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Abstract

The positron annihilation, experimental and theoretical results obtained for bismuth are 
presented, mainly concerning the open volume defects created during compression and 
dry sliding. Positron lifetime in vacancy clusters increases with the size of the cluster; 
however, it saturates at the value of about 0.42 ns already for six vacancies in a cluster. 
Similar values were resolved in the positron lifetime spectra of bismuth samples exposed 
to dry sliding. Detection of the subsurface zone in bismuth exposed to dry sliding reveals 
exponential decay of vacancy clusters concentration with the depth increase from the 
worn surface. The high strain of about 70% was evaluated in the layer adjoined the worn 
surface The temperature of recrystallization obtained from the isochronal measurements 
of annihilation line shape parameter was equal about 90°C, and the activation energy for 
grain migration is about 0.84 ± 0.11 eV.

Keywords: bismuth, positron annihilation, defects, subsurface zone

1. Introduction

The technological processes like machining, polishing, sandblasting, and sliding or more 

sophisticated, i.e., laser treatments or ion implantations not only affect the surface of the mate-

rial but also modify the subsurface region below it changing its physical properties. This 

is due to the elastic and plastic deformation, which expands into the interior. In the litera-

ture, a zone adjoining the surface which properties are changed due to sliding or friction is 

called work hardening zone because an increase in hardness is apparent [1]. Nevertheless, 
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some changes expand deeper and the whole region affected we called the subsurface zone [2]. 

Generation of the subsurface zone is inherent in any surface treatment.

When two bodies are in a sliding contact, a load at their surfaces is supported by asperities 

of the rough solid surfaces [3]. The asperities deform through elastic and plastic modes, 

increasing the contact area between the two surfaces until the contact area is sufficient to 
support the load. High-stress concentration in these regions can lead to a damage and thus 

also the crack initiation [4]. The asperity region is the source of dislocations that are driven 

introducing the stress concentration in the subsurface zone [5]. It is not excluded that a great 

number of small impacts on the worn surface force propagate deformation at large distances 

into the interior [6] and is the deformation is observed at depth of hundreds of micrometers 

from the surface [7].

One can indicate several layers in the subsurface zone, Figure 1. Directly on top is a layer of 

contamination, then an adsorption layer and a deeper reaction layer with oxides and other 

compounds [1]. These layers are present at the depth of about 10 nm from the surface. Much 

deeper in the damage zone, with deformed grains, band shears, and other defects is extended. 

This zone has the thickness more than a hundred micrometers, and it seems that this is the 

main layer, which carries the stress induced by the load on the surface. Below, undamaged 

and unaffected bulk region is located. The strain and accompanied crystalline defects are 
distributed in the subsurface zone and they are linked with surface treatments. The most 

important is the friction and wear which are always present during manufacturing.

The subsurface zone is a subject of tribology; however, its existence can affect for instance 
electrical properties of conductors as well. Due to the skin effect, alternating electric current 
(AC) flows within a conductor near the surface at the depth of about 100 μm depending on the 
frequency and electrical properties of a conductor. This depth coincides with the subsurface 

Figure 1. The schema of the subsurface region located below the worn surface (on the top).
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zone depth generated during, e.g. machining or sandblasting, in copper it is about 140–800 μm  
as it was reported, see Ref [8]. The skin effect causes that electrons flow mainly near the surface 
of the conductor, but in this region, they can scatter at crystalline defects which were created 
during manufacturing of wires or other devices. Therefore, recently, we focused our interest 

on the subsurface zone in metals and alloys, which are used for the construction of the elec-

tronic devices in radio frequency techniques [9].

The experimental study of the subsurface zone is not an easy task. Measuring the depth pro-

file of microhardness in a sample cross section is one of the methods. However, this is not a 
suitable method of detecting defects at the atomic level. Commonly used methods such as 

XRD, SEM and TEM also fail in the case of point defects, which occur in large amounts dur-

ing a plastic deformation under sliding condition. Positron annihilation methods, due to the 

several reasons, complete the gap. Extremely sensitivity and selectivity to the open volume 

defects at atomic level, large positron implantation depth, they are only one of them [10]. 

