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Abstract

Numerical simulation of complex and heterogeneous electronic systems can be a very
challenging issue. Circuits composed of a combination of analog, mixed-signal and digital
blocks or even radio frequency (RF) blocks, integrated in the same substrate, are very
difficult to simulate as a whole at the circuit level. The main reason is because they contain
a lot of state variables presenting very distinct properties and evolving in very widely
separated time scales. Examples of practical interest are systems-on-a-chip (SoCs), very
common in mobile electronics applications, as well as in many other embedded electronic
systems. This chapter is intended to briefly review some advanced circuit-level numerical
simulation techniques based on circuit-block partitioning schemes, which were especially
designed to address the simulation challenges brought by this kind of circuits into the
computer-aided-design (CAD) field.

Keywords: numerical simulation, electronic systems, multirate schemes, circuit-block
partition

1. Introduction

Electronic circuit simulation has emerged in the 1970s, triggered by the necessity of engineers

having a tool to help in design and analysis of integrated circuits (ICs). Since probing internal

nodes of semiconductor chips is extremely difficult, or even prohibitive in almost all cases,

manufacturing integrated circuits having no help of a simulation tool would lead to an

unbearable set of successive physical prototypes until a final solution was achieved. A simula-

tion package combining device modeling and numerical simulation will help engineers to verify

correctness and debug circuits during their design, avoiding physical prototyping and reducing

product development expenses. Over the years, the continuous scaling of semiconductor devices

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and the increasing complexity of electronic architectures have been making CAD tools more

and more important for circuits and systems designing. Demands for continuously providing

new systems’ functionalities, lower-power consumptions or higher transmission rates (e.g., RF

and microwave communication systems) are typical requisites that have led to a complex

scenario of highly heterogeneous electronic systems. Conventional algorithms are not capable

of simulating such kind of electronic systems in an efficient way. The justification for such

ineffectiveness relies on the fact that standard simulation techniques do not perform any

distinction between nodes or blocks within the circuits, treating all the variables in the same

manner. This causes all the blocks of the circuit (analog, mixed-signal, digital or RF blocks) to

be computed with the same numerical scheme, without taking their nature into consideration.

To cope with this scenario, some advanced numerical simulation algorithms based on circuit-

block partition have been proposed in recent years in the scientific literature. The most impor-

tant ones are briefly reviewed in this chapter.

2. Review of basic circuit simulation concepts

2.1. Mathematical modeling of electronic systems

Dynamic behavior of electronic systems is modeled as systems of differential algebraic equa-

tions (DAEs) involving voltages, currents, charges and fluxes. These systems are usually

obtained via nodal analysis, or modified nodal analysis (MNA), which consists of applying

the Kirchhoff’s current law (KCL) to each electrical node and writing the branch currents in

terms of the circuit node voltages using the corresponding constitutive relations to each circuit

element. Such systems have, in general, the following form:

p y tð Þð Þ þ
dq y tð Þð Þ

dt
¼ x tð Þ, (1)

in which x tð Þ∈Rn is the vector of independent stimuli (voltage or current sources) to the

circuit, y tð Þ∈Rn is the vector of unknowns (voltages and currents waveforms) and n is the

total number of unknowns. p : R
n ! R

n describes the memoryless elements in the circuit

(linear and nonlinear elements, as resistors, nonlinear voltage-controlled current sources, etc.),

while q : R
n ! R

n models all linear and nonlinear reactive circuit elements, as capacitors or

inductors, represented as voltage-dependent electric charges or current-dependent magnetic

fluxes, respectively.

Applying the chain differentiation rule to the reactive term of the DAE system of (1), we are

able to obtain

dq yð Þ

dy

dy tð Þ

dt
¼ x tð Þ � p y tð Þð Þ, (2)

or,
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M y tð Þ½ �
dy tð Þ

dt
¼ x tð Þ � p y tð Þð Þ, (3)

whereM y tð Þ½ � is habitually denoted as the mass matrix. IfM y tð Þ½ � is invertible then it is possible

to convert (3) into the following ordinary differential equations’ (ODE) system,

dy tð Þ

dt
¼ M y tð Þ½ ��1 x tð Þ � p y tð Þ½ �ð Þ, (4)

which can be rewritten in the classical form

dy tð Þ

dt
¼ f t; y tð Þð Þ, (5)

ordinarily utilized in the mathematical literature. When M y tð Þ½ � is singular, the DAE system of

(3) will not degenerate into a ODE system, but it is often possible to express it as a set of

algebraic equations combined with a set of differential equations of the form of (5).

2.2. Classic SPICE-like simulation

The most natural way of simulating the dynamic behavior of an electronic circuit is to numer-

ically time-step integrate, in time domain, the DAE system, or the ODE system, modeling its

operation. This means that the solution of (1), or (5), has to be computed over a specified time

interval t0; tFinal½ � from a specific initial condition y t0ð Þ ¼ y0, leading to the so-called initial value

problems

p y tð Þð Þ þ
dq y tð Þð Þ

dt
¼ x tð Þ, y t0ð Þ ¼ y0, t0 ≤ t ≤ tFinal, y tð Þ∈Rn, (6)

or

dy tð Þ

dt
¼ f t; y tð Þð Þ, y t0ð Þ ¼ y0, t0 ≤ t ≤ tFinal, y tð Þ∈Rn

: (7)

Computing the solution of (6), or (7), is frequently referred to as transient analysis and can be

done by using initial value solvers, such as linear multistep methods (LMM) [1] or one-step

methods (the popular Runge-Kutta (RK) schemes) [2, 3]. Either LMM or RK methods offer a

large variety of explicit and implicit schemes, with very distinct properties in terms of order

(accuracy) and numerical stability.

