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Abstract

Bismuth-doped and bismuth/erbium co-doped optical fibres have attracted much atten-
tion for their great potential in the photonic applications at ultrawide O, E, S, C and L 
bands. The effects of post treatments, including various heating, high energy ray radia-
tion, laser radiation and H

2
 loading processes, on these fibres’ performance, functionality 

and stability have been experimentally studied. Experimental results demonstrate that 
these post treatments could allow us to get insights regarding the formation and the 
structure of bismuth active centre (BAC) and be used to control and regulate the forma-
tion of BAC.

Keywords: bismuth-doped fibre (BDF), bismuth and erbium co-doped optical fibre 
(BEDF), bismuth active centre (BAC), broadband, post treatments, thermal treatment, 
gamma radiation, photo-bleaching, H

2
 loading

1. Introduction

Since the first demonstration of the broadband near infrared (NIR) luminescence in the  
bismuth-doped silicate glass [1], bismuth-doped materials, including crystal, glass, fibre, and 
so on, have been developed and studied for photonic applications at the extended band [2–7]. 

Especially, bismuth-doped optical fibres (BDFs) have been developed for fibre amplifiers and 
lasers from 1250 to 1500nm and 1600 to 1800nm [8–13]. Later on, Bi/Er co-doped silicate opti-

cal fibres (BEDFs), due to their great potential in photonic applications from 1150 to 1700nm 
covering both the used bandwidth (C band) and the huge unused bandwidth, have been 
proposed and developed [14–16].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Although there have been a lot of breakthroughs in the unused spectral range, there remain 
many prominent scientific and technological challenges [17, 18]. The fundamental under-

standing of NIR emitting BAC is one key challenge. Unlike the well-shielded f-f transitions 

of Er3+, the electronic transition of the unshielded Bi centre(s) is closely linked to the micro-

environment. According to the type of the local environment, there are four types of BACs in 
BDFs, which are BAC-Si, BAC-Ge, BAC-P and BAC-Al, linked to SiO

2
, GeO

2
, P

2
O

5
:SiO

2
 and 

Al
2
O

3
:SiO

2
, respectively [18]. Their energy diagrams are shown in Figure 1.

Previous reports have demonstrated that the formation of BAC greatly depends upon the 
processing conditions. More specifically, BAC can be activated by high-intensity femtosecond 
laser [19], high-temperature melting [20, 21], γ-radiation [22, 23], and so on. Here, effects of 
post treatments on BDF and BEDF by thermal treatment, high energy ray radiation, laser 
radiation and H

2
 loading have briefly been reviewed. It is generally believed that these post 

treatments will greatly change the spectroscopic properties of these fibres via the variation 
of the BAC. Further research into reasons of variations will help to understand BAC. With 
further understanding of the BAC, it is also hopeful to find an appropriate way to control and 
regulate the BAC for the performance improvement of BDF and BEDF.

2. Thermal treatment

It is known that the unshielded outer electron shell of bismuth makes the energy structure of 
Bi more complex and closely related to the microstructure of the host material [18]. In addi-
tion, Bi itself, as a polyvalent element, often undergoes oxidation-reduction (redox) reaction 
in molten glass, which is significantly influenced by the melting temperature, atmosphere and 
composition [12, 20, 21, 24–26]. In general, this redox reaction moves toward the reduction 
side with increasing melting temperature, and the variation of the valence state of Bi can be 
represented as follows [12, 24]:

   Bi   3+  →  Bi   2+  →  Bi   +  → Bi → Bi clusters  (e . g.,  Bi  
2
  ,   Bi  

2
     − ,  Bi  

3
  )  →   (Bi)   

n
   colloids  (1)

Figure 1. Energy level diagrams of different BACs in BDFs.
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These facts make it difficult to determine the exact nature of BACs in BDF and BEDF as the 
redox reaction mentioned above often occurs during the preform fabrication and fibre draw-

ing processes. In spite of that, the reduction processes have hinted that BACs most likely con-

sist of Bi with low valence state [27], although it is still controversial. The latest experimental 
data has already confirmed that BACs are the clusters consisting of Bi ions and oxygen defi-

ciency centres instead of Bi ions themselves [12].

Since valence states of Bi as well as the deficiency [28] can be altered at high temperature, 

post thermal treatment has become a common method to modify the properties of Bi-doped 
glasses/fibres, and thus to further investigate the origin of BACs [25, 29]. Therefore, in this 

section, the effects of the thermal treatment upon BDFs and BEDFs, summarized and listed in 
Table 1, are presented and discussed.