Experiments have shown the usefulness of these methods for studies of defects and their 

distribution in subsurface zones.

Bismuth is a plastic semimetal, and it is not the material in tribo junctions; however, it is used 

as a component of several alloys, for instance, solid lubricants or recently in low friction alu-

minum alloy DHT-3 [11]. Low melting point of this metal, i.e., 270.8°C, allows us to suppose 

that this can affect the subsurface zone generation under dry sliding condition. Other positron 
annihilation studies of bismuth samples are also presented.

2. Outline of positron annihilation spectroscopy

After thermalization, the positron implanted into matter annihilates with an electron, emit-
ting two photons of energy about 511 keV in almost opposite direction. Positron annihilation 

spectroscopy utilizes the detection of those photons. This allows us to measure the Doppler 

broadening of annihilation line or the positron lifetime, i.e., how long it exists in the matter. 
Both reflect the matter properties at the atomic level. This is because the time prior to annihila-

tion, which an implanted positron spends in the matter depends on the local electron density 
[10]. Briefly, the following correlation was established theoretically and experimentally: the 
higher electron density in the site where a positron annihilates the lower value of its lifetime. 

The electron density is highest in the core region of an atom; however, a positively charged 

nucleus repels the positron into interstitial sites occupied by valence and conduction elec-

trons. Electronic density is much lower in these sites, and therefore the annihilation with these 

electrons contributes to the positron lifetime.

The real crystalline lattice can be locally disturbed by defects, for instance, open volume defects, 
like vacancies or its clusters and/or dislocations. In such defects the electronic density is lower 

than in interstitial sites. Positrons can be localized at these defects and this causes an increase 

in the positron lifetime value depending on the type of defect. For instance, the lifetime of a 

positron trapped at monovacancy is about four-thirds of that in bulk. These values are finger-

prints which can be used for defect identification as it is reported in numerous papers [12]. The 

positron lifetime spectroscopy application to study the matter is based on this fact.

Application of Positron Annihilation Spectroscopy Studies of Bismuth and Subsurface Zone…
http://dx.doi.org/10.5772/intechopen.75269

207



Additionally, the measurements of the broadening of the annihilation line allow us to trace the 

momentum of electrons undergoing the annihilation. The momentum of the annihilating positron 

electron pair depends on the local electronic density too. Then any disturbance can be reflected 
in the broadening, and/or shape of the annihilation line. This can happen in the open volume 

defects, where electronic density is suppressed. Positron annihilation with such electrons causes 

the annihilation line is narrower than in the case of the annihilation with interstitial valence elec-

trons in bulk. For characterization of the annihilation line shape, the value of the S-parameter 

is commonly used. The S parameter is defined as the ratio of the central area to the total area 
under the annihilation line. This parameter is extremely sensitive to the presence of open volume 

defects, like monovacancies or its clusters and jogs at dislocation lines, where due to their posi-

tive charge, positrons are localized. Usually, the measurements are performed using high purity 

germanium detector with the good energy resolution. These both experimental techniques are 

widely applied to study many aspects of condensed matter problems. One should also add that 
temperature itself does not affect the positron lifetime or S-parameter. The main reasons of the 
observed altering in their values are induced by structural changes: like vacancy generation, its 
migration or reaction with other defects, phase transition or other structural processes.

Using conventional positron sources, i.e., beta plus isotopes like 22Na one has to take into 

account the positron implantation range. The fraction of positrons, which are implanted into 

the matter, decreases exponentially with the depth increase from the entrance surface. In the 
case of bismuth linear absorption coefficient for positrons emitted from 22Na is about 569 cm −1,  

it means about 63% positrons annihilates in the layer of the depth of about 17 μm from the 
entrance surface [13]. This allows to probe large region in a sample by positrons and reflects 
its bulk properties at the atomic scale.

