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Abstract

A single-channel pump, which is commonly used for wastewater treatment, with a single-
channel impeller can effectively prevent performance reduction or damage caused by
foreign substances. However, the design methods for this special type of pump are
different and more difficult to realize than those for general pumps. In this chapter, a
state-of-the-art design technique for a single-channel pump is introduced for realizing
high efficiency and low-fluid-induced vibration. In other words, advanced multidis-
ciplinary design optimization techniques combined with unsteady flow analysis are intro-
duced and discussed in detail to simultaneously improve hydraulic efficiency and reduce
flow-induced vibration, considering the impeller-volute interaction of a single-channel
pump.

Keywords: single-channel pump, wastewater treatment, hydraulic efficiency,
flow-induced vibration, radial force, optimization

1. Introduction

The most common fault in a submerged pump is due to waste clogging. This phenomenon

causes not only motor overload but also serious damage to a pump system. Hence, this type of

pump requires unique design features for preventing losses in performance due to factors such

as waste clogging, damage, and failure, unlike general submerged pumps.

Representative types of submerged pumps for wastewater treatment consist of the crushing

type and flow-path-securing type. A crushing-type pump mostly crushes and transfers foreign

substances with a disintegrator installed in front of the impeller. However, as such types of

pumps require the installation of an additional crusher, large-sized solid particles cannot be

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



driven perfectly along the flow path. Moreover, it has a complex structure, high cost, low

capacity, and frequent replacement cycle. On the other hand, as a single-channel pump is a

representative case of a flow-path-securing type, it has different mechanism features compared

with general pumps pressurized by multiblades. A single-channel impeller has one free annu-

lus passage and does not have multiple blades. Further, it is driven by the centrifugal force

generated from the rotating annulus passage [1]. Therefore, a single-channel pump is very

robust, especially against failure and damage due to waste clogging.

Because of these advantages, the demand for single-channel pumps has increased rapidly in

recent times in the field of wastewater treatment. Nevertheless, only a few studies have been

published on the design of a single-channel pump [1–4]. To the best of the author’s knowledge,

the lack of studies can be attributed to the difficulties in establishing a theoretical design

methodology, manufacturing, and especially, solving the balancing problem related to the

fluid-induced vibration between the impeller and volute of a single-channel pump. In fact,

because the mass distribution of a single-channel impeller is not rotationally symmetric, it is

difficult to stabilize the fluid-induced vibration between the impeller and volute. Furthermore,

unsteady radial forces, which rotate at a frequency generally determined by the rotating speed,

are generated in the single-channel impeller [5]. These unsteady sources are generated by the

interaction between the rotating impeller and volute, and these adversely affect the overall

performance of a single-channel pump, especially its life expectancy and durability.

Over the past several years, there has been growing interest on the effects of unsteady dynamic

radial forces due to impeller-volute interaction in centrifugal pumps [6–8]. However, no sys-

tematic studies on single-channel pumps have yet been attempted, except for several concepts

and patents. To this end, this work presents a state-of-the-art design technique for a single-

channel pump for wastewater treatment based on a theoretical approach and three-

dimensional steady and unsteady numerical analyses. Moreover, advanced multidisciplinary

numerical design optimization techniques are introduced and discussed in detail to simulta-

neously improve hydraulic efficiency and reduce the flow-induced vibration due to the

impeller-volute interaction in a single-channel pump. The objective of this chapter is to provide

practical guidelines for optimizing the design of a single-channel pump with the proposed

design approach.

2. Basic design approach of single-channel pump

The single-channel pump with an impeller and a volute for wastewater treatment is initially

designed according to the Stepanoff theory [9]. The pump can then be modeled as a three-

dimensional shape, as shown in Figure 1 [10]. The three-dimensional model can be developed

using commercial modeling software such as SOLIDWORKS and CATIA. Because the

Stepanoff theory generally minimizes the flow loss due to flow speed differences by increasing

the cross-sectional area of internal flow at a fixed rate according to the theta angle position, it is

especially useful for designing a stationary volute. Nonetheless, the impeller of a single-

channel pump can be designed based on this concept because it has a free annulus passage
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and does not contain multiple blades. Further, the impeller is driven by the centrifugal force

generated from the rotating annulus passage. Thus, the internal flow distribution in the cross-

sectional area of the impeller and volute is changed proportionally with the theta angle

position in order to maintain a constant flow velocity. Figures 2 and 3 show the distribution

of internal flows in the cross-sectional area of the impeller and volute generated from the

Stepanoff theory. In the authors’ previous work, for example, the reference volume flow rate

and total head at the design point were 1.42 m3/min and 10 m, respectively, with a rotational

speed of 1760 rpm [11].

When the distribution of internal flows in the cross-sectional area is determined according to

the theta angle, the shape of the area should be defined. This shape is very important for

deciding the hydraulic performance and size of solid matter in a single channel. In the previ-

ous work, the authors proposed a novel design method for defining the cross section of the

Figure 1. Three-dimensional shape of a single-channel pump [10].

Figure 2. Cross-sectional area distribution and definition of the impeller [10].
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impeller and volute of a single-channel pump with high performance, as shown in Figures 2

and 3, respectively. The cross-sectional area is determined as follows:

The given total area (At) in the impeller part,

H1 ¼ 0:835�D1 (1)

where the impeller height (H1) is fixed along theta angle and D1 represents the inlet diameter

of the impeller.

At @0
�

� 70
�� �

¼ 0:013�D1
2 (2)

L1 ¼ At=H1 (3)

At @360
�� �

¼ 0:38�D1
2 (4)

At ¼ 2A1 þA2 þA3 (5)

R1 ¼ theta
�� �

–70 value of fixed area angleð Þ
� �

� C1 here; 70
�

< theta
�� �

≤ 360
�� �

(6)

where C1 = 0.1 � H1/83.5 is the expansion coefficient.

A1 ¼ πR1
2=4 (7)

A2 ¼ R1 � L2 (8)

A3 ¼ At–A2–2A1 (9)

L3 ¼ A3=H1 here;L3 > 0ð Þ (10)

The given total area (At) in the volute part,

H2 ¼ 0:01�At @360
�� �

(11)

where the volute height (H2) in fixed along theta angle.

Figure 3. Cross-sectional area distribution and definition of the volute [10].
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At ¼ 2A4 þA5 þA6 (12)

R2 ¼ theta
�� �

� C2 (13)

where C2 = 0.1 � H2/89.5 is the expansion coefficient.

A4 ¼ πR2
2=4 (14)

A5 ¼ R2 � L5 (15)

A6 ¼ At–2A4–A5 (16)

L7 ¼ A6=H2 here;L7 > 0ð Þ (17)

The cross sections of the impeller and volute are defined as mentioned above. The three-

dimensional shape can then be modeled as shown in Figure 1. The more detailed explanation

can be found in the previous works of the authors [12, 13].

3. Steady and unsteady numerical analyses

In the computation domain generated from the basic design approach, the internal flow field is

analyzed by solving three-dimensional steady and unsteady incompressible Reynolds-

averaged Navier–Stokes (RANS) equations with a k-ω-based shear stress transport (SST)

turbulence model by using a finite volume solver. In this work, the commercial computational

fluid dynamics (CFD) code ANSYS CFX 14.5 is used, and ICEM CFD is applied to generate

computational meshes for the impeller and volute. The numerical analysis is carried out with

boundary conditions, solved, and post-processed using ANSYS CFX-Pre, CFX-Solver, and

CFX-Post, respectively.

For the turbulence closure model, the k-ω-based SST model [14] is employed to accurately

predict flow separation under an adverse pressure gradient. In this model, the k-ω and k-ε

models are applied in the near-wall region and bulk domain, respectively, and a blending

function ensures smooth transitions between these two models. The accuracy of the numerical

analyses of turbulent flows significantly depends on treating the wall shear stress. In this

chapter, the near-wall grid resolution is adjusted to maintain y + ≤ 2 to accurately capture the

wall shear stress and to implement a low-Reynolds-number SST model.

A tetrahedral grid system is constructed in the computational domain with a prism mesh near

the surfaces, as shown in Figure 4 [15]. The rotating single-channel impeller and the volute

domains are each constructed using approximately 1,300,000 and 1,200,000 grid points. Hence,

the optimum grid system selected using the grid independency test has approximately

2,500,000 grid points, as previously reported [15, 16].

For the boundary condition, water is considered as the working fluid, and the total pressure and

designed mass flow rate are set to the inlet and outlet of the computational domain, respectively.

The solid surfaces in the computational domain are considered to be hydraulically smooth under
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adiabatic and no-slip conditions. The stage average and transient-rotor-stator methods are

respectively applied to connect the interface between the rotating impeller and volute domains

in the steady and unsteady analyses.

The convergence criteria in a steady computation consist of the root-mean-square (RMS)

values of the residuals of the governing equations, which are set to less than 10�5 for all

equations. The physical time scale was set to 1/ω, where ω is the angular velocity of the

impeller. The computations are carried out using an Intel Xeon CPU with a clock speed of

2.70 GHz, and the converged solutions are obtained after 1000 iterations with a computational

time of approximately 4 h.

The results of the steady RANS analysis are used in the unsteady RANS analysis to obtain the

characteristics of the radial force sources in the region of the exit surface of the impeller

according to the impeller-volute interaction in the single-channel pump. In an unsteady simu-

lation, the time step and coefficient loop for the time scale control are set to 0.000947 s and

three times, respectively. The solutions are obtained after 180 iterations with an unsteady total

time duration of 0.170478 s (five revolutions), and the computational time for the unsteady

calculation was approximately 8 h.

4. Optimization techniques

In this chapter, the geometric parameters related to the internal flow through the cross-

sectional area of the impeller and volute are selected as design variables to simultaneously

optimize the hydraulic efficiency and radial force sources, considering the interaction between

the rotating impeller and volute of the single-channel pump. The distribution of internal flow

in the cross-sectional area of the impeller and volute can be changed smoothly by adjusting the

control points represented by third-order and fourth-order Bezier-curves, respectively, as

shown in Figure 5. Therefore, the variations in the y-axes for five control points (CP1, CP2,

Figure 4. Computational domain and grids.
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CP3, CP4, and CP5) of both the impeller and volute are selected as design variables to obtain

the most sensitive results for the variation in curve among the control points [17].

The aim of the current optimization problem is to simultaneously improve the hydraulic

efficiency (η) and reduce the radial force sources considering the impeller-volute interaction

in the single-channel pump. Here, one of the three objective functions, that is, the hydraulic

efficiency, is defined as follows.

η ¼

rgHQ

τω
(18)

where r, g, H, Q, τ, and ω denote the density, acceleration of gravity, total head, volume flow

arte, torque, and angular velocity, respectively.

Figure 5. Definition of the design variables. (a) Impeller part (b) Volute part.

Figure 6. Definition of objective functions related to the radial force sources [10].
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The other objective functions related to the radial force sources are defined as the sweep area

(As) of the radial force during one revolution of impeller and the distance (Ds) of the mass center

of the sweep area from the origin, as shown in Figure 6. These functions are defined as follows:

As ¼
1

2

X

n�1

i¼0

xiyiþ1 � xiþ1yi
� �

(19)

where As is the signed area of the polygon as the sweep area of the radial force during one

revolution of impeller. The centroid of a non-self-intersecting closed polygon, defined by n

vertices (x0, y0), (x1, y1),…, (xn-1, yn-1), is defined as the point (Cx, Cy) as follows:

Cx ¼
1

6As

X

n�1

i¼0

xi þ xiþ1ð Þ xiyiþ1 � xiþ1yi
� �

(20)

Cy ¼
1

6As

X

n�1

i¼0

yi þ yiþ1

� �

xiyiþ1 � xiþ1yi
� �

(21)

In these formulas, the vertices are assumed to be numbered in the order of their occurrence

along the perimeter of the polygon. Therefore, the distance of the mass center of the sweep area

from the origin is finally defined as follows:

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cx
2 þ Cy

2
q

(22)

The Latin hypercube sampling (LHS) is employed to generate 54 design points that are used as

the initial base data for constructing the response surface from five design variables. LHS, as

an effective sampling method for designing and analyzing computer experiments (DACE)

[18], is a matrix of order i � j, where i is the number of levels to be examined and j is the

number of design variables. Each of the j columns of the matrix containing levels 1, 2,…, i is

randomly paired. LHS generates random sample points, ensuring that all portions of the

design space are represented. Finally, the objective function values at these design points are

evaluated by steady and unsteady numerical analyses.

The response surface approximation (RSA) model is applied as a surrogate model to predict

the objective function values based on the 54 design points generated in the design space by

using LHS. The RSA model, as a methodology of fitting a polynomial function to discrete

responses obtained from numerical calculations, represents the association between the design

variables and response functions [19]. The construction function for a second-order polynomial

RSA can be expressed as follows:

f xð Þ ¼ β0 þ
X

N

j¼1

βjxj þ
X

N

j¼1

βjjx
2
j þ

XX

N

i 6¼j

βijxixj (23)

where β, N, and x represent the regression analysis coefficients, number of design variables,

and a set of design variables, respectively, and the number of regression analysis coefficients

(β0, βi, etc.) is [(N + 1) � (N + 2)]/2.
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The RSA models are employed to construct the response surfaces based on the objective

function values at the 54 design points generated in the design space using LHS. A hybrid

multiobjective genetic algorithm (MOGA) is used to obtain the global Pareto-optimal solutions

(POSs). The approximate POSs are obtained using a controlled elitist genetic algorithm (a

variant of NSGA-II [20] as the MOGA function for three objective functions. The optimization

algorithm and functions in the MATLAB OPTIMIZATION TOOLBOX [21] are used to finally

generate the global POSs. Figure 7 shows an example of the multiobjective optimization

procedure [22]. The detailed optimization procedure can be referred to in the previous litera-

tures [23, 24].

5. Results of multiobjective optimization

A hybrid MOGA based on the response surface constructed from the RSA model is employed

to obtain the global POSs by using a controlled elitist genetic algorithm (a variant of NSGA-II)

for three objective functions. Figure 8 shows the three-dimensional POSs based on the three

objective functions obtained using a hybrid MOGA combined with the RSA model. Here, the

values of all the objective function are normalized according to the corresponding values in the

reference design. Three-dimensional POSs are obviously the trade-off among the conflicting

objective functions. As a result, a trade-off analysis shows an obvious correlation between the

hydraulic efficiency and radial force sources. The arbitrary optimum design (AOD) is ran-

domly extracted near the end of the POSs, which exhibits the best performance in terms of all

objective functions, as shown in Figure 8. The AOD has objective function values that are

remarkably improved relative to those in the reference design. Consequently, the value of each

objective function in the AOD shows improvements of approximately 49%, 80%, and 4% in the

sweep area (As) of the radial force during one revolution, the distance (Ds) of the mass center

of the sweep, and the hydraulic efficiency (η), respectively, in comparison with the reference

design. On the other hand, a relatively large error among the three objective functions is

observed, especially for the distance of the mass center of the sweep. Nevertheless, the values

obtained by the numerical analysis are better compared with the reference design.

To understand the optimization results, the trade-off of the POSs in each two-dimensional

functional space is shown in Figure 9. As shown in Figure 9(a) and (b), the decrement in the

distance of the mass center of the sweep clearly leads to deterioration in the other objective

Figure 7. Multiobjective optimization procedure [22].
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functions. Specifically, the reduced distance of the mass center of the sweep is obtained at a

lower efficiency and higher sweep area of the radial force during one revolution. However, the

efficiency and sweep area of the radial force during one revolution shows a positive relation, as

shown in Figure 9(c). The trade-off analysis of the POSs therefore allows an engineering

designer to choose any economic solution according to the required design conditions.

Figure 10 shows the isosurfaces having a low velocity of 2 m/s. As shown in Figure 10(a), an

extremely low-velocity region is formed along the internal wall in the impeller flow path in the

reference design, whereas a similar low velocity isosurface is reduced considerably in the

arbitrary optimum model (Figure 10(b)). These results illustrate the enhancement of hydraulic

efficiency in the arbitrary optimum model as a result of optimization.

Figure 11 shows the distributions of unsteady radial force sources, averaged at the boundary

surface near the impeller outlet, during one revolution of the impeller for both the reference

and AODs. Here, both values are normalized by the value of the maximum radial force in the

reference design. The sweep area constructed from the unsteady radial force sources in the

reference design leans slightly toward the four quadrant directions from the origin, whereas it

is formed near the origin in the AOD. Furthermore, the sweep area in the AOD is remarkably

decreased compared with that in the reference design. Consequentially, as discussed already,

the sweep area and the distance of the mass center of the sweep in the AOD are decreased by

49% and 80%, respectively, compared with those in the reference design.

Figure 12 shows the unsteady fluctuations of the net radial forces for the reference and AODs

during one revolution. Both values are also normalized by the maximum value in the reference

Figure 8. Three-dimensional POSs based on three objective functions. (a) ds-as (b) ds-eff. (c) as-eff.
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design. As shown in Figure 12, the amplitude values of the fluctuation of the net radial forces

in the AOD decrease considerably for most theta angle positions, especially in the region

where the value of theta is 100�. In addition, its level is also less than the normalized value of

0.5 and mostly flat compared with the reference design. These phenomena clearly highlight the

considerable decrease in the radial force sources as a result of optimization.

Figure 10. Isosurfaces having a low velocity of 2 m/s. (a) Reference design (b) Arbitrary optimum design.

Figure 9. POSs on two-dimensional functional space.
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Figure 13 shows the time history of instantaneous unsteady pressure contours at the boundary

surface near the impeller outlet for both the reference and AODs. Here, both values are

normalized by the maximum pressure value in the pressure contours. Both the instantaneous

unsteady pressure contours are compared for one rotation τ of the single-channel pump

impeller. This rotation is divided into six steps to clarify changes in flow structure with time

during one revolution of the impeller, as shown in Figure 13. In the reference design, high-

pressure zones occur widely on the boundary surface near the impeller outlet, as shown in

Figure 11. Unsteady radial force distributions during one revolution of the impeller.

Figure 12. Unsteady net radial force fluctuations during one revolution of the impeller.
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Figure 13. Unsteady pressure contours during one revolution of the impeller. (a) T = 1/6τ. (b) T = 2/6τ. (c) T = 3/6τ. (d)

T = 4/6τ. (e) T = 5/6τ. (f) T = 6/6τ.
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Figure 13(b), and a high-pressure zone caused by impeller-volute interactions becomes grad-

ually larger. Consequently, this results in the unbalancing phenomena, along with the fluid-

induced vibrations caused by unsteady radial forces, throughout the annulus passage area of

the pump. Thus, the sweep area constructed from the unsteady radial force sources leans

slightly toward the four quadrant directions from the origin, as shown in Figure 11. In the

AOD, the pressure distribution is generally uniform; especially, at the same instantaneous

time, the large high-pressure zone caused by impeller-volute interactions is obviously

Figure 14. Spectra of the magnitude values at observation points on the casing wall. (a) Location of the observation points

(b) Point A. (c) Point B. (d) Point C. (e) Point D. (f) Point E.
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suppressed, as shown in Figure 13(b). The AOD results in mostly stable flows throughout the

annulus passage area of the pump. This explains the considerable decrease in the fluid-

induced vibration caused by impeller-volute interaction owing to optimization.

Figure 14 shows the spectra of the magnitude values at observation points on the casing wall

for the reference and AODs. Here, the spectra are calculated based on the wall pressure

fluctuation time history by using a fast Fourier transformation algorithm. Both magnitude

values are normalized by the first blade passing frequency (BPF) in the reference design, and

these values are also related to the vibration of pump. As shown in Figure 14, the BPF is

approximately 30 Hz (BPF = Blade number � rpm/60). The peak magnitude values are clearly

seen at every harmonic BPF in steps of 30 Hz, which are due to the periodic motion of pump

impeller rotation. In the AOD, a considerable decrease in the magnitude values at the first BPF

is observed specifically, as well as at all observation points, especially for points B and C. It

clearly shows that the large high-pressure zone caused by impeller-volute interactions is

obviously suppressed, as shown in Figure 13(b). Consequently, the considerable decreases in

these magnitude values reduce the vibration caused by impeller-volute interaction.

6. Conclusions

A state-of-the-art design technique was introduced for a single-channel pump for realizing

both high efficiency and low-fluid-induced vibration. The technique is based on a theoretical

approach and three-dimensional steady and unsteady numerical analyses. Furthermore,

advanced multidisciplinary numerical design optimization techniques were discussed in detail

to simultaneously improve hydraulic efficiency and reduce the flow-induced vibration caused

by impeller-volute interaction in the single-channel pump. The CFD studies conducted in the

last decades, along with an increase in computing power systems, have significantly contrib-

uted to the development of various turbomachines with a deep understanding of flow physics

and mechanism. Of course, it was possible to suggest a state-of-the-art design technique for a

single-channel pump because of the rapid increase in the computing power system and

development of computational methods. The authors expect that the practical design tech-

nique introduced in this chapter will be useful for engineers designing various single-channel

pumps in the near future.
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