2.1. Bismuth-doped fibres

2.1.1. BAC emission at high temperature

In terms of BDFs, the emission of BACs at high temperature of aluminosilicate fibres have been 
reported as early as 2008 [30]. However, their interpretations are not convincible owing to the lim-

ited data. Later on, thermal effects on emission of BAC-Si at 830 nm and 1420 nm under 808 nm 
pumping have been studied in bismuth-doped silicate fibres (SBi) [31, 32], bismuth-doped 

germanosilicate fibre (GSBi) [31] as well as bismuth-doped silicate tube (SBi*) [33] (Table 1).  
It is observed that the emission of BAC-Si at ~1420 nm shows an increasing trend when treating 
at a specific high temperature, along with the reduction of emission at 830 nm. It is believed 
that the increase of NIR emission is associated with the increase of the non-radiative transi-
tion rate between ES

2
 and ES

1
 of BAC-Si (Figure 1) at high temperature, which is confirmed 

by the lifetime results in GSBi [31] and SBi* [33]. Taking GSBi [31] for example, the lifetime at 
ES

2
 of BAC-Si drops directly from 30 μs to <3 μs, whereas the lifetime of 1400nm luminescence 

decreases by 25% when heating from room temperature to 900°C, as shown in Figure 2.

2.1.2. Formation of BACs

The preform of SBiO (Table 1) shows luminescence and absorption in both visible and NIR 
region before drawing, whereas SBiO drawn with oxygen in holes has no luminescence but 
low background loss. However, when SBiO listed in Table 1 is annealed with argon in holes 

at 1100°C for 30 minutes, absorption bands of BAC-Si at 830 nm and 1420 nm appear, accom-

panied by the increment of the background loss [29]. The appearance of absorption at 830 

and 1420 nm indicates the formation of BAC-Si, which is further confirmed by the observa-

tion of luminescence after annealing [29]. On the contrary, when SBiO is annealed with oxy-

gen in holes, no obvious change can be detected [29]. These results demonstrate that Bi ions 

in BAC-Si can be oxidized into the high valence state in an oxidizing atmosphere, resulting 
in the decrease of both luminescence and background loss, vice versa, annealing bismuth-
doped silicate glasses in argon can lead to the high background loss and possible formation 
of BAC-Si. These facts indicate not only the formation of BAC-Si, but also the association of 
BAC-Si with the low valence state of bismuth ions.
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Fibre Fabrication 

techniques

Core composition λ
ex

 

(nm)

λ
em

 (nm) FWHM 

(nm)@ 

λ
em

 (nm)

Lifetime 

(μs)@ λ
em

 

(nm)

Treatment 

conditions

Reference

Emission at high temperature

SBi-P PIT 100SiO
2
-Bi(<0.02 

at%)
808 830; 

1400

72@1400 — 23–700°C 
in air

[31]

SBi* (quartz 
glass)

SPCVD 100SiO
2
-Bi(<1019 cm–

3)
825; 

1420

14@825;

120@1420

60@825;

658@1420

23–600 °C 
in air

[33]

SBi SPCVD 100SiO
2
-Bi(<0.02 

at%)
830; 

1420

30@830;

117@1420

— 23–600 °C 
in air

[32]

SBi-LF SPCVD 100SiO
2
-Bi(<0.02 

at%)-low flourine 
doping in core

36@830;

117@1420

— 23–500°C 
in air

SBi-HF SPCVD 100SiO
2
-Bi(<0.02 

at%)-high flourine 
doping in core

36@830;

107@1420

— 23–500°C 
in air

SBi-H 

(holey 
fibre)

FCVD 100SiO
2
-Bi(<0.02 

at%)
830; 

1400

87@1400 — 23–500°C 
in air

[31]

GSBi MCVD 95SiO
2
–

5GeO
2
-Bi(<0.02 at%)

94@1400 600@1400 23–400°C 
in air

Thermal annealing

SBiO (holey 
fibre)

FCVD 100SiO
2
–Bi

2
O

3
(~0.03 

at%)
337; 

454-

676; 

975; 

1064

Absence — — 1100°C in 
argon

[29]

1100°C in 
oxygen

ASBiY MCVD SiO
2
-Al

2
O

3
-P

2
O

5
-

Y
2
O

3

750 1120 177@1120 10@820;

800@1150

≥550°C in air [34]

ASBi MCVD SiO
2
-Al

2
O

3
-Bi

2
O

3
532 700; 

1100

136@700;

171@1100

— 1200°C in air [35]

SBi-H 

(holey 
fibre)

FCVD 100SiO
2
-Bi(<0.02 

at%)
808 830; 

1400

87@1400 — 1200°C in air [31]

GSBi MCVD 95SiO
2
–5GeO

2
–

Bi
2
O

3
(<0.02 at%)

94@1400 30@830;

600@1400

>400°C in air

SBi-HF SPCVD 100SiO
2
-Bi(<0.02 

at%)-high flourine 
doping in core

87@1400 — 600 °C in air [32]

BEDF MCVD SiO
2
-Al

2
O

3
-GeO

2
-

P
2
O

5
-Er

2
O

3
-Bi

2
O

3

830 1420 98@1420 — 800°C in air [36]

100°C/200°C/
in air

[37]

Note: PIT—powder in tube, SPCVD—surface plasma chemical vapour deposition, FCVD—furnace chemical vapour 
deposition, MCVD—modified chemical vapour deposition.