3. Positron lifetime in bismuth

In our studies, all measurements were performed for the samples of pure bismuth (99.997% 

purity). They had a disc shape of 3 mm height and 10 mm in diameter. For removing defects 

that occurred during manufacturing and preparation of virgin samples all discs were 

annealed in the flow of N
2
 gas at the temperature of 200°C for 1 h, and then slowly cooled to 

room temperature. Additionally, they were etched in the 25% solution of nitride acid in dis-

tilled water to reduce their thickness by 50 μm and clean their surface. Only one component 
equal to 0.241 ± 0.001 ns was detected in the measured positron lifetime spectrum for such 

virgin sample. This value corresponds well with the experimental value reported, i.e. 0.240 ± 

0.001 ns. However, for positrons trapped at monovacancy, this lifetime increases to the value 

of 0.325 ns [12]. The positron lifetime for vacancy cluster one can calculate theoretically.

The results of ab inition calculations were carried out using the PAW formalism as implemented 

in ABINIT code [14, 15]. The positron lifetime computations were performed on 64 atoms of 

bismuth supercell. A specific supercell was constructed to introduce vacancy around the cen-

tral atom. The obtained values are depicted in Figure 2. For bulk value, the obtained positron 

lifetime is equal to 0.255 ns and it is slightly higher than the measured value. However, the 

theoretical value obtained by other authors was about 0.202 ns [12]. The almost linear increase 

Bismuth - Advanced Applications and Defects Characterization208



of the positron lifetime with the increase of the size of the vacancy cluster is clearly visible, 

Figure 2. However, for the number of vacancies in the cluster larger than five or six this depen-

dency saturates. The obtained results can be helpful in identification of vacancy clusters in the 
bismuth host.

4. Temperature measurements in bismuth

4.1. Thermally activated monovacancy

For metals, the increase of temperature induces the creation of thermally activated mono-

vacancy. Their concentration increases with the temperature increase. This is reflected also 
in the temperature increase of the mean positron lifetime (defined below) or values of the 
S-parameter and hence it can be used for determination of the monovacancy creation enthalpy 

[16]. The important condition is that the monovacancy must localize positrons. Nevertheless, 

in the case of bismuth, no increase of the S-parameter with the increasing temperature in 

the range of 25–200°C is observed, Figure 3. The value of the S-parameter remains almost 

constant indicating lack of positron trapping at thermally activated monovacancy. Similar 

results were observed not only for bismuth but also for gallium [17] and tin [18]. Thus, the 

monovacancies in these metals are very weak positron traps because the trapping efficiency 
rate for such defect must be low. Although Bi

40
Sn

60
 alloy does not exhibit positron trapping 

at monovacancies positron trapping at grain boundaries has been observed [19]. The grain 

boundaries consist of many imperfections including vacancy clusters. Positron trapping at 

such defects will be shown in the results of the next measurements presented.

4.2. Defects after plastic deformation

In these measurements, bismuth samples were compressed in a flat geometry between two 
martensitic steel plates using a press with the pressure equal to 3 MPa and the engineering strain 

Figure 2. The theoretical values of positron lifetime as a function of the number of vacancies in a cluster of bismuth. The 

calculation was performed using ABINIT code [15].
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equal to 18% [20]. Two components were resolved in the measured positron lifetime spectrum, 

the value of the first one is equal to 0.178 ± 0.001 ns, the intensity of this component is about 
(46 ± 5)% and the value of the second one equal to 0.309 ± 0.001 ns the intensity of (54 ± 5)%.  

Thus, in this process monovacancies or divacancies can be generated, because this value is 

close to the theoretical values, i.e., 0.293 or 0.334 ns, Figure 2. However, the lack of positron 

trapping at thermally activated monovacancies excludes them.