This time-step integration technique was used in the first digital computer programs of circuit

analysis initially developed at the Electronics Research Laboratory of the University of California,

Berkeley, in the early 1970s, and is still today the most widely used technique for such purpose. It

is the core of all SPICE (which means Simulation Program with Integrated Circuit Emphasis) or

SPICE-like computer programs, available in many commercial simulators.
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2.3. Periodic steady-state simulation

As described earlier, SPICE-like simulation tools are primarily focused on transient analysis.

However, in some cases electronics designers are essentially interested in obtaining circuits’

steady-state responses and not their transient regimes. The reason for that is because some

specific properties of the circuits are better characterized, or simply only defined, in steady-state

(e.g., impedance, voltage gain, current gain, harmonic distortion, signal to noise ratio, etc.).

SPICE tools are not adequate for computing steady-state responses of circuits presenting very

different time constants, or high Q resonances, as is typically the case of RF and microwave

circuits. This is so because they have to pass through the lengthy process of integrating all

transients, and expecting them to vanish. Indeed, in such cases time-step integration can be

extremely inefficient, since the number of discretization time steps used by the numerical

integration scheme will be dramatically enormous. This is because the time interval over which

the differential equations must be numerically integrated is set by the lowest frequency, or by

how long the circuit takes to achieve steady-state, while the length of the time steps is

constrained by the highest frequency component.

Periodic steady-state response of an electronic circuit is a regime where its unknowns are a set

of generic waveforms (node voltages and branch currents) presenting a common period.

Computing the periodic steady-state response, without having to first integrate all the tran-

sients, consists of finding the initial condition, y t0ð Þ, for the DAE, or ODE, system describing

the circuit’s operation, such that the values of the unknowns at the end of one period Tmatch

their values at the beginning of that period, that is to say, y t0ð Þ ¼ y t0 þ Tð Þ. These problems

(evaluating the solution to a differential system that satisfies constraints at two or more distinct

time instants) are referred to as boundary value problems. In this case, we have a periodic boundary

value problem that can be formulated as:

p y tð Þð Þ þ
dq y tð Þð Þ

dt
¼ x tð Þ, y t0ð Þ ¼ y t0 þ Tð Þ, t0 ≤ t ≤ t0 þ T, y tð Þ∈Rn, (8)

or, in the ODE form, as

dy tð Þ

dt
¼ f t; y tð Þð Þ, y t0ð Þ ¼ y t0 þ Tð Þ, t0 ≤ t ≤ t0 þ T, y tð Þ∈Rn, (9)

in which y t0ð Þ ¼ y t0 þ Tð Þ is known as the periodic boundary condition.

The most widely used techniques for computing the periodic steady-state solution of electronic

circuits are briefly reviewed in the following: the shooting-Newton method [4] and the har-

monic balance method [5, 6].

2.3.1. The shooting-Newton method

The shooting-Newton method [4] is the time-domain technique most commonly used by the

electronic design automation (EDA) community for computing periodic steady-state solutions

of electronic circuits. Shooting-Newton is an iterative technique that: (1) starts by computing

the solution of the circuit for one period T using a LMM or RK integrator, considering some
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guessed initial condition (which is in general determined from a previous DC analysis); (2)

then the computed solution at the end of the period is checked, and if it does not agree with the

initial condition, the initial condition is wisely updated and (3) the circuit is then re-simulated

for one period with the adjusted initial condition, and this process is repeated until the solution

at the end of the period matches the initial condition.

Shooting is an iterative solver that uses an initial value technique to solve a boundary value

problem. With the purpose of providing some technical details on the implementation of the

shooting-Newton method, let us consider (8). Since with shooting, we perform numerical time-

step integration of the DAE system from t ¼ t0 until t ¼ t0 þ T, the main difficulty is that we

do not know a priori for which initial condition y t0ð Þ has to be considered that will lead to the

steady-state solution, that is, that will satisfy the periodic boundary condition y t0ð Þ ¼

y t0 þ Tð Þ. Thus, the key aspect of shooting-Newton relies on finding the solution of

y t0ð Þ ¼ y t0 þ Tð Þ⇔ y t0ð Þ � y t0 þ Tð Þ ¼ 0: (10)

Let us now define ϕ y t0ð Þ;Tð Þ ¼ y t0 þ Tð Þ, where ϕ is known as the state-transition function [4, 7],

and rewrite (10) as

ϕ y t0ð Þ;Tð Þ � y t0ð Þ ¼ 0: (11)

Although electronic circuits may operate in strongly nonlinear regimes, their state-transition

functions are often moderately nonlinear (or even quite linear). This means that slight pertur-

bations on the initial condition (starting state) produce almost proportional perturbations in

the subsequent time states. Taking this aspect into account, it is straightforward to conclude

that (11) can be iteratively solved in an efficient way with the Newton’s method, which will

lead to the following iterative scheme:

ϕ y
r½ � t0ð Þ;T

� �

� y
r½ � t0ð Þ þ

∂ϕ y r½ � t0ð Þ;T
� �

∂y t0ð Þ
� I

" #�

�

�

�

�

y t0ð Þ¼y r½ � t0ð Þ

y
rþ1½ � t0ð Þ � y

r½ � t0ð Þ
h i

¼ 0, (12)

where I is the n� n identity matrix. The cost of the solution of the linear system of (12) is

dominated by the computational effort required to evaluate the derivative of the state-

transition function (usually referred to as the sensitivity matrix). This matrix is computed taking

into account the chain differentiation rule, that is, taking into consideration that ϕ y t0ð Þ;Tð Þ is,

in fact, the numerical vector yK, with K being the total number of time steps in the interval

t0; t0 þ T½ �, which depends on the previous step value yK�1, which, itself, depends on yK�2, and

so forth. The sensitivity matrix is then given by

∂ϕ y t0ð Þ;Tð Þ

∂y t0ð Þ
¼

∂yK

∂yK�1

�
∂yK�1

∂yK�2

�⋯ �
∂y1

∂y0

: (13)

Although solving (12) and computing the sensitivity matrix (13) involve substantial computa-

tional cost, shooting-Newton converges to the steady-state solution much faster than classic

time-step integration. This is the reason why it is the time-domain steady-state engine most

widely used in the circuit simulation field.
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2.3.2. The harmonic balance method

The harmonic balance (HB) method [4–6] is a frequency domain steady-state simulation

technique widely used by the EDA community. In contrast to time domain tools, which

represent waveforms as a set of time samples, frequency domain techniques represent periodic

signals using coefficients in a sum of complex exponentials (or sines and cosines) harmonically

related. The main advantage of HB over time-domain techniques (e.g., shooting-Newton) is

that it can represent steady-state solutions (voltage and current waveforms) very accurately

using a small number of coefficients. This is especially evident for moderately nonlinear

circuits excited by smooth waveforms, in which significant reductions in the computational

cost are achieved when HB is used as the simulation tool. However, it must be noted that HB is

not suitable for dealing with strongly nonlinear regimes producing waveforms with sharps

transitions. In such case, the large number of terms required in the Fourier series expansions

will make HB very inefficient.

With the purpose of providing a brief and intuitive explanation of the HB method, let

us consider (8). For achieving simplicity in our formulation, let us consider a very small

circuit driven by a single periodic source x tð Þ∈R satisfying x tð Þ ¼ x tþ Tð Þ and whose

dynamic behavior is described by a unique unknown, y tð Þ∈R (the generalization to

x tð Þ∈Rn, y tð Þ∈Rn is straightforward). Given that the steady-state regime of the circuit will

be periodic with the same period T, both the stimulus and the steady-state solution can be

represented as the Fourier series

x tð Þ ¼
X

þ∞

k¼�∞

Xke
jkω0t, y tð Þ ¼

X

þ∞

k¼�∞

Yke
jkω0t, (14)

in which ω0 ¼ 2π=T is the fundamental frequency. If we substitute (14) into (8), and consider

an appropriate harmonic truncation at some order k ¼ K, we will obtain

p
X

þK

k¼�K

Yke
jkω0t

 !

þ
d

dt
q
X

þK

k¼�K

Yke
jkω0t

 !" #

¼
X

þK

k¼�K

Xke
jkω0t: (15)

The HB method converts the differential problem of (8) into the frequency domain, obtaining

the 2K þ 1ð Þ algebraic equations system

F Yð Þ ¼ P Yð Þ þ jΩQ Yð Þ � X ¼ 0 (16)

where Y ¼ Y�K;…;Y0;…;YK½ �T , X ¼ X�K;…;X0;…;XK½ �T , jΩ ¼ diag �jKω0;…; 0;…; jKω0ð Þ.

and P, Q are vectors containing the Fourier coefficients of p y tð Þð Þ and q y tð Þð Þ, respectively. The

algebraic equations system of (16) is usually denoted as the harmonic balance system, which can

be iteratively solved using the Newton method

F Y r½ �
� �

þ
dF Yð Þ

dY

�

�

�

�

Y¼Y r½ �

Y rþ1½ � � Y r½ �
h i

¼ 0, (17)
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in which

dF Yð Þ

dY
¼ J Yð Þ ¼ G Yð Þ þ jΩC Yð Þ (18)

is the 2K þ 1ð Þ � 2K þ 1ð Þ composite conversion matrix, known as the Jacobian matrix of the

error function F Yð Þ. G and C denote the 2K þ 1ð Þ � 2K þ 1ð Þ conversion matrices (Toeplitz) [7]

corresponding to g y tð Þð Þ ¼ dp y tð Þð Þ=dy and c y tð Þð Þ ¼ dq y tð Þð Þ=dy.

3. Univariate time-domain partitioned simulation engines

3.1. Time-domain latency

As highlighted in the Introduction of this chapter, dynamic regimes of operation of some

electronic systems may involve signals (voltages and currents) presenting widely distinct time

evolution rates. Typical examples of that are coupled analog-digital systems or combined tech-

nologies of baseband analog, digital and RF blocks, in the same circuit. In these examples, very

fast signals and slowly varying signals cohabit in the same framework. This property, the one of

having in the same problem signals presenting rapid time rates of change, while others evolve in

a very slow way (or remain approximately constant within a certain time window) is usually

denoted as time-domain latency. It must be pointed out that time-domain latency is a phenomenon

that is not restricted to heterogeneous circuits. For instance, regimes of operation of pure digital

electronic systems typically present a set of variables remaining practically constant within a

specific time interval, while others evidence quick variations (fast transitions) in that interval.

In Section 2, we have seen that SPICE-like simulation engines (which are based on time-step

integration schemes) are widely used for computing the numerical solution of electronic

systems. However, when dealing with circuits presenting time-domain latency, that is,

containing node voltages and brunch currents evolving at very different rates, traditional

SPICE simulators become inefficient because they expend unnecessary work on the computa-

tion of the slowly varying components. This is so because classic initial value solvers (as LMM

or RK schemes) integrate all the DAE, or ODE, unknowns with the same step size.