Table 1. Summary of designations, fabrication techniques, core compositions, the excitation and emission peak 
wavelengths, full-width at half maximum (FWHM) of luminescence bands, and lifetime of Bi luminescence and thermal 
treatment conditions of BDFs.
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Similar effects have been observed when ASBiY [34] is annealed at ≥550°C and ASBi at 1200°C 
[35] as listed in Table 1. After annealing, absorption peaks of BAC-Al at 500, 750 and 1000 nm 
increase, and the NIR emission at 1150 nm is enhanced. These changes obviously indicate the 
formation of BAC-Al. Hence, it is believed that the extra “generation” (formation of BAC-Si 
or BAC-Al) is associated with the reduction of Bi3+ → Bi2+ → Bi+ → Bi0 at high temperature [34].

2.1.3. Degradation of BACs

However, in some cases, luminescence at 1420 nm of BAC-Si starts to decrease when fibre is 
annealed at the high temperature in air. Such phenomenon is very prominent in BEDF [37], 

fabricated by conventional MCVD combined with in situ solution doping technique. When 
one BEDF is annealed at each prescribed temperature for 1 hour and slowly cooled down to 
the room temperature, without significant variation of background loss, the luminescence 

Figure 2. Luminescence lifetime at the wavelength of 830 and 1400 nm as a function of temperature excited at 808 nm [31].

Figure 3. NIR emission spectra of BEDF after annealing at different temperatures under 830 nm excitation [37].
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at 1420 nm excited at 830 nm starts to decrease after 100°C annealing, as shown in Figure 3, 

showing the degradation of BAC-Si. The degradation is attributed to the redistribution of 
point defect in annealed BEDF [37].

In addition, the reduction of emission of BAC-Si has also been observed in SBi-H, SBi-HF and 
GSBi after annealing at high temperature, as listed in Table 1 [31, 32]. The features, behaviours 
and causes of these phenomena vary case by case. In SBi-H, the dissociation of BAC-Si is due to 
the oxygen diffusion (oxygen with high temperature tends to form an oxidation atmosphere). 
Another possibility is the reconfiguration of clusters in a greater porosity in SBi-HF [32], result-

ing in an irreversible reduction of their luminescence. In addition, the dissociation of BAC-Si 
due to the oxidation by GeO

2
 is also observed in GSBi [31], although it is a reversible process.

2.1.4. Thermal darkening

A strong and irreversible thermal darkening effect has also been found in both BEDF and SBiO 
annealed at high temperature as listed in Table 1. When a section of BEDF is heated from room 
temperature to 800°C and slowly cooled down, the background losses irreversibly increase in 
both visible and NIR regions, which make NIR luminescence almost undetectable after anneal-
ing. Such darkening effect is obvious when comparing the radial profile of visible light intensity 
in the unannealed and 800°C annealed BEDF from an optical microscope, as shown in Figure 4.

A similar increase in background loss is observed in the annealed SBiO, of which the back-

ground loss starts to increase significantly from 600°C and up [29]. Such growths of the back-

ground loss observed in both BEDF and SBiO are consistent with Mie theory’s hyperbolic 
dependence: (A/λ) + B, where A is assumed to be mainly determined by the average value of 
the product of the concentration and the volume of particles at different temperatures, B is cor-

rection constant, and λ is the wavelength of incident light. So the increment of the background 
loss is attributed to the formation of the metallic bismuth nanoparticles (Bi)

n
 [29, 36, 38, 39]. 

Figure 4. Radial profile of visible light intensity in the un-annealed and 800°C annealed BEDF (~2 cm) [36].
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The origin of the growth of background loss is further linked to the excessive reduction of 
bismuth ions in Bi-doped silicate fibres [29, 36].

3. High energy ray treatment

Radiation technologies with high-energy rays, already established in materials processing, have 
properties uniquely suited for the creation of new advanced materials. When fibres are exposed 
to radiation, a darkening process occurs due to the formation of colour centres (or defects), in 
which radiation-induced-absorption (RIA) is observed. Extensive studies on radiation-induced 
darkening on pure silica and rare-earth-doped fibres have been carried out for assessing the 
radiation effects on fibres and understanding the possible underlying mechanisms as well as 
the possible use in space-borne applications [40–46].