Creation of such a defect is supported by the fact that the plastic deformation is associated 

with the movement of dislocations which may cross each other and the jogs on their lines 

occur. The drag of dislocations with jogs generates monovacancies and interstitial atoms. The 

latter due to high mobility even at low temperature annihilate with monovacancies. Vacancies 
are mobile at room temperature too but they can associate creating divacancies or larger clus-

ters. Such a mechanism is commonly accepted. Large vacancy clusters can be presented also 

at grain boundaries, which are created during the compression in great amount.

For comparison of results obtained for different compression, we apply the commonly 
accepted robust parameter, i.e., the mean positron lifetime equal to:

   τ ̄   =  τ  
1
    I  

1
   +  τ  

2
    I  

2
  ,  (1)

where τ
1,2

 are the positron lifetimes resolved from the positron lifetime spectra and I
1,2

 are 

their intensities (note: I
1
 + I

2
 = 1). The mean positron lifetime does not depend on the num-

ber of components resolved in the positron lifetime spectra, however, it is still sensitive to 

all parameters corresponding to the annihilation states and properties of the sample at the 

atomic level. The S-parameter and the mean positron lifetime are complementary parameters.

In Figure 4, the dependency of the mean positron lifetime for bismuth samples exposed to 

compression is depicted [21]. On the x-axis, the thickness reduction or strain of the com-

pressed bismuth samples is indicated. This value increases starting from the bulk value, i.e., 

Figure 3. The value of the S-parameter as the function of the temperature obtained in the isochronal annealing measure-

ments for pure bismuth. Each point was measured during 2 h.
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0.241 ± 0.0006 ns and it saturates at the value of about 0.263 ± 0.0007 ns for the thickness 

reduction of about 73%. This dependency can be well explained. With the increase in plastic 

deformation, that is, the increase in stress and strain, a large number of dislocations in shear 

bands and accompanying them point defects are created. However, at a certain level of defect 

concentration, all implanted positrons after thermalization and random walk are trapped in 

these defects. This is reflected in saturation of the positron annihilation characteristics, like 
mean positron lifetime. Further increase of the deformation and generation of new defects 

does not affect the positron trapping. This happens at the strain of about 50–60% in bismuth, 
Figure 4. In other metals, saturation occurs already with less deformation about 10% [22].

The obtained dependency in Figure 4 can be described using a following analytical formula:

   τ ̄   =  τ  
sat

   +  ( τ  
bulk

   −  τ  
sat

  )  exp  (− c𝜀) ,  (2)

where ε is the thickness reduction in percent. The solid line in Figure 4 represents the best fit 
of this simple function and the values of the adjustable parameters are as follows: τ

sat
 = 0.264 

± 0.003 ns, c = 0.044 ± 0.017.

The obtained value of the bulk lifetime equals to τ
bulk

 = 0.243 ± 0.002 ns. In comparison to 

other metals, the value of the c parameter for bismuth is about one order lower. For instance 

in copper c = 0.212 ± 0.010 [22]. This can be explained by the fact that in bismuth the mobility 

of point defects or other defects must be much higher than in copper which melting point is 

much higher, i.e. 1084°C. This is also clearly visible in the positron lifetime spectra, where for 

Figure 4. The measured values of the mean positron lifetime vs. thickness reduction or strain of compressed pure 

bismuth samples [21]. The solid line represents the best fit of Eq. (2), see text.

Application of Positron Annihilation Spectroscopy Studies of Bismuth and Subsurface Zone…
http://dx.doi.org/10.5772/intechopen.75269

211



the highly deformed bismuth sample, the value of the first lifetime is close to the bulk value, 
i.e., 0.241 ns, which indicates the presence of almost perfect bulk regions. These regions can 

result from recrystallization process, which can undergo also at room temperature. This can 

be visible in the following measurements.

4.3. Thermally activated recovery process

The isothermal measurements at room temperature were performed for the bismuth sample 

after thickness reduction of about 80% in compression. In Figure 5a, the obtained dependency 

of the S-parameter value as the function of time is depicted. The value of the S-parameter 

decreases and for the time above 10 h, its value ceases decreasing. This indicates that even 

at room temperature deformed bismuth samples undergo changes at the atomic scale. The 

recovery and recrystallization process can explain this behavior. This is clearly visible in the 

isochronal annealing experiment. The bismuth sample after thickness reduction of about 80% 

was located in the spectrometer, and the value of the S-parameter was measured with the 

sequenced increase in temperature. Each measurement was done within 2 h, to obtain a suit-

able accuracy. In Figure 5b, the dependency was depicted. Indeed above 40°C, the value of 

the S-parameter starts gradually decreasing up to the temperature of about 140°C and then 

saturates. Such a dependency is attributed to the recrystallization process, as we have shown 
for other metals, i.e., iron, gold or silver [23].

Figure 5. The results of the isothermal measurements of the S-parameter at the room temperature of the bismuth sample 

after plastic deformation (a). The solid line represents the following function, which is the best fit to the experimental 
points:  S = 0.486 + exp  (− t / 9.5)  , where t is time in hours. The isochronal annealing measurements of the S-parameter 

for the bismuth samples exposed previously to the plastic deformation (b). The solid line represents the best fit of 
the function obtained from the positron diffusion trapping model, including the grain boundary migration in the 
recrystallization process.
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The migration of the grain boundaries causes an increase in the size of the new almost defects 

free grain. Hence, less positrons annihilate at grain boundaries. They contain a great number 

of defects including vacancy cluster which are traps for positrons. The results from Figure 5b 

can be described within the positron diffusion model, which takes into account not only the 
positron diffusion but also the model of grain expansion. This allows us to estimate the activa-

tion energy for grain boundary migration, which is responsible for this [23]. The solid line in 

this figure represents the best fit of this model to the experimental points. The obtained value 
of the grain boundary migration activation energy is equal to Q = 0.84 ± 0.11 eV. We can state 

that the recrystallization temperature in bismuth is about 90°C, this is the temperature of the 

middle of the drop of the S-parameter which corresponds the temperature of half-complete 

recrystallization within a specified time.

5. The subsurface zone in bismuth

The fact that bismuth undergoes recrystallization at room temperature can be reflected in 
the properties of the subsurface zone generated during dry sliding. To find this the virgin 
bismuth samples were exposed to dry sliding against the rotating disc made from martens-

itic steel disc with the speed of about 5 cm/s. In order to obtain the defect depth profile the 
worn samples were sequentially: etched in a 25% solution of nitride acid in distilled water 
and after the measurement of positron lifetime spectrum was performed. The layer of about 

15 μm thick was removed in every step. The accuracy of a digital micrometer screw used in 
the thickness measurement was 1 μm.

Two-lifetime components: τ
1
 and τ

2
 were resolved in each spectrum, and their values as a 

function of depth from the worn surface are depicted in Figure 6. For this sample, the dura-

tion of the sliding test was 1 min and applied load was about 10 N. In Figure 6a, the mean 

positron lifetime values are shown. Its value decreases with the increasing depth and expo-

nential decay of this value is clearly visible. This kind of dependency was observed in other 

metals, e.g. iron [24].

Nevertheless, we have noticed another interesting feature. The value of the first- lifetime 
component increases and the value of the second-lifetime component remains almost con-

stant with the increasing depth. The explanation can be found in the positron diffusion or 
standard trapping model [23]. The first-lifetime value lower than the bulk value indicates the 
fact that the subsurface zone contains almost defects free regions, presumably recrystallized 

grains. However, the second lifetime, which value is much higher indicates the positron trap-

ping at grain boundaries. The average value of about 0.442 ± 0.058 ns is close to the theoreti-

cal value of 0.422 ns for positron trapped at the vacancy cluster which consists of five or more 
vacancies, Figure 2.

Taking into account Eq. (1) which links the strain with the mean positron lifetime, we can cal-

culate the local strain at different depths. The right y-axis in Figure 6a represents the results of 

such calculations. It can be noticed that near the surface, the strain has the value of about 70% 

and then decay with the depth increase, but even at the depth of 150 μm, it has the value of 5%.
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To simplify the analysis of the data from Figure 6, we use the standard positron trapping 

model instead of diffusion trapping model mentioned above [10]. It neglects diffusion of posi-
trons but takes into account the trapping at vacancy clusters. In this model, it is assumed that 

a positron can annihilate from the free state in the bulk or the bound state for instance in the 

Figure 6. The values of τ
1
 (b) and τ

2
 (c) resolved from positron lifetime spectra as the function of depth from the worn 

surface of the sample which was exposed to sliding with the applied normal load equal to 10 N during 1 min [20]. The 

mean positron lifetime calculated from Eq. (1) and the trapping rate values calculated from Eq. (7) are presented in  

(a) and (d), respectively. The solid line in (a) and short-dashed line in (d) present the exponential decay functions fitted to 
the points in each figure. The long-dashed line in (b) presents calculated the value of τ

1
 from Eq. (4) taking into account 

the exponential decay function for the trapping rate, Eq. (8).
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vacancy cluster where it can be trapped with a certain rate. The average positron lifetime in 

both states are constant and equal to τ
bulk

 and τ
vc

, respectively. The transition from the free to 

the bound state is described by the positron trapping rate which is equal to:

   κ  
vc

   = μ  C  
vc

  ,  (3)

where C
vc

 represents the concentration of the vacancy clusters which bind positrons and μ is 

the positron trapping efficiency rate. According to this model the first lifetime component in 
the spectrum is as follows:

   τ  
1
   =   

 τ  
bulk

  
 _______ 

1 +  τ  
bulk

    κ  
vc

  
  ,  (4)

and the second-lifetime component:

   τ  
2
   =  τ  

vc
  .  (5)

The mean positron lifetime is given by:

   τ ̄   =   
1 +  τ  

vc
    κ  
vc

  
 _______ 

1 +  τ  
bulk

    κ  
vc

  
    τ  
bulk

  .  (6)

It is also convenient to express the trapping rate as a function of the mean positron lifetime 

defined in Eq. (1):

   κ  
vc

   =   1 ____  τ  
bulk

       
 τ ̄   −  τ  

bulk
  
 _____  τ  

vc
   −  τ ̄    .  (7)

From Eqs. (4) and (5), it is well visible that the increase of the trapping rate and hence the con-

centration of the vacancy cluster which trap positrons causes the decrease of the first-lifetime 
component. The second component does not vary.

The average value of the second-lifetime component is 0.442 ± 0.058 ns, Figure 6c, and this 

value corresponds to the annihilation of positrons trapped at a vacancy cluster, which con-

sists more than five vacancies, Figure 2. Taking into account the mean positron lifetime Eq. 

(1) and the average value of the second-lifetime component, we can calculate from Eq. (8) the 

positron trapping rate as the function of the depth. In Figure 6d, we depicted the obtained 

dependency, which exhibits the exponential decay with the depth increase, represented by 

a dashed line.

Identical dependencies were observed also for other samples exposed to dry sliding with 

other values of the applied load, not presented here. The values of the evaluated trapping rate 

as the function of the depth for various loads applied are depicted in Figure 7. For a descrip-

tion of the data from this figure, the following function is proposed:

  κ = b exp  (−   d __ 
 d  

0
  
  ) ,  (8)
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with two b and d
0
 adjustable parameters. This function describes well the obtained dependen-

cies. The solid lines in Figure 7 represent the best fits of Eq. (8) to the experimental points. 
In Table 1, the values of the adjustable parameters are given. It can be stated that with the 

increasing load the average depth of vacancy cluster distribution, which is represented by the 

d
0
 parameter increases. For the highest load, i.e. 50 N the total depth of the subsurface zone 

is about 320 ± 20 μm. Like in other pure metals the determined total depth of the subsurface 
zone is ranged from 140 to 320 μm and it depends on the applied load in the sliding treatment, 
Table 1. The concentration of the vacancy clusters at the worn surface, represented by the b 

parameter also increases with the applied load.

For determination of the absolute value of the vacancy cluster concentration, the value of the 

positron trapping efficiency rate: μ, which describes the transition rate from the free to the 
trapped state is necessary, Eq. (3). This value in metals is ranged from 5 × 1014 to 5 × 1017 s−1 

[25], however, because of experimental difficulties, it is rarely reported. In turn, the theoretical 
calculations of this quantity require knowledge about the mechanism of energy transfer from 

the trapped positron to the host, and this is also difficult to point out it in particular case [26].  

Load [N] d
0
 [μm] b [ns−1] Total depth of the subsurface zone [μm]

5 68.4 ± 7.5 0.37 ± 0.02 140 ± 20

10 71.9 ± 1.2 0.38 ± 0.04 200 ± 20

25 79.2 ± 7.7 0.74 ± 0.04 280 ± 20

50 136.8 ± 7.7 0.60 ± 0.02 320 ± 20

In the last column, the value of the total depth of the subsurface zone defined as the depth, where the only single value 
of the positron lifetime equal to the bulk value is resolved.

Table 1. The values of the adjustable parameters from Eq. (8) which was fitted to the experimental points in Figure 7, 

where the trapping rate as a function of depth is depicted [20].

Figure 7. The trapping rate obtained from the positron lifetime spectra, i.e. Eq. (7) as the function of the depth from the 

worn surface for different loads applied during the test [20]. The tribo test lasted for 1 min for all samples. The solid lines 

represent the best fit of Eq. (8) to the experimental points, and the adjustable parameters are given in Table 1.
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Unfortunately, the lack of data regarding the positron trapping efficiency rate for pure bis-

muth excludes calculations of the absolute value of the vacancy cluster concentration in the 

subsurface zone. Nevertheless, we can state that concentration of vacancy clusters decreases 

exponentially with the depth increase.

6. The workhardening zone in bismuth

The microhardness profile on the cross section of the bismuth sample exposed to dry 
sliding allows us to detect the workhardening zone. The Vickers microhardness was mea-

sured using Zeiss (Neophot 30) microscope at the load of 10 g at different depths from the 
worn surface.

The only small increase of the microhardness in the layer adjoined the worn surface is 

observed, Figure 8, which only slightly exceeds the error bar. Additionally, the total depth 

profile is shallower than those detected by positrons, Figure 7. The microhardness profile 
range is less than 150 μm, Figure 6a, whereas the range detected by positrons, Figure 7, 

is about 200 μm. This difference can occur as a result of the fact that the microhardness 
indenter interacts with large regions of the sample in comparison to the atomic scale and 

is insensitive to the presence of point defects. One should emphasize very week increase 

of the microhardness in the layer adjoining the worn surface in comparison for example 

to the case of stainless steel [27] or iron [24]. In the former, the microhardness increases by 

the factor of about two in comparison to the bulk region. Probably this is the reason that 

bismuth is not used in frictional junctions, however, recent observations have shown that 

aluminum alloy containing dispersed bismuth nanoparticles exhibits better wear resistance 
and frictional properties than aluminum alloy with embedded lead nanoparticles [28]. Both 

are promising as bearing material.

Figure 8. The depth profile of the Vickers microhardness measured on the cross section of the bismuth sample exposed 
to dry sliding against the rotating disc with the load of 15 N [21].
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