3.2. Partitioned algorithms for time-step integration

To deal with the earlier described time-domain latency in an effective way, some modern

partitioned algorithms for univariate time-step integration have been proposed in the recent

years in the scientific literature [8–10]. These powerful techniques, denoted as multirate Runge-

Kutta (MRK) schemes, split the ODE system of (5) into coupled fast and slow (latent) sub-

systems, obtaining

dyF tð Þ

dt
¼ f F t; yF; yL

� �

, yF t0ð Þ ¼ yF,0

dyL tð Þ

dt
¼ f L t; yF; yL

� �

, yL t0ð Þ ¼ yL,0,

(19)
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with

y ¼
yF
yL

� �

, yF ∈R
nF , yL ∈R

nL , nF þ nL ¼ n, (20)

where yF is the vector containing the fast-varying signals and yL is the vector holding the slowly

varying (latent) ones. The former will be integrated with a small step length h (microstep),

whereas the latter will be integrated with a large step size H (macrostep). The number of

microsteps within each macrostep is an integer that we will denote by m. Hence, H ¼ m � h. The

generic formulation of a MRK scheme is given in the following [8, 9].

Consider two Runge-Kutta methods of s and s stages represented by their Butcher tableaus [2]

b;A; cð Þ and b;A; c
� �

,

ð21Þ

The MRK method conceived for efficiently computing the numerical solution of the

partitioned differential system of (19), using a microstep h for integrating the fast unknowns

and a macrostep H for integrating the latent unknowns, is defined as follows [8, 9].

The fast-varying vector is obtained by

yF t0 þ λhþ hð Þ≃ yF,λþ1 ¼ yF,λ þ h
X

s

i¼1

bik
λ

F, i,

λ ¼ 0, 1,…, m� 1,

(22)

kλF, i ¼ f F t0 þ λhþ cih; yF,λ þ h
X

s

j¼1

aijk
λ

F, j;
~Y λ

L, i

0

@

1

A,

i ¼ 1, 2,…s,

(23)

with ~Y λ

L, i ≃yL t0 þ λhþ cihð Þ:

The slowly varying vector is given by

yL t0 þHð Þ≃yL,1 ¼ yL,0 þH
X

s

i¼1

bikL, i, (24)

kL, i ¼ f L t0 þ ciH;

~Y F, i; yL,0 þH
X

s

j¼1

aijkL, j

0

@

1

A,

i ¼ 1, 2,…, s,

(25)

with ~Y F, i ≃yF t0 þ ciHð Þ.
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From this definition we can attest that numerical coupling between fast and slow differential

subsystems is achieved by ~Y
λ

L, i and
~Y F, i. Effective stratagems for computing these intermediate

stage values are proposed in [8, 9].

3.3. Circuit-block partitioning strategy

Wemust be aware that circuit-block partition into fast and slow subsystems can possibly change

during the time-step integration process. Hence, it will be very helpful if the simulator is capable

of automatically detect the slow and fast variables in the circuit. This automatic classification can

be achieved using embedded RK methods [2] and error estimates usually evaluated for step size

control and stiffness detection [3]. Fast-slow partitioning strategies, step size control tools, num-

ber of microsteps within a macrostep, stiffness detection stratagems and many other technical

details of MRK code implementation are thoroughly addressed in [8–10] and also in [11].

Finally, it must be pointed out that significant efficiency gains in computation speed for the

simulation of several illustrative examples have been reported in the scientific literature, which

demonstrate an effective reduction on the MRK computational cost in comparison to tradi-

tional SPICE simulation engines.

4. Multitime partitioned simulation engines

This section is devoted to briefly review some advanced circuit-block partitioning numerical

simulation techniques operating in a multivariate time-domain framework. Section 4.1 introduces

the multivariate formulation theory, in which the 1-D time is converted into a set of artificial time

variables. Section 4.2 addresses some fundamental aspects of the numerical simulation algo-

rithms. Finally, Section 4.3 describes some techniques for automatic circuit-block partition.

4.1. Multivariate formulation

The multivariate formulation is a useful stratagem that plays an important role in the EDA

scientific community, especially in the RF and microwave areas. It was initially introduced in

1996 [12] as a sophisticated derivation of quasi-periodic HB, and it has been adopted by other

researchers (e.g., [13–19]), which have demonstrated that it can be an efficient strategy when

dealing with electronic circuits operating on widely distinct time scales. The success of multivar-

iate formulation relies on the fact that voltages and currents containing components that evolve

themselves at two, or more, widely separated rates of variation can be represented much more

efficiently if we define them as functions of two, or more, time variables (artificial time scales).

With this stratagem all signals (stimuli and responses) will be represented as multivariate func-

tions, which will imply that dynamic behavior of the circuits will no longer be modeled by DAE,

or ODE, systems formulated in the 1-D time. It will be described by partial differential systems.