For BDFs, radiation by high-energy rays has resulted in variations (decrease or increase) of 
the characteristic absorption and luminescence of corresponding BACs, thus further provid-

ing information on their properties. Moreover, it has been reported that gamma-ray irradia-

tion can increase the density of BAC leading to an enhancement of fluorescence [47, 48]. The 

activation of BAC by radiation is ascribed to the reduction of Bi3+ to low valence state, which 
contributes to the NIR fluorescence by capturing radiation-released free electrons [23].

3.1. Gamma-radiation effect

Gamma radiation seems to favour the formation of new BACs in BDF, BEDF and Bi/Er/
Yb co-doped fibres (BEYDFs). Wen et al. observe the radiation-induced increase of Bi ion 
absorption peaks as well as enhancement of photoluminescence in BDF fabricated by MCVD 
and atomic layer deposition technique [47]. Apart from the radiation-induced increase of 
Bi ion absorption, a new peak at ~580 nm arises, increasing with the increment of the dos-

age, which is related to the formation of aluminium oxygen hole centres (Al-OHCs). This 
radiation-induced defect, together with radiation-induced background increase, causes a 
slight decrease of NIR fluorescence excited at 532 nm. However, when pumped by 980 nm  
excitation, the fibres exhibit an enhancement of emission at 1410 nm of BAC-Si and at 1150 nm 
of BAC-Al. Besides that, their result also indicates that BAC-Al is less sensitive to radiation than 
BAC-Si. The enhanced fluorescence may originate from the valence state conversion as follows:

   Bi   5+  + 2e   hv   ⟶     Bi   3+   (2)

   Bi   5+  + 4e   hv   ⟶     Bi   +   (3)

   Bi   5+  + 5e   hv   ⟶     Bi   0   (4)

   Bi   3+  + 2e   hv   ⟶     Bi   +   (5)

   Bi   3+  + 3e   hv   ⟶     Bi   0   (6)
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With the γ irradiation of BEDF from 1.0 to 50 kGy, the absorption at 830 nm is increased sig-

nificantly while the absorption at a longer wavelength is reduced and emission is restrained 
[48–50]. The results show that BAC can be activated by gamma irradiation. A comparative 
study of gamma radiation effect upon BEDF and BEYDF indicates that Yb co-doping to BEDF 
will enhance the activation of BAC. The enhancement might be due to Compton electron 
capture of Yb3+: Yb3+ + e− → Yb2+ [42], confirmed by the reduction of the Yb3+ characteristic 

absorption at ~980 nm [48]. Moreover, the report by Sporea et al. has suggested that gamma 
irradiation can be used for tailoring the luminescence properties of BEDF [50]. Investigation 
on RIA of irradiated BEDF also suggests that BEDFs have good radiation resistance to low 
and moderate gamma irradiation.

Gamma-radiation effect on bismuth-doped germanosilicate fibres has recently been reported 
by Firstov et al. through measurement of absorption and emission after post irradiation 
annealing [51]. A series of BDFs with various bismuth and GeO

2
 are subjected to 60Co-source 

to different total doses of 1–8 kGy. No significant changes in the absorption and emission 
bands of BACs by gamma irradiation are observed. From the RIA analysis, it demonstrates 
that RIA is dependent upon fibre composition, where higher germanium and bismuth con-

centrations lead to higher radiation sensitivity.

3.2. Electron-radiation effect

Besides of gamma radiation, electron irradiation is another alternative method to change the 
valence state of Bi, similar to that of gamma irradiation in Bi:  α -BaB

2
O

4
 single crystal [23]. 

Kir’yanov et al. studied the effect of electron irradiation in bismuth-doped germane- and 
alumina-silicate fibres and observed two opposite effects (decrement/increment) [52, 53]. 

Both fibres fabricated by MCVD and solution-doping methods are exposed to electrons of 
high energy (6 MeV) at room temperature to different total doses of 2 × 1012, 1 × 1013 and 

5 × 1013 cm−2, respectively. Different from general behaviour of background loss increase with 
increasing doses, the resonant absorption peaks of Bi centres decrease with higher radiation 
doses, indicating a radiation-induced bleaching effect for Bi centres by electron irradiation. 
Deeper comparative study on fluorescence spectra of pristine and irradiated fibres reveals 
that the fluorescence emission spectra and lifetimes are slightly influenced by electron irra-

diation and the absorption changes are ascribed to the concentration change of Bi centres. 

Different from bismuth-doped germane-silicate optical fibre, bismuth-doped alumina-silicate 
fibre exhibits an increase of BAC-Al due to the electron irradiation.

4. Laser radiation

Femtosecond laser irradiation at 800 nm is reported to facilitate the activation of emission cen-

tres in bismuth-doped glass [19, 54]. UV laser radiation at 193 nm and 244 nm can also enhance 
the fluorescence of Bi/Al co-doped optical fibres after H

2
 loading, ascribed to the increase of 

BACs [55, 56]. In addition, laser-induced attenuation change in active optical fibre is another 
common effect. This change can be photo-bleaching or photo-darkening. Photo-bleaching 
refers to the decrease of the absorption after the radiation, and photo-darkening is the reverse 
effect. Photo-darkening is severe in Al-silicate Yb-doped fibres with high Yb3+ doping [57]. The 
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absorption coefficient of Yb3+ can be photo-bleached by 977 nm laser radiation [58]. The similar 

photo-bleaching effect has been observed in thulium-doped fibre [59] as well as BDF [60]. To 

improve the performance of BDF lasers and amplifiers, the photo-bleaching effect induced by 
the pump radiation has drawn attention [60]. In this section, the behaviour and mechanism 
of photo-bleaching of BAC-Si and BAC-Ge in BDF and BEDF have been described in detail.

4.1. Photo-bleaching of BAC-Si

The photo-bleaching of BAC-Si in BEDF under 830 nm pumping has been reported [61]. By 
pumping the fibre with the power of 0.12 MW/cm2, the luminescence of BAC-Si at 1420 nm 
decreases by ~15% after 40 minutes as plotted in Figure 5(a). This decrease of the lumines-

cence is proved to be the bleaching of BAC-Si under the resonant pump radiation. In addition, 
the self-reversible effect is observed according to the recovery of the absorption of 816 nm, 
as shown in Figure 5(b). After 2 days at room temperature, both absorption and emission 
recover to the pristine condition.

Through the investigation of the dependence of bleaching effect upon the pump power, wave-

length and temperature, the photo-bleaching mechanism of BAC-Si has further been illumi-
nated [62]. To quantify the bleaching behaviour, the stretched exponential function (SEF) is 
employed to describe the bleaching process. The SEF is expressed as:

   I  
A
   (t)  =  I  

A,∞   (P)  +  I  
B,∞   (P)   e   −  (  t ____ τ (P)   )    

β (P) 

  ,  (7)

where I
A
(t) and IA,∞ are the luminescence intensity at time t and at the time when the bleaching 

effect is saturated under the radiation power P. IB,∞ stands for the bleachable part of the lumi-

nescence, τ is the time constant and β is the stretched parameter. Especially, the bleaching 
ratio is defined as   r  

B
   =   

 I  
B,∞

  

 
_______

 
 I  
A,∞

   +  I  
B,∞

  
   . By fitting the decay curve of luminescence of BAC-Si at 1420 nm, 

it is found that the pump power dependence of r
B
 and τ shows a high similarity with that of 

the luminescence intensity as plotted in Figure 6(a), indicating the involvement of the exci-
tation of BAC-Si in the photo-bleaching process. This idea is further proved by the photo-
bleaching dependence of BAC-Si on the pump radiation wavelength, as shown in Figure 6(b). 

Figure 5. (a) Luminescence spectra of the BEDF under 830 nm pumping measured as a function of time. (b) BEDF 
insertion absorption spectra obtained before and after irradiation (20 min, 2, 12, and 48 hrs) [61].
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In the case of 710 nm irradiation, luminescence of BAC-Si is significantly bleached, while the 
830 nm excited luminescence has no change after 30 minutes irradiation of 980 nm pump with 
35 mW. The reason for using 830 nm to excite the luminescence is that 980 nm light cannot 
excite luminescence of BAC-Si. Thereby, it is suggested that the pump laser-induced bleach-

ing effect of BAC-Si is the electron escape from an excited Bi site, expressed as:

   Bi  
BAC−Si  
+x     hv   ⟶ →      ∗  Bi     

BAC−Si  
+x     kT   ⟶     Bi  

BAC−Si  
+ (x+1)    +  e   − ,  (8)

where   Bi  
BAC−Si

  +x    is the bismuth ion in BAC-Si with valance state of  +x , * symbolizes the excited state 
and kT stands for the thermal energy. First,   Bi  

BAC−Si
  +x    absorbs photon hv and is excited to the second 

excited level corresponding to 816 nm. Second, some of     ∗  Bi     
BAC−Si

  +x    fall to the lower excited states via 
non-radiative transition, while some release the electron e− to the acceptor site (a nearby material 
defect) with the aid of thermal vibrational energy kT and thus induce the decay of luminescence 
and ground-state absorption. Furthermore, the bleaching ratio of the BAC-Si luminescence can 
be suppressed by half when lowering the temperature to the liquid nitrogen temperature.

4.2. Photo-bleaching of BAC-Ge

Photo-bleaching of BAC-Ge in BDF has also been observed in bismuth-doped silicate fibre 
and bismuth-doped germanosilicate fibre [60, 63]. Under the irradiation of 244 nm UV light, 
the luminescence at 1700 nm of BAC-Ge is totally bleached, as shown in Figure 7. Besides, 

this effect can be activated by 532 nm radiation as well. Further study shows that this photo-
bleaching can be reversed by thermal treatment after the irradiation stops and this bleaching-
recovery process can be repeated showing a memory effect [64, 65].

It is noted that the structure of BAC-Si/Ge is composed of a Bi ion and SiODC(II)/GeODC(II) 
[66]. The bleaching of GeODC(II) would deactivate BAC-Ge leading to the decrease of lumi-
nescence and absorption when GeODC(II) is photoionized into E’ centre by 244 nm irradia-

tion [67]. So the photo-bleaching of BAC-Ge is caused by the bleaching of the GeODC(II). 

Figure 6. (a) 1420 nm luminescence intensity, the inverse of time constant (1/τ), bleaching ratio (r
B
) and stretched 

parameter (β) vs. pump power. (b) The 710 nm excited luminescence before-1 and after-2 710 nm irradiation and the 

830 nm (0.2 mW) excited luminescence before-3 and after-4 980 nm irradiation [62].
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The destruction of GeODC(II) by UV light leads to the bleaching of BAC-Ge. Such photo-
bleaching process can be expressed as [65]:

   Bi   +n  + ODC   hv   ⟶     Bi   +n  +  e   −  +  E   ′  center  (9)

which is confirmed by two evidences: 1) the dependence of bleaching speed upon the irradia-

tion power is close to 2 indicating a two-photon process [68]; 2) the thermal dynamic behav-

iours of BAC-Ge and GeODC are similar [64]. The photo-bleaching effect of BAC-Si in BDF 
can be explained with a similar mechanism [60]. Therefore, more than one reason possibly 
induces the photo-bleaching effect dependent upon the material environment.

5. H
2
 treatment

Both H
2
 and D

2
 are the popular reducing agents in the chemical processing of optical fibre. For 

example, the fabrication of photosensitive optical fibre through H
2
 loading, photo-chemical 

interaction of dissolved H
2
 with UV laser-induced electronic excitations significantly quickens 

grating formation in Ge-doped silica-core fibres. In addition, they can reduce the Bi from the 
higher valence state to the lower valence state. As a result, H

2
 loading will change the absorp-

tion and luminescence properties of BDFs. In addition, dissolved H
2
 molecules can deactivate 

excited defects. So, the presence of H
2
 molecules leads to the decrease of lifetime and steady-state 

intensity of triplet luminescence associated with oxygen-deficient centres in fibres, which has 
been confirmed as one of the key element for the formation of BAC [12]. Hence, in this section, 

different Bi-doped materials, including crystal, glass and fibre will be treated by H
2
 or D

2
 under 

different temperature/pressure. Their spectroscopic properties (e.g., absorption and emission) 
and photosensitivity before and after H

2
 treatment will be described and compared in detail.

Figure 7. BAC-Ge luminescence spectra at 1700 nm band before and after 1 kJ/cm2 244 nm irradiation excited at 1460 nm 
[60, 63].
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5.1. Effect upon spectroscopic properties

5.1.1. Bismuth-doped single crystals annealed in H
2
 atmosphere

In Bi: α-BaB
2
O

4
 crystal, Bi3+ will partially substitute Ba2+ in the crystal lattice. When the crystal 

sample is annealed up to 800°C in H
2
 atmosphere, a broadband NIR luminescence will appear 

at 985 nm with FWHM of 187 nm excited at ~808 nm, as shown in Figure 8 [23]. The lifetime of 

the emission at 985 nm is about 408 μs. Further investigation of the absorption, excitation and 
emission spectra indicates that the NIR luminescent centres in the crystal are basically consis-

tent with the multiplets of free Bi+ for the transition of 3P
0
→

1D
2
. Such experimental results dem-

onstrate that thermal annealing of crystal in H
2
 atmosphere will produce free electrons in crystal 

lattice to reduce Bi3+ to low-valence Bi+, accompanied with the creation of O2− vacancies [23].

5.1.2. Bismuth-doped glasses annealed in H
2
 atmosphere

However, the heat treatment of bismuth borate glass (75B
2
O

3
–25Bi

2
O

3
) at 450°C under H

2
 atmo-

sphere will weaken the luminescence in both the NIR band (1000–1300 nm) and the visible band 
(650 nm) [69]. The reduction of NIR fluorescence after annealing in oxidation and reduction 
atmosphere indicates that the valence of the active centres might be a middle state, not the high-

est Bi5+ or the Bi atoms [69]. Similar negative effect of hydrogen annealing of bismuth-doped 
sodium aluminosilicate glasses at 498°C has been found, which also gives rise to a decrease 
of the NIR emission and, at the same time, formation of metallic bismuth particles in the sur-

face region. Furthermore, surface tinting as well as the decrease of visible luminescence follow 
Arrhenius kinetics, suggesting that hydrogen permeation is the rate-governing process [70].

5.1.3. Bismuth-doped fibre after H
2
 loading

The presence of H
2
 in glass network provides an additional way for non-radiative transitions 

of activators from excited states to ground states, which therefore negatively affects pump 
efficiency of fibre lasers and amplifiers. Bi luminescence of hydrogen-impregnated silicate 

Figure 8. NIR emission spectra of H
2
-annealed Bi: α-BaB

2
O

4
 crystals under excitation at 808 nm [23].
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optical fibres will be quenched by deactivation of activators’ excited states via collisions with 
H

2
 migrating inside the glass network [71].

In bismuth and fluorine-doped-core silicate fibres, H
2
 and D

2
 loading at pressures of up to 

125 bar leads to a decrease of the steady-state luminescence intensity and lifetime [32]. It is 
attributed to the appearance of an energy transfer bridge from bismuth clusters to vibrational 
degrees of freedom of diatomic molecules. In the presence of H

2
 or D

2
 experiencing random 

walking in silica, luminescence decay kinetics stops following a single exponential function 
even in fluorine-free silica-core fibre, especially at higher temperatures. The induced quenching 
rate increases with the increase of temperature as well and is greater for H

2
 molecules than that 

for D
2
. At temperatures below ~250 K, the presence of dissolved molecules has no effect, indi-

cating the primary importance of having rotational degrees of freedom of migrating interstitial 
diatomic molecules in an excited state for effective quenching of bismuth electronic excitations. 
Especially, the influence of dissolved D

2
 is weaker than that of H

2
, due to a greater angular 

momentum of the D
2
 and correspondingly smaller energy of the molecule’s rotational quan-

tum. In addition, such experimental results provide additional evidence for a cluster rather than 
a point defect model for bismuth defects in silica being responsible for NIR luminescence [32].

5.1.4. Bismuth-doped fibre after H
2
 loading and thermal annealing

After H
2
 loading (100°C, 140 bars, 5 days) and annealing (few seconds at 1000°C) of BDF 

(SiAlGeP), it is impossible to detect any emission band [72]. Such quenching is due to a simi-
lar reason for the degradation of Bi active ions into BiO molecules, Bi metals, and/or Bi

2
/Bi

4
 

clusters. For H
2
-loaded BDF, such degradation more probably happens due to the thermo-

chemical reaction between glass network and H
2
 molecules, resulting in a partial or complete 

reduction of the Bi-O linkages. This reaction results in the reduction of Bi ions into Bi metal or 
Bi atomic clusters and then a complete disappearance of the Bi-related luminescent centres, 

confirmed by the absence of visible and NIR photoluminescence, as well as the disappearance 
of all absorption bands in the accessible wavelength range [72].

5.1.5. Bismuth-doped fibre after H
2
 loading and UV irradiation

After the irradiation by 193 nm pulsed laser, the H
2
-loaded Bi-Al-doped silicate fibre shows huge 

increase of 1130 and 1390 nm luminescence intensity under 1053 and 1357 nm pumping. This 
luminescence enhancement seems to be attributed to an increase of the BAC concentration [55], 

where one evidence is the increase of the absorption peaks of BAC, as shown in Figure 9. In addi-
tion, the increase of luminescence for H

2
-loaded Bi/Al doped optical fibres is also obtained by CW 

244 nm laser irradiation. The luminescence increase depends upon accumulated laser fluence [56]. 

Especially, the luminescence scales with the power of the accumulated dose, where the power 
exponent m is 0.12 and 0.18 for the CW 244 nm laser and the pulsed 193 nm laser, respectively [56].

5.1.6. Bismuth/erbium co-doped fibre after H
2
 loading

Similarly, after H
2
 loading (27 hours, 194 bars, 180°C), the absorption of BEDF increases, as 

shown in Figure 10(a). Meanwhile, the emission is evidently quenched by H
2
 loading, as shown 

in Figure 10(b). The additional appearance of peak at ~1240 nm indicates the diffusion of H
2
 

molecules in BEDF as in the previous report [32], which is verified by the disappearance of 
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the peak after 7 days exposure in air after the loading. The background loss has also increased 
compared with an unloaded sample. Especially, the emission of BAC-Si at >1380 nm is stron-

ger than that at <1380 nm for the pristine, while after H
2
 loading, the emission at >1380 nm 

becomes weaker than that at <1380 nm. It may due to the increase of the absorption at 1380 nm, 
which might possibly link with the formation of BAC-Si at 1420 nm [55] or the induced OH 

absorption at 1380 nm by the reduction of H
2
.

5.2. Effect upon photosensitivity

Besides the variation of spectroscopic properties, with H
2
 loading (pre-sensitization), the pho-

tosensitivity of BDF and BEDF can be changed as well as their stability of the gratings. Table 2  

summarizes the photosensitivity of BDF and BEDF with and without H
2
 loading reported so 

far. The photosensitivity is evidently enhanced by H
2
 loading, often leading to higher refrac-

tive index changes [73]. The enhanced photosensitivity in H
2
-loaded BDF might be attributed 

Figure 9. Absorption spectra of H
2
-loaded, and irradiated H

2
-loaded Bi-Al-doped silicate fibre [55].

Figure 10. Absorption (a) and emission (b) spectra of BEDF before and after H
2
 loaded (27 hours, 194 bars, 180°C) excited 

by 830 nm.
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to Bi-H species (BiH, BiOH, …) [74]. The index changes are sufficient to directly inscribe high-
reflective fibre Bragg gratings (FBG) into BDF for laser mirrors. Inscription of FBG directly 
into the active fibre would reduce the loss caused by splicing and mode field mismatch, lead-

ing to higher laser efficiency [74]. Moreover, the thermal stability of these gratings is very 
important for future applications [75].

5.2.1. Photosensitivity of BDF

The first investigation on the photosensitivity of BDF is performed in 2008 [55]. From fibre grat-
ing inscription of the Bi/Al-doped fibre, the induced index change is estimated to be 1 × 10−4 and 

1.2 × 10−3 in the H
2
 unloaded and H

2
-loaded BDFs, respectively [55], showing the enhancement 

of photosensitivity by H
2
 loading. Further investigation demonstrates that a mean index change 

up to 2.2 × 10−3 can be achieved in H
2
-loaded Ge free Bi/Al doped fibre by irradiation of 193 nm 

pulsed ArF excimer laser, while 2.0 × 10−4 in H
2
 unloaded fibres [74, 76]. In addition, the index 

change greatly depends upon the bismuth dopant concentration, and the higher doping concen-

tration, the higher index change is achieved overall [74, 76]. That is, to say, the high Bi concen-

tration optical fibre exhibits larger index changes for the same amount of irradiation dose [78].

A CW 244 nm Ar+ laser is also used to fabricate Bragg gratings in pristine and H
2
-loaded Bi/

Al-doped fibres with index changes as high as 3.6 × 10−4 and 19.3 × 10−4, respectively [75, 77]. 

Thermal annealing reveals peaks in the energy distribution at 1.2 and 2.3 eV [75]. Continuous 

isochronal thermal annealing reveals that although SMF-28e fibres, with and without hydrogen, 
are more stable than Bi/Al-doped fibres, higher thermal stability for the H

2
-loaded Bi/Al-doped 

fibres is achieved, compared with the pristine one [77]. Moreover, thermal annealing results 
indicate that the grating in such H

2
-loaded BDF has good thermal stability up to 678°C [75].

So far, the maximum index changes as high as +2.5 × 10−3 by 508 W/cm2 244 nm laser has been 

achieved in high Bi doping BDF with H
2
 loading, giving a maximum reflectivity >93% [78]. 

In addition, in Bi-doped microstructured optical fibre (BMOF) without H
2
 loading, average 

refractive index changes of 2.7 × 10−4 is induced by a 5.3 kJ/cm2 193 nm ArF excimer laser [73].

Through the stress study, it is shown in that H
2
 loading also leads to a colour centre–based 

refractive index change. Tensile stress changes indicate a contribution of compaction to the 
total refractive index change related to volume changes [74, 76]. Especially, the comparison 
of the measured core stress changes before and after UV irradiation further indicates a com-

paction contribution to the total refractive index change depends on Bi-concentration [78]. 

In addition, the irradiation with the higher energy photons for Bi/Al fibre gives rise to a new 
band that appears at 3.4 eV. This could be an indication that the higher 193 nm photon excites 
a state that was previously inaccessible with 244 nm photon [82].

5.2.2. Photosensitivity of BEDF

The photosensitivity of BEDF has been studied by Bragg gratings inscription with 193 nm ArF 
pulsed laser [80] