lower temperature for life. It was concluded that 
investigations were needed to determine if microbial reproduction at water activities of lower 

than 0.6 is possible, that more studies are needed using Mars simulated environments, and 
that knowledge of reproduction of communities rather than isolates is essential to improve 

our understanding of life. COSPAR also noted that a larger phylogenetically diverse array of 
organisms needs to be studied and diurnal, seasonal and long-term variations in the Martian 

surface need to be better understood [20].

The NASA Planetary Protection Office made some initial suggestions to try to define special 
regions. The parameters were set as: (1) the existence of liquid water in “pure” form or in strong 
brines up to 5.5 M CaCl

2
; (2) regions of current or active volcanism or enhanced heat flow which 

is yet unknown; (3) permafrost through 100% water ice, including segregated ground ice, ice-
rich frozen ground, polar caps and subsurface ice; (4) subpermafrost groundwater and (5) any 

gully system that may be indicative of recent water activity within the last <50,000 years. The 
Special Regions Science Analysis Group (SRSAG) determined that regions should be defined as 
non-special if the temperature remains below −20°C or the water activity remains below 0.5 for 
a period of 100 years after spacecraft arrival [21]. Ultimately, the SRSAG developed a map of 

regions that are considered “significant” and of interest for determining special region boundar-

ies. Of note is that the current definition of special regions mostly takes into account the known 
and sets the water activity and temperature parameters slightly below what is currently known.

4. The relationship between life on Earth, and the potential for life 

on Mars

4.1. Life in extreme environments

Despite our limited knowledge of microbes on Earth, everywhere we have looked for microbes 

and we have been able to find them. It appears that life inhabits all places on Earth including 
some of the most extreme environments imaginable. Microorganisms have been discovered 

surviving and reproducing in hot springs, at terrestrial depths exceeding 2 km, in the most 

arid of deserts, and in hydrothermal vents on the ocean floor. Microbial life has been found 
in extremely cold places such as in Antarctica and Greenland, and microorganisms have been 
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described as reproducing and thriving at temperatures as low as −15°C. Many microorgan-

isms can grow in salt at concentrations exceeding 20% NaCl, or 2 M MgSO
4
, and others thrive 

in either very acidic or very alkaline environments. Microbes can conserve energy by respir-

ing some of the most extreme compounds, such as U, Mn, Se, As, S and Cl-based molecules. 
Life at either high or low atmospheric pressures has been described, as well as organisms that 

are highly resistant to radiation and oxidative conditions. Most of the organisms surviving in 

these types of environments have a symbiotic relationship with other organisms in the same 

community. For example, methane-oxidizing archaea (MOA) are known to live in symbiosis 

with sulfate-reducing bacteria (SRB) in deep hydrothermal vents on the ocean floor. MOAs 
break down methane to CO

2
 and H

2
, and the H

2
 is then utilized by the SRBs to reduce SO

4
−2 to 

HS− [22]. These types of relationships between organisms are far from uncommon.

Earth microorganisms have developed physiological and biochemical mechanisms to be able 

to survive in a variety of extreme niches. As previously stated, it would not be unreasonable to 

expect niches on Mars, although considered extreme, to support microbial life of some sort as 

well. The remainder of this chapter will discuss what is known about how microorganisms sur-

vive some of these extreme environmental conditions and how this information is relative to the 

potential for life on Mars. Although this portion of the chapter will focus on bacteria, it should 

always be kept in mind that many of the topics discussed apply to archaea and fungi as well.

4.2. Survival at low temperatures

Average temperatures on Mars can range from −10 to −76°C with an average surface tempera-

ture of −65°C although temperatures can fluctuate from as high as 25°C to as low as −123°C 
[6–8]. For an organism to be able to thrive on Mars it would need to be able to grow and repro-

duce in these frigid temperatures. An exception would be a subsurface environment that was 

geothermally heated though no such areas have been discovered on Mars.

A number of psychrophilic (cold-loving) organisms have been isolated from many regions of 

the Arctic and Antarctic where there are polar ice sheets, glaciers and permafrost. Additionally, 

microorganisms are known to inhabit the ocean floor where temperatures are ≤4°C [23]. These 

organisms are comprised of representatives from the Eukarya (algae, fungi and yeast), Bacteria 

and Archaea. Morozova et al. [24] identified several methanogenic archaea that were able to 
survive not only low temperatures ranging from −75 to 20°C, but could also simultaneously 
survive low humidity and a 95.3% CO

2
 atmosphere. The methanogens that survived best 

under these conditions were isolated from permafrost. Six isolates from permafrost and nine 

known species of Carnobacterium were found to grow not only at 23°C, but also at 0°C, under 
low pressure and in a CO

2
-enriched anoxic atmosphere [25]. A strain of Serratia liquefaciens, 

a common mesophilic organism often found as a contaminant in bathtubs, was shown to be 

capable of growth at 0°C as well as at low pressure and CO
2
-enriched anoxic atmospheres 

[26]. Mykytczuk et al. [27] identified a Planococcus isolate that grows and divided at −15°C and 
is still metabolically active at −25°C.

Despite these organisms being interesting in themselves, what is even more interesting is 

the ability of these organisms to make both physiological and biochemical modifications to 
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survive in such environments. Psychrobacter arcticus 273-4, a bacterium capable of growing at 
temperatures as low as −10°C, was found to downregulate genes related to energy metabolism 
and carbon incorporation, and upregulate genes required for maintenance of membranes, 

cell walls and nucleic acid motion. Furthermore, this organism turns on the expression of a 

cold-shock DEAD-box RNA helicase A, a protein that may be key for maintaining life in cold 

temperatures [28]. Planococcus halocryophilus Or1 grew at subzero temperatures by forming 

encrustations around the cell and increasing the ratio of saturated to branched fatty acids in 
the cytoplasmic membrane [27]. This is unique because often growth at lower temperatures 

results in a higher content of unsaturated, polyunsaturated and methyl-branched fatty acids 
to increase membrane fluidity at these temperatures. In many organisms, enzymes involved 
in transcription, translation, protein folding and stabilization of DNA and RNA show activity 

at very low temperatures and are adapted to life in cold environments. Antifreeze-like pro-

teins have been seen in Antarctic lake microbes and trehalose and exopolysaccharides might 

also provide cryoprotection for psychrophiles [29]. Although scientists are far from having a 

full understanding at life in cold temperatures, studies like the ones above provide insights 

as to how these organisms adapt to their extreme environment. Additionally, the microbes 

are models to further our understanding of how organisms may survive on Mars, and can be 

useful as we continue the search for life on cold planets and moons.

4.3. Tolerance to high salt

Due to the high salt concentrations found in Martian soils in the form of NaCl, MgSO
4
, CaSO

4
, 

FeSO
4
, MgCl and CaCl

2
, salt tolerance would be required for life to survive and grow on 

Mars [17]. Salts can be chaotropic as they influence water activity, affect cell turgor, and are 
major stressors of cellular systems [30]. It is estimated that 1/4th of the Earth’s land is covered 
by salt and salt water makes up the majority of Earth’s water. On Mars, it is estimated that 

sulfurous salts are more common than chlorinated salts by a ratio of 3:1. On Earth the most 
common type of salt is NaCl but many brines also contain MgCl

2
, MgSO

4
 and other salts 

[17, 30]. Studying hypersaline environments from Earth increases our understanding of how 

organisms can adapt to these extreme environments.

Many Bacillus sp. are salt-tolerant and thus of special interest with regard to growth under 

high salt conditions. Previous studies in our laboratory have shown that many different spe-

cies of Bacillus, including pumilus, licheniformis, horti, mannailyticus and cellulosilyticus, as well 

as species belonging to other genera including Paenibacillus, Amphibacillus and Alkalibacterium, 

could grow under salt concentrations as high as 10% NaCl. Several of these organisms also 
showed growth in media containing 20% NaCl. These isolates were collected from the Alvord 
Basin in Oregon where the soils are known to have elevated salt concentrations [31]. The 

ability of Bacillus sp. to grow under these conditions is not uncommon and many organisms 

which have been identified as non-spore formers can also grow in high NaCl concentrations.

A diversity of prokaryotes was discovered residing in deep hypersaline anoxic basins in the 

Mediterranean Sea; basins that are nearly saturated with MgCl
2
 (5 M). In addition to grow-

ing in extremely high concentrations of MgCl
2
, the microorganisms were involved in sulfate 

reduction and methanogenesis, and contributed to the cycling of carbon [32]. Furthermore, 
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the overall microbial community was unique because the bacteria and archaea identified were 
not related to organisms normally found in seawater, and the archaea branched deeply within 

the Euryarchaeota indicating they comprised a new order.

It is estimated that the majority of salt on Mars would likely be MgSO
4
, with lower concentra-

tions of NaCl and CaCl
2
. Studies by Crisler et al. [17] focused on the growth of microorganisms 

under high MgSO
4
 concentrations using microorganisms collected from the Great Salt Plains 

in Oklahoma. Though the microbes were not identified, it was found that 35% of the organisms 
from the bacterial collection could grow in medium containing 2 M MgSO

4
 and at least 80% 

could grow in the presence of 10% MgSO
4
 [17]. Studies using isolates collected from the Mars 

Science Laboratory (MSL) pre-launch showed that a large percentage of the organisms from the 

MSL were able to grow in media containing 1 M or 2 M MgSO
4
 (Smith, unpublished).

Although scientists are still learning more about how life survives in these extreme, high 

salt environments, we do know that the cells must have special physiological and biochemi-

cal properties to survive such environments. The primary factors for surviving these condi-

tions are the amount of energy generated during dissimilatory metabolism and the mode of 

osmotic adaption utilized [33]. A review of studies from 1999 concluded that aerobic respira-

tion, denitrification, and both oxygenic and anoxygenic photosynthesis can occur under the 
highest salt concentrations but autotrophic oxidation of ammonia and nitrate, some forms of 

methanogenesis and sulfate reduction were never found at salt concentrations >100–200 gl−1 

[33]. Processes identified as occurring, albeit poorly, at salt concentrations >200 gl−1 included 

fermentation, aerobic autotrophic oxidation of sulfur compounds, sulfate reduction by incom-

plete oxidizers and some other forms of methanogenesis.

Oren hypothesized based on his findings that life at high salt concentrations is energetically 
expensive, and the upper salt concentration limit at which dissimilatory processes occur is 

determined partly by bioenergetics constraints. Given this the main factors that determine 

whether a certain type of organism can make a living at high salt concentrations are the amount 

of energy gained during its dissimilatory metabolism and the mode of osmotic adaptation 

used. Based on his review of halophiles, Oren stated that the energy cost associated with salt 

exclusion and pumping ions out was unfavorable and that the “salt-in” strategy was energeti-
cally favored. Given this the following types of metabolism are most likely to occur under high 

salt concentrations: (i) those that use light as the energy source, (ii) aerobic respiration, denitri-

fication, and other highly exergonic dissimilatroy processes coupled with large production of 
ATP and (iii) types of metabolism performed by organisms that use the “salt-in” strategy even 
when the amount of ATP obtained in their dissimilatory processes is low [33]. Oren hypoth-

esizes that the salt-in option would be energetically favorable to organisms, and it is clear that 

organisms have made adaptations to their molecules to thrive under high salt conditions and 

allow for the “salt-in” option. Studies by Tehei et al. [34] identified a malate dehydrogenase 
and tRNA molecules, from the archaeon Haloarcula marismortui, that are protected in the pres-

ence of high salt. The salt protected the tRNA molecules from thermal degradation while the 

malate dehydrogenase was protected from thermal denaturation. While studying the lipid 

composition of Halobacillus halophilus, Lopalco et al. [35] found that the organism increased 

the number of shorter chains and incorporated unsaturated chains in the lipid core structures. 
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It was believed that these changes compensated for an increase in phospholipid packing and 

rigidity, and sulfoglycolipid polar heads. It is believed that these changes allowed for homeo-

stasis of membrane fluidity and permeability under high salt stress conditions.

Although many more studies need to be conducted to have a full understanding of how organ-

isms survive these high salt environments, these studies do show that life under these condi-

tions is possible and even, in some cases, protective. Given this, it would not be unreasonable 

to think that such microorganisms would be able to thrive on Mars in the salty Martian soils. 

Oren includes organisms using light as the energy source, however this would be unlikely 

on Mars since organisms living on this planet would also have to survive other conditions 

on the surface such as desiccation, and high radiation (to be discussed later). It is more likely 

that organisms on Mars would utilize exergonic dissimilatory processes or utilize types of 

metabolism which allowed for the “salt-in” strategy [33].

4.4. Tolerance to pH extremes

The ability of organisms to withstand alkaline pH is a factor to consider when discussing life 
on Mars. Initially, it was thought that the Martian soil was likely to be acidic but results by the 

Phoenix Lander showed that the soils at that site were mildly basic with a pH of 7.7 ± 0.5 [16]. 

Although the pH at the Phoenix Lander study site was only slightly basic, it is possible that 
other soils on Mars are more basic.

Alkaliphiles are organisms which grow above neutral pH whereas extreme alkaliphiles gener-

ally grow in the pH range of 10.0–14.0. Studies on alkaliphilic organisms have mostly focused 
on Bacillus sp. with the most extensive studies having been performed on B. halodurans and 

B. pseudofirmus [36]. The biggest hurdle facing alkaliphilic organisms is the ability to main-

tain homeostasis and maintain chemiosmosis. Alkaliphiles use transporters to help catalyze 

proton transport and these transporters include proton-pumping respiration chains, proton-

coupled ATPases, and secondary active transporters. Often the uptake of protons is unequal 

where 2H+ are exchanged for one Na+ ion. Studies have shown that even in extreme alkiliphi-

les, the pH remains relatively neutral to slightly alkaline in the cytoplasm even though the 
surrounding medium might be extremely alkaline. There is still much to be learned but it is 

clear that organisms have easily adapted to alkaline environments thus it would not be dif-

ficult for organisms to grow in Martian soils.

4.5. Surviving desiccation

Surviving desiccation is absolutely necessary if a microorganism is to survive on Mars as organ-

isms must be able to survive the desiccating environment until they can come into contact with 

a water source suitable for growth. Only after finding suitable water activity, such as a polar ice 
cap or subsurface water sources, could the organisms then potentially become active.

As previously discussed, Mars is considered to be quite dry, and soils contain only 2.25 wt% 
water [9]. However, this analysis was performed on soils on the Mars surface so we do not 
know what the soil water content is at deeper depths. It is not known if there is a source 

of subsurface water, but geographical features of Mars indicate that there may have been 
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water on the surface at some time in the past. It is not unreasonable to think that the water 

would have seeped into the subsurface and may still be present to some degree. Additionally, 

hydrothermal environments on Mars associated with craters from impacts and volcanism 

could have easily provided a source of liquid water, and crater impacts generating water are 

a potential concern today [11]. It may be possible for an organism to remain dormant for an 

extended period of time, then flourish after a wind storm has transferred the organism to a 
water source or water flows from a crater impact.

Several studies have shown that desiccation resistance in microorganisms is far from rare, and 

not only includes spore-forming microorganisms such as Bacillus, but non-spore-forming organ-

isms such as Moraxella and Staphylococcus as well [37, 38]. Overall, dehydration of cells leads to 

severe cell damage by causing structural changes to lipid membranes and proteins, cross linking 

and polymerization of DNA molecules, inhibiting or altering enzyme activity, changing mem-

brane permeability, and altering or mutating genetic information. DNA in the cell is at most 

risk to the desiccating environment since loss of water can lead to partial DNA denaturation 

[39]. Spore-forming organisms such as species belonging to the genera Bacillus and Clostridium 

are more likely to resist desiccation as the spore coat provides protection against a desiccating 

environment. The water content of spores is reduced to 25–45% of the cell’s wet weight caus-

ing proteins to become immobile and ceasing enzymatic activity altogether [39]. However, the 
overall resistance of the spore to the desiccating environment is mostly due to protection of the 

dehydrated core by the cortex and spore coat layers while the DNA is protected by small DNA 

binding-acid soluble which protect the DNA from chemical and enzymatic reactivity [39].

Many non-spore-forming organisms have been shown to be resistant to desiccation. Studies by 

La Duc et al. [40] identified several isolates of Pseudoaltermonas, Psychrobacter and Acinetobacter 

that survived a 7-day incubation at a Rh of 18 ± 3%. Several Moraxella sp. have been shown to 

survive a 30°C incubation for 35 days under dry conditions [37]. Staphylococcus aureus can sur-

vive on dry plastic surfaces for more than 1097 days [38]. The methanogens, Methanobacterium 

wolfeii, Methanosarcina barkeri and Methanobacterium formicicum survived desiccation for 

90–120 day incubation periods [41]. Studies on Amazonian oxbow lake sediments showed 

that desiccation for 1 year at 4°C not only increased the overall abundance of Methanocellales 

and Methanosarcinaceae, but also increased the rates of CH
4
 production after rewetting [42].

Although it is clear that the spore coat protects spore-forming organisms from a desiccating 

environment, it is relatively unclear how non-spore-formers survive similar environments. 

Studies by de Goffau et al. [45] have shown that cells can maintain intracellular water activity 

above that in their environment as long as the microbes can generate more water metaboli-

cally than is lost to the environment. However, this would require that the organisms were 
metabolically active which would be questionable under most desiccating environments such 

as the case of Staphylococcus aureus residing on a dry surface where there would be little to no 
nutrients [38]. Studies by Chaibenjawong and Foster [38] showed that the mutants clpX, sigB 

and yjbH were required for desiccation resistance in Staphylococcus auerus. ClpX and yjbH are 

both important for protein turnover while sigB plays a role in overall stress resistance [38]. 

It is likely that there are several factors involved in the desiccation resistance of non-spore-

forming organisms but more studies on these unique organisms will need to be performed 

before we have a comprehensive understanding of these systems.
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4.6. Exposure to an oxidative environment

Data from the Viking missions showed that the surface of Mars was highly oxidized com-

pared to its atmosphere [13]. Additional studies of Mars have shown that H
2
O

2
 abundance can 

range from 15 ± 10 ppb to 40 ppb [14]. The formation of peroxides can occur in the presence of 

hematite, trace amounts of water, and UV radiation, and radiolysis of ice or water can create 
even larger amounts of peroxide formation approaching 0.13% as seen on Europa [7, 15]. For 

an organism to survive on Mars it would need to have mechanisms to protect itself from this 

oxidizing environment.

A number of microbes collected directly from spacecraft assembly facilities or pre-launch space-

craft are highly resistant to 5% H
2
O

2
. An isolate of Acinetobacter radioresistens, collected from the 

Mars Odyssey spacecraft, showed only a 2 log reduction after exposure to 100 mM H
2
O

2
. Even 

after exposure to 320 mM H
2
O

2
 there was still incomplete killing of all of the microbes [44]. 

Studies by Kempf et al. [43] have shown recurrent isolation of H
2
O

2
-resistant Bacillus pumilus 

from the JPL spacecraft assembly facility. Both vegetative cells and spores of these isolates 
survived exposure to 5% H

2
O

2
. Spores were less susceptible to killing showing only a 1–5 log 

reduction compared to vegetative cells which experienced a 5–8 log reduction. The examples 

just mentioned are far from a comprehensive list of organisms that have resistance to H
2
O

2
, but 

they demonstrate that organisms are able to withstand these types of exposures.

There have been numerous attempts to try to understand how microorganisms protect them-

selves from H
2
O

2
 exposure. Most of these studies have been performed in Bacillus species 

although there is some knowledge overall about how bacteria cope with this stress. Three 

well studied mechanisms are the peroxide responsive regulators OxyR, PerR and OhrR that 

also act as transcription regulators. OxyR and PerR are mainly involved in the detection of 

H
2
O

2
 whereas OhrR is involved in the sensing of organic peroxides and sodium hypochlorite. 

When exposed to peroxides, specific cysteine residues on OxyR and OhrR and histidine resi-
dues on PerR are oxidized by an Fe-catalyzed reaction. These transcriptional regulators are 

not only involved in H
2
O

2
 sensing, but also serve in the formation of biofilms, host immune 

response evasion, and antibiotic resistance [46].

Beyond general sensing of H
2
O

2,
 genes involved in protein protection, such as groES, dnaK 

and clp tend to be upregulated thus also serving to protect the cell [47]. These proteins may be 

important for stabilizing the enzymes involved in the actual conversion of H
2
O

2
 to water and 

O
2
, including catalases, peroxiredoxins, and peroxidases [48]. Studies in Bacillus subtilus have 

identified σB-dependent stress genes that are also involved in resistance to oxidative stress. 

Ultimately, the work performed by Reder et al. [49] identified 47 general stress response genes 
that were required for survival to superoxide, 6 genes required for protection from H

2
O

2
 stress 

and 9 genes that were required to protect against both.

Studies of the highly resistant strain, Bacillus pumilus SAFR-032, collected from JPL’s space-

craft assembly facility, have identified many genes involved in H
2
O

2
 resistance overall [48]. 

Checinska et al. [50] looked further into the role of two manganese catalase proteins in 

the SAFR-032 spore coat, YjqC and BPUM_1305, which had been previously identified by 
others. It was concluded that the synergistic activity of YjqC and BPUM_1305, along with 
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other coat oxidoreductases, contributes to the increased resistance of SAFR-032 to H
2
O

2
 

over other Bacillus pumilus strains. This work has greatly improved our knowledge of the 

resistance of SAFR-032 to H
2
O

2
.

4.7. Exposure to radiation

The ability of an organism to survive radiation is paramount if the organism is to survive near 

the surface of Mars and pose a planetary protection threat. The radiation exposure on Mars is 

much more intense than it is on Earth because Mars lacks a magnetic field to deflect incom-

ing charged particles and the atmosphere is <1% that of Earth [51]. There are 2 major types 

of radiation to be concerned with on Mars. The first type of radiation, Galactic Cosmic Rays 
(GCR), originates outside of our solar system and is formed from events such as supernovas. 
The second type of radiation, Solar Cosmic Radiation (SCR), originates from the sun and con-

sists of both a constant flow of radiation as well as brief bursts [39, 51]. In the past, the overall 

radiation level on Mars has been based solely on calculations and modeling. New studies 

using data collected from the MSL found that the radiation in flight to Mars is approximately 
two times higher than the radiation on the surface of Mars (0.21 mGy/day vs. 0.48 mGy/day). 
The lower radiation level on the Mars surface is due in part to some atmospheric shielding by 

the Martian atmosphere, which is not provided to the spacecraft en route, and because radia-

tion from GCR is modulated by SCR [51].

SCR can consist of both ionizing (e.g. gamma radiation) and non-ionizing radiation (e.g. UV 
radiation). This section will focus mostly on UV radiation since that has been the focus of the 
majority of previous studies. It is of note that ionizing radiation can be of more concern since 

it can penetrate through the Martian soils thus potentially making the first meter of soil inhab-

itable [51]. Solar UV radiation is divided into 3 spectral ranges; UV-A (315–400 nm), UV-B 
(280–315 nm) and UV-C (200–280 nm). UV-B and UV-C radiation are of the most concern 
since DNA has high absorption at those wavelengths and can be mutated leading to cellular 

inactivation [39]. Radiation of biological cells can cause breaks in molecular bonds including 

single and double strand breaks in DNA and photolysis of amino acids [52]. Calculations 
have suggested that DNA weighted irradiance on the Martian surface would be three orders 

of magnitude greater than that on Earth meaning that microbes would need to be resistant to 

much higher levels of UV radiation to sustain life on the surface of Mars [53].

Most of the research on radiation resistance and/or survival of microorganisms have been 
performed on spore-forming organisms since they are of the most interest to planetary pro-

tection and tend to be hardy due to their protective spore coat. Studies by Wassman et al. 

[54] exposed Bacillus subtilis spores to low Earth orbit and simulated Martian conditions for 

559 days aboard the ESA’s EXPOSE-E facility. Although results showed that there was 100% 
survival of Bacillus subtilis MW01 spores to simulated Martian conditions (UV λ ≥ 200 nm), 
only a ≤ 8% of spores survived low Earth orbit conditions (UV λ ≥ 110 nm). Studies on Bacillus 

pumilus spores showed 10–40% viability on the EXPOSE facility versus a survival rate of 
85–100% under dark simulated Martian atmospheric conditions. However, when the same 
studies were performed on the super tolerant Bacillus pumilus SAFR-032 strain, a 7 log reduc-

tion in viability was observed [55]. Overall SAFR-032 spores showing UVC resistance remain 
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viable even after exposures up to 2000 J/m2 [56]. Comparative proteomic studies showed that 
superoxide dismutase was present in higher concentrations in the space exposed isolates and 

exhibited higher UV-C resistance than the ground control counterparts [55]. Tauscher et al. 

[57] studied the effects of Bacillus subtilis spores exposed to simulated Mars solar radiation for 

an equivalent of 42 min of Mars solar radiation. Radiation exposure reduced spore viability by 

3 logs but measure of germination metabolism was only reduced by <1 log. They concluded 
that the spores can retain the ability to initiate germination-associated metabolic processes 

and produce viable signature molecules despite being rendered nonviable.

It has been estimated that spores are 10–50 times more resistant than growing cells to UV 
radiation at 254 nm. This is due to a difference in the UV photochemistry of the DNA as well 
as error-free repair of any photoproducts formed by the UV light. Instead of forming thymine 
dimers as a photoproduct, spores tend to form thymine adducts instead; furthermore, small 

acid soluble proteins (SASPs) appear to suppress cyclobutane pyrimidine dimers [26]. Relative 

to gamma radiation, spores are significantly more resistant due to the decreased levels of water 
in the spore coat compared to vegetative cells which may reduce the amount of hydroxyl radi-

cals formed overall [58]. SASPs do not appear to play a role in γ-radiation resistance [26].

Many non-spore-forming organisms have also been identified as being UV-resistant. Studies 
by Montero-Calasanz Mdel et al. [59] identified an isolate of Geodermatophilus tzadiensis that 

showed resistance to UV light at 254 nm. A highly radiation resistant isolate from the Moraxella-

Acinetobacter group showed increased survival after a repeated exposure to UV light. Ultimately, 
this isolate was able to withstand a UV dose of 5940 J/m2 with a 48% survival rate [60]. Antarctic 

Dry Valley bacteria closely related to Brevundimonas, Rhodococcus, and Pseudomonas, all showed 

resistance to γ-radiation. Surprisingly, these organisms, along with Deinococcus radiodurans, all 

showed increased resistance to γ-radiation when irradiated at −79°C [52].

Although the ability of non-spore-forming organisms to survive radiation appears to be 

poorly understood, there are some studies which have given clues to how these organisms 

survive. Keller et al. showed that the UV light resistance mechanism for survival was not 
associated with increased mutagenesis when the Moraxella-Acinetobacter isolate was repeat-

edly exposed to UV [60]. Studies on several strains of Staphylococcus aureus showed that UV-C 
resistance increased as the organisms entered into stationary growth phase, a characteristic 

that was attributed in part to the expression of σB during this phase [61]. Exposure of the 

lipids and proteins of Acinetobacter sp. PT511.2G and Pseudomonas sp. NT511.2B to ultravio-

let radiation caused an increase of methyl groups that were associated with lipids, causing 

lipid oxidation, and alterations in lipid composition in addition to changes in propionylation, 

glycosylation, and/or phosphorylation of cell proteins [62]. The authors concluded that these 

changes may account for differences in UV sensitivity.

Ultimately, there are many microorganisms, both spore-forming and non-spore-forming, that 

are able to survive exposure to radiation and could potentially survive on Mars. For exam-

ple, Deinococcus radiodurans would only be eradicated from the top several meters of Martian 

soil after a period of a few million years based on the radiation that currently reaches Mars. 

However, if the organism were to start growing again, then the clock would start over, and 
organisms could continue to stay dormant and survive up through today. This has implica-

tions for the potential for life to exist on Mars.
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4.8. Conservation of energy

Unlike Earth, the Martian environment provides very little nutrients to sustain life. Any microbes 
that may already be on Mars would have to make a living using the limited nutrients that 

are available. As previously discussed, Mars has a mostly CO
2
 atmosphere (95.3%) with low 

amounts of N
2
 (2.7%) and O

2
 (0.1%) [7]. However, studies by Mumma et al. [11] have shown the 

presence of methane in extended plumes that appeared to be released from discrete regions con-

taining as much as 19,000 metric tons of methane. Additionally, previous studies have shown 
high amounts of salts including MgSO

4
 and FeSO

4
 [17]. Two of the most abundant compounds 

on Mars are Fe and S and there is evidence that there are large concentrations of sulfur in the 

Martian regolith [65]. Perchlorate, a strong oxidizing agent, was shown by the Phoenix Lander 

to be present in Martian soils in concentrations of 2.1–2.6 mM [16]. All of these compounds are 

potential chemical energy sources that can be used by microorganisms to survive.

The large methane plumes on Mars are of unknown origin. These plumes seasonally fluctuate 
but the amount of methane produced is on par with methane plumes on Earth that are known 

to be of biotic origin. Although the Mars rover Curiosity has found no detectable atmospheric 
methane, it is possible that the location of the rover prevented the detection of methane in 

the atmosphere since these methane plumes have been seen at polar regions rather than mid-

latitude regions. Methanogenesis has become a well-known method for microorganisms to 

conserve energy. Many archaea, such as Methanosarcina, can use various carbon compounds 

to produce methane [63]. H
2
 can readily be oxidized with the large amounts of CO

2
 in the 

atmosphere to generate energy via methane production [64]. Once this methane is available, 

it could be oxidized by methanotrophicarchaea in the presence of sulfate-reducing bacteria to 

complete a methane cycle which would support at least 3 types of organisms [65]. An over-

view of the reaction might look something like this:

   2H  
2
   +  CO  

2
   →  CH  

4
   +  O  

2
    (methanogenic archaea)   

   2CH  
4
   +  2H  

2
   O →  CH  3   COOH +  4H  

2
    (methane − oxidizing archaea)   

   4H  
2
   +   SO  

4
     2−  +  H   +  →  HS   −  +  4H  

2
   O  (sulfate − reducing bacteria)   

The electron donor H
2
 could easily be generated by photochemical dissociation of water [66] 

and it has already been determined that there are large amounts of sulfate, especially in the 

form of MgSO
4
 and FeSO

4
 in the Martian soils [17, 67].

More likely energy sources fairly abundant in near surface soils on Mars are inorganics such 

as iron or sulfur [8]. An electron donor such as H
2
 could be used to reduce Fe(III) or sulfate 

during respiration, with utilization of CO or CO
2
 as a source of carbon. Sulfate and iron reduc-

tion by organisms on Earth have been very well studied. These organisms play very impor-

tant roles in the biogeochemical cycling of carbon, nitrogen, sulfur, and other metals [68]. 

Studies by Karr et al. [69] identified a group of sulfate-reducing bacteria residing in the per-

manently frozen freshwater lake, Lake Fryxell, in Antarctica. These organisms are able to uti-

lize the reduction of sulfate to conserve energy under very cold conditions (4°C). There have 
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also been studies showing that Fe respiration under alkaline conditions is possible. Studies 

by Williamson et al. [70] identified organisms that could easily reduce Fe(III) at pH 10. These 
studies show that it is possible for these reactions to occur under cold or alkaline conditions. 

Once Fe or S has been reduced it is available for oxidation by other organisms.

Perchlorate, detected in soils by the Phoenix Mars Lander, is one of the more interesting 

potential electron acceptors recently discovered on Mars [16, 71]. More than 50 microorgan-

isms on Earth are known to respire perchlorate coupled to the oxidation of H
2
 or small organic 

acids, a metabolism that has been intensely studied over the past decade [72, 73]. This group 

of organisms is quite diverse and many have been found in environments that might seem, 

on the surface, to be inhospitable such as paper mill waste. Studies by Ju et al. [74] showed 

bacteria in sludge that were capable of oxidizing both Fe° and S° while reducing perchlorate. 
The enrichment culture was also able to oxidize S2− and S

2
O3

2− to support the reduction of 

perchlorate, and they also confirmed the disproportionation of S° to S2− and SO
4
2−. Thus per-

chlorate reduction would tie in neatly to both the Fe and S cycles.

Although Mars seems inhospitable and lacks an abundant supply of nutrients, there are plenty 

of nutrients available to support anaerobic life on the red planet. The studies discussed above 

show that the organisms could work together to supply nutrients for one another within 

a complex ecosystem. Additionally, many of the organisms discussed above can survive in 

extreme environments on Earth while still making a living as evidenced by many of these 

processes still taking place at low temperatures or in alkaline environments.

5. Conclusions

Despite all that we know, there is still much to be learned with regard to the absolute limits 

for life. In order to answer these questions, we must have a better understanding of life on 
Earth. With regard to the potential for indigenous populations on other planets and moons, 

research has shown repeatedly that life can exist in the harshest of environments. Although 

this was not covered in depth in this chapter, life has been found in some of the most dry or 

frigid environments on Earth such as the Atacama Desert or Antarctica. It is not unreasonable 

to believe that microorganisms, similar to those found on Earth, could be thriving on loca-

tions such as Mars or Europa, especially in the subsurface where radiation would be lower 

and there would be a better chance for the existence of liquid water. While searching for life 
on other planets and moons, we look for the signs of life that are already known such as the 

presence of carbon and water. It may be possible that if we find life in these distant places that 
we may discover new limits to life in extremis.
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