In order to provide a simple and illustrative mathematical description of the multivariate

formulation let us consider the classical example of a generic nonlinear RF circuit driven by

an envelope modulated signal of the form
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x tð Þ ¼ e tð Þ cos ωCtþ ϕ tð Þ
� �

, (26)

where e tð Þ and ϕ tð Þ are, respectively, the amplitude and phase slowly varying baseband signals

(envelope), modulating the cos ωCtð Þ fast-varying carrier. Computing the numerical solution

of such circuit using conventional 1-D time-step integrators (RK methods or LMM methods) is

very expensive. This is so because the response of the circuit has to be evaluated during a long

time window defined by the slowly varying envelope, wherein the time-step size is severely

restricted by the high frequency carrier. Taking into consideration the disparity between the

baseband and the carrier time scales, and assuming that they are also uncorrelated, which is

typically true, we are able to rewrite (26) as a bivariate function

bx t1; t2ð Þ ¼ e t1ð Þ cos ωCt2 þ ϕ t1ð Þ
� �

, (27)

where t1 is the slow baseband artificial time scale and t2 is the fast carrier artificial time scale. It

must be noted that bx t1; t2ð Þ is a periodic function with respect to t2 but not to t1, that is,

bx t1; t2ð Þ ¼ bx t1; t2 þ T2ð Þ, T2 ¼ 2π=ωC: (28)

This means that a generic 1-D 0; tFinal½ � time interval will be mapped into a 2-D 0; tFinal½ � � 0;T2½ �

rectangular domain. It is easy to attest that, in general, the number of points required to

represent bx t1; t2ð Þ in 0; tFinal½ � � 0;T2½ � is much less than the number of points needed to repre-

sent x tð Þ in 0; tFinal½ �. This is especially evident when the t1 and t2 time scales are widely

separated [13, 14].

Let us now consider the DAE system of (1) modeling the dynamic behavior of a generic RF

circuit excited by the envelope modulated signal of (26). Taking the abovementioned into

account, we will adopt the following procedure for the vector-valued functions x tð Þ and y tð Þ: t

is replaced by t1 in the slowly varying entities (envelope time scale) and t is replaced by t2 in

the fast-varying entities (RF carrier time scale). The application of this stratagem will turn the

DAE system of (1) into the following partial differential system

p by t1; t2ð Þð Þ þ
∂q by t1; t2ð Þð Þ

∂t1
þ

∂q by t1; t2ð Þð Þ

∂t2
¼ bx t1; t2ð Þ, (29)

usually denoted as multirate partial differential algebraic equations’ (MPDAE) system [13, 14]. It is

easy to demonstrate that, if bx t1; t2ð Þ and by t1; t2ð Þ satisfy (29), then the univariate forms

x tð Þ ¼ bx t; tð Þ and y tð Þ ¼ by t; tð Þ satisfy (1) [13]. Thus, y tð Þ may be retrieved from its bivariate

form by t1; t2ð Þ by simply setting t1 ¼ t2 ¼ t, meaning that univariate solutions of (1) are avail-

able on diagonal lines t1 ¼ t, t2 ¼ t, along the bivariate solutions of (29). In truth, attending

to the periodicity of the problem in the t2 time dimension, the univariate version of the vector

containing the circuit responses is obtained from its bivariate representation on the rectangular

domain 0; tFinal½ � � 0;T2½ � as

y tð Þ ¼ by t; tmodT2ð Þ, (30)
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where tmodT2 represents the remainder of division of t by T2.

The generalization of the bivariate strategy to a multidimensional problem with more than two

time scales is straightforward. In fact, if the signals in the circuit present m separate rates of

change, then m time scales will be used. In that case (29) assumes the generic form

p by t1; t2;…; tmð Þð Þ þ
∂q by t1; t2;…; tmð Þð Þ

∂t1
þ⋯þ

∂q by t1; t2;…; tmð Þð Þ

∂tm
¼ bx t1; t2;…; tmð Þ, (31)

and the univariate solution, y tð Þ, may be recovered from its multivariate form, by t1; t2;…; tmð Þ,

by setting t1 ¼ t2 ¼ ⋯ ¼ tm ¼ t.

4.2. Partitioned algorithms for envelope following computation

The main advantage of the earlier described MPDAE approach is that it can result in signifi-

cant improvements in simulation speed when compared to DAE-based alternatives [13–15].

However, by itself this approach does not perform any distinction between nodes or blocks in

the circuit under analysis. In fact, in the first multivariate circuit simulation schemes initially

introduced in [12], and then in [13], the same numerical algorithm was used to compute all the

unknowns of the circuit. Only a few years later other advanced multivariate algorithms were

proposed (e.g., [16–19]) in way to take into account possible circuit’s heterogeneities. These

algorithms are based on circuit-block partitioning stratagems defined within the multivariate

frameworks. The most important ones regarding pure time-domain operations are briefly

reviewed in the following.

As stated earlier, envelope modulated regimes are typical cases of practical interest. Comput-

ing responses to excitations of the form of (26) is a technique generally referred to as envelope

following, which correspond to a combination of initial and periodic boundary conditions in the

bivariate framework, leading to the following initial-boundary value problem

p by t1; t2ð Þð Þ þ
∂q by t1; t2ð Þð Þ

∂t1
þ

∂q by t1; t2ð Þð Þ

∂t2
¼ bx t1; t2ð Þ

by 0; t2ð Þ ¼ g t2ð Þ

by t1; 0ð Þ ¼ by t1;T2ð Þ

(32)

defined on the rectangular domain 0; tFinal½ � � 0;T2½ �. g �ð Þ is a vector-valued initial-condition

satisfying g 0ð Þ ¼ g T2ð Þ ¼ y 0ð Þ, and by t1; 0ð Þ ¼ by t1;T2ð Þ is the periodic boundary condition due

to the periodicity of the problem in the t2 fast time scale. In order to solve this initial-boundary

value problem let us begin to consider the following semi-discretization of 0; tFinal½ � � 0;T2½ � in

the t1 slow time dimension defined by

0 ¼ t1,0 < t1,1 < ⋯ < t1, i�1 < t1, i < ⋯ < t1,K1
¼ tFinal, h1, i ¼ t1, i � t1, i�1, (33)
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in which K1 is the total number of steps in t1. Now, using a backward differentiation formula

(BDF) [1] to approximate the t1 derivatives of the MPDAE (for simplicity let us consider here

the Gear-2 rule [1]), we obtain for each slow time instant t1, i, from i ¼ 1 to i ¼ K1, the periodic

boundary value problem defined by

p by
i
t2ð Þ

� �
þ
3q byi t2ð Þð Þ � 4q byi�1 t2ð Þð Þ þ q byi�2 t2ð Þð Þ

2h1, i
þ
dq byi t2ð Þð Þ

dt2
¼ bx t1, i; t2ð Þ,

by
i
0ð Þ ¼ by

i
T2ð Þ,

(34)

where by
i
t2ð Þ≃ by t1, i; t2ð Þ. This means that, once by

i�1 t2ð Þ is known, the solution on the next slow

time instant, by
i
t2ð Þ, is obtained by solving (34). Hence, a set of K1 boundary value problems have

to be solved for obtaining the whole bivariate solution in the entire domain 0; tFinal½ � � 0;T2½ �. A

very powerful technique has been proposed in the literature for solving each of the periodic

boundary problems defined by (34) in an efficient way [16, 17]. This technique uses shooting-

Newton based on MRK schemes. It splits the circuits into two distinct subsets according to the

time evolution rates of their voltages and currents and performs time-step integration with

different step lengths in each of the consecutive shooting iterations needed to solve (34). For that

(34) is firstly divided into the following coupled fast-slow subsystems

pF by
F, i t2ð Þ; by

L, i t2ð Þ
� �

þ
3qF byF, i t2ð Þ; byL, i t2ð Þð Þ � 4qF byA, i�1 t2ð Þ; byL, i�1 t2ð Þð Þ þ qF byF, i�2 t2ð Þ; byL, i�2 t2ð Þð Þ

2h1, i

þ
dqA byF, i t2ð Þ; byL, i t2ð Þð Þ

dt2
¼ bx t1, i; t2ð Þ,

pL by
F, i t2ð Þ; by

L, i t2ð Þ
� �

þ
3qL byF, i t2ð Þ; byL, i t2ð Þð Þ � 4qL byF, i�1 t2ð Þ; byL, i�1 t2ð Þð Þ þ qL byF, i�2 t2ð Þ; byL, i�2 t2ð Þð Þ

2h1, i

þ
dqL byF, i t2ð Þ; byL, i t2ð Þð Þ

dt2
¼ bx t1, i; t2ð Þ,

(35)

with

by
i
t2ð Þ¼

by
F, i t2ð Þ

by
L, i t2ð Þ

" #

, by
F, i t2ð Þ∈RnF , by

L, i t2ð Þ∈RnL , nF þ nL ¼ n: (36)

by
F, i t2ð Þ is the vector containing the fast-varying circuit variables at the slow time instant t1, i,

and by
L, i t2ð Þ is the vector holding the slowly varying ones at the same slow time instant. The

former will be integrated in t2 with a small step size h2, while the later will be integrated with a

much larger step size H2.

4.3. Circuit-block partitioning strategy

Since the partition of the electronic system in fast and slow subsystems may dynamically vary

with time, it will be of great usefulness if the simulation algorithm is capable of automatically
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detecting the fast-varying and the slowly varying signals. The approach adopted in [16, 17] for

that purpose is briefly described in the following.

As mentioned earlier, each of the periodic boundary value problems defined by (34) is solved

using shooting-Newton based on multirate time-step integrators (MRK schemes). Now, taking

into account that shooting is an iterative technique, the key idea of this partitioning strategy is

to use a uni-rate scheme on the first shooting iterations needed for each time line t1, i � 0;T2½ � of

the 0; tFinal½ � � 0;T2½ � rectangular domain. For that, it starts by considering m ¼ 1 in the adopted

MRK scheme, so that it degenerates into a standard uni-rate RK scheme. This means that all

the unknowns (voltages or currents) will be integrated in t2 with the same microstep h2. After

that, the differential system of (34) is partitioned into (35) according to the variations in the t2
derivatives of the unknowns. Each unknown that practically evidences no variations in its t2
time derivatives for the entire time line t1, i � 0;T2½ �, that is, each unknown that satisfies the

condition

max slopej

� �
�min slopej

� ����
��� < Tol, (37)

where and Tol is a small specified tolerance, will be treated as slow on the next shooting

iterations. The remaining unknowns will be treated as fast. In a cheap scheme within a uniform

grid each slope can be simply given by

slopej ¼ byi t2, j þ h2
� �

� byi t2, j
� �	 


=h2, t2, j ∈ 0; h2; 2h2;…;T2 � h2f g: (38)

All the subsequent shooting iterations on the time line t1, i � 0;T2½ � will be conducted in a

multirate way using different step sizes. In a nonuniform grid, step sizes h2 and H2 ¼ m � h2
may be chosen using any step-size control tool. In a uniform grid, they can be predefined or

successively refined to achieve a desired accuracy.

The robustness of this partitioning strategy can be improved if more than one shooting

iteration with the uni-rate scheme is considered for each time line t1, i � 0;T2½ �. However, such

tactic will obviously conduct to some extra computational cost, turning the overall algorithm

to be a little less efficient.

Finally, to conclude this section, it must be highlighted that although efficiency gains are

essentially dependent on the ratio between the number of slow and fast signals, significant

reductions on the computational effort were reported in the scientific literature (e.g., [16, 17])

for the simulation of several illustrative examples of practical interest using the envelope

following bivariate partitioned techniques.

5. Hybrid time-frequency partitioned techniques

This section is intended to provide a brief description of powerful circuit-block partitioning

numerical simulation techniques operating in multivariate hybrid time-frequency frameworks.

Section 5.1 introduces the fundaments of multivariate hybrid envelope following. Section 5.2
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addresses some basic details of the simulation algorithms and finally, Section 5.3 describes the

approach for automatic circuit-block partition.

5.1. Multivariate hybrid envelope following

Let us once again consider the initial-boundary value problem of (32) characterizing the bivariate

nature of an electronic circuit operating at two widely separated time scales. Let us also consider

the semi-discretization of the 0; tFinal½ � � 0;T2½ � rectangular domain, which has led to the set of

periodic boundary value problems defined by (34). When waveforms are not excessively

demanding on the quantity of harmonic components needed for an accurate frequency domain

representation, we are able to use the HBmethod for efficiently computing the solution of (34). In

such case we will obtain for each time line t1, i � 0;T2½ � the following HB system

P bY t1, ið Þ
� �

þ
3Q bY t1, ið Þ

� �
� 4Q bY t1, i�1ð Þ

� �
þQ bY t1, i�2ð Þ

� �

2h1, i
þ jΩQ bY t1, ið Þ

� �
¼ bX t1, ið Þ, (39)

in which bX t1, ið Þ is a 2K þ 1ð Þ � n vector containing the Fourier coefficients of the stimuli

(independent sources) and bY t1, ið Þ a 2K þ 1ð Þ � n vector containing the Fourier coefficients of

the unknowns (node voltages and brunch currents’ waveforms), at t1 ¼ t1, i. K is the maximum

harmonic order and n is the number of unknowns. In order to obtain the solution in the entire

0; tFinal½ � � 0;T2½ � rectangular domain a total of K1 HB systems have to be solved.

With this hybrid time-frequency approach we have an envelope following technique that

handles the slow variations of the unknowns in the time domain and their fast variations in

the frequency domain. This technique, usually denoted as multivariate envelope transient har-

monic balance [20, 21], is able to exploit the existence of time-rate disparities in circuits operat-

ing under moderately nonlinear regimes of operation.

5.2. Partitioned algorithms for hybrid envelope following computation

The hybrid time-frequency envelope following technique presented earlier does not perform

any distinction between nodes or blocks in the circuit. Although it has been widely used,

especially by the RF and microwave community, only a few years ago other versions regarding

circuit-block partition were proposed [18, 19] in way to take into account possible circuit’s

heterogeneities. The most important aspects of these partitioning techniques are briefly

reviewed in the following.

Let us rewrite (39) as

F bY t1, ið Þ
� �

¼ P bY t1, ið Þ
� �

þ
3Q bY t1, ið Þ

� �
� 4Q bY t1, i�1ð Þ

� �
þQ bY t1, i�2ð Þ

� �

2h1, i

þ jΩQ bY t1, ið Þ
� �

� bX t1, ið Þ ¼ 0:

(40)
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The Newton iterative solver is usually utilized to solve (40), leading to

F bY
r½ �
t1, ið Þ

� �
þ
dF bY t1, ið Þ

� �

dbY t1, ið Þ

������bY t1, ið Þ¼bY
r½ �

t1, ið Þ

bY
rþ1½ �

t1, ið Þ � bY
r½ �
t1, ið Þ

� �
¼ 0, (41)

which implies that for computing bY
rþ1½ �

t1, ið Þ from the previous estimate bY
r½ �
t1, ið Þ we have to

solve a linear system composed of n� 2K þ 1ð Þ equations. The system of (41) involves the so-

called Jacobian matrix of F bY t1, ið Þ
� �

, which has a block structure, consisting of an n� n matrix

of square submatrices (blocks), each one with dimensions 2K þ 1ð Þ � 2K þ 1ð Þ. The general

block of row m and column l can be expressed as

dFm bY t1, ið Þ
� �

dbYl t1, ið Þ
¼

dPm
bY t1, ið Þ

� �

dbYl t1, ið Þ
þ

1

h1:i

dQm
bY t1, ið Þ

� �

dbYl t1, ið Þ

þ jΩ
dQm

bY t1, ið Þ
� �

dbYl t1, ið Þ
, l, m ¼ 1, 2,…, n,

(42)

where dPm
bY t1, ið Þ

� �
=dbYl t1, ið Þ and dQm

bY t1, ið Þ
� �

=dbYl t1, ið Þ denote the Toeplitz matrices [7] of the

vectors containing the Fourier coefficients of dpm by t1, i; t2ð Þð Þ=dbyl t1, i; t2ð Þ and dqm by t1, i; t2ð Þð Þ=

dbyl t1, i; t2ð Þ, respectively.

A very powerful technique has been proposed in the literature [18, 19] for solving (41) in an

efficient way. This technique takes into account that, in some cases (e.g., RF heterogeneous

systems), there are parts of the circuits in which there are no fluctuations dictated by the fast

carrier. As a consequence, bidimensional forms by t1; t2ð Þ of voltages and currents in those parts

have no dependence on t2. This means that for each time line t1, i � 0;T2½ � each signal by t1, i; t2ð Þ

has a constant value that can be represented as a Fourier series with a unique k ¼ 0 coefficient.

Thus, while quickly varying signals are represented in the frequency domain by a set of

2K þ 1ð Þ Fourier coefficients, signals in latent (slowly varying) blocks are represented by a

single coefficient. Having this in mind it is straightforward to conclude that the size of vector

bY t1, ið Þwill be significantly reduced, as well as the size (number of equations) of the HB system.

Significant Jacobian matrix size reductions will also be achieved, since some of the submatrices

will no longer be 2K þ 1ð Þ � 2K þ 1ð Þ matrices, but, instead, simple 1� 1 scalar elements. For

instance, let us suppose that the mth component of (40) is a slowly varying signal exclusively

dependent on other slowly varying signals. Let us also suppose that the lth component is also a

slowly varying signal. Then, the Jacobian matrix block of row m and column l will be a 1� 1

block given by

dFm bY t1, ið Þ
� �

dbY l t1, ið Þ
¼

dpm by t1, ið Þð Þ

dbyl t1, ið Þ
þ

1

h1, i

dqm by t1, ið Þð Þ

dbyl t1, ið Þ
: (43)
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It may be noted that this 1� 1 scalar block can be seen as a particular case of the general

2K þ 1ð Þ � 2K þ 1ð Þ block of (42), if K ¼ 0 is assumed as the maximum harmonic order. Actu-

ally, given that dfm by t1, i; t2ð Þð Þ=dbyl t1, i; t2ð Þ is a constant function evidencing no fluctuations in

the t2 fast time scale, the last term of (42) will vanish and there will be no more necessity of

converting the right-hand side terms of (43) into the frequency domain.

Since only fast-varying signals are converted into the frequency domain, this partitioned tech-

nique can be seen as a combination of multivariate envelope transient harmonic balance (by

treating the fast-varying signals in a hybrid time-frequency framework) with a pure time

marching simulation engine (by treating some of the signals in a pure time domain scheme).

Thus, beyond the notorious significant vector and matrix size reductions above mentioned, there

is another important advantage brought by this partitioned technique. For example, in complex

heterogeneous RF systems strongly nonlinear regimes of operation are in general associated to

digital or baseband blocks, whereas moderately nonlinear regimes are typical of RF blocks. With

this partitioned technique signals in digital and baseband blocks are appropriately computed in

the time domain, while signals in RF blocks are treated in the hybrid time-frequency framework.

5.3. Circuit-block partitioning strategy

Similar to what we have mentioned for the methods discussed in the previous sections, it will

be of great utility if the simulator is able to automatically distinguish the fast-varying variables

from the slowly varying ones. We now briefly review the approach addressed in [19] for that

purpose, which splits the circuit into distinct blocks according to the time rates of change of

their voltages and currents.

Let us consider the HB system of (39). As stated earlier, this system has to be solved with the

iterative scheme of (41) for each artificial time line t1, i � 0;T2½ �. The automatic partitioning

strategy proposed in [19] consists in considering all the circuit’s variables as fast on the first

iteration of (41), that is, it consists in initially representing all the unknowns in the frequency

domain as a set of 2K þ 1ð Þ Fourier coefficients. This way, the algorithm starts by computing a

single iteration in (41) to evaluate bY
1½ �
t1, ið Þ

bY
1½ �
t1, ið Þ ¼ bY1

1½ �
t1, ið ÞT ; bY

1½ �

2 t1, ið ÞT ;…; bY
1½ �

n t1, ið ÞT
� �T

, (44)

where each bYv t1, ið Þ, v ¼ 1,…, n, is a 2K þ 1ð Þ � 1 vector defined as

bY
1½ �

v t1, ið Þ ¼ Yv,�K
1½ � t1, ið Þ;…;Yv,0

1½ � t1, ið Þ;…;Yv,K
1½ � t1, ið Þ

h iT
: (45)

Each of the bY 1½ �
v t1, ið Þ is then inspected. If its Fourier coefficients of order k 6¼ 0 are practically

null (their absolute values stay under a very small prescribed tolerance) it will be classified as

slow. Otherwise it will be classified as fast. After this classification, which will temporarily split

the system into fast and slow subsystems, the simulator considers that signals in slow sub-

systems can be represented by a single Fourier coefficient for the remaining iterations needed

to compute the solution of (41).
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Similar to what we have discussed for the method described in Section 4, the robustness of this

partitioning strategy may be improved if more than one iteration in (41) is computed before

the simulator decides which signals are slow and which signals are fast. The main drawback of

such approach is the loss of some efficiency due to the extra computational effort required.

As a final point of this section, we would like to point out that significant gains in computation

speed have been reported in the scientific literature (e.g., [18, 19]) for the simulation of several

illustrative examples of practical interest using these hybrid time-frequency envelope follow-

ing partitioned algorithms.

6. Conclusions

In this chapter, we have briefly reviewed some powerful numerical simulation techniques based

on partitioned stratagems. Such techniques were especially designed to cope with the simulation

challenges brought by emerging electronic technologies to the EDA community, as is the case of

complex heterogeneous electronic systems composed of a combination of different kinds of

circuit blocks (analog, mixed-signal and digital blocks, or even radio frequency blocks) containing

node voltages and brunch currents of very distinct formats and running onwidely separated time

scales. With these partitioned techniques signals within different blocks of the circuits are com-

puted with distinct algorithms and/or step sizes. Considerable reductions on the computational

cost have been registered in several experiments published in the scientific literature (in compar-

ison to previously recognized techniques) without compromising the accuracy of the results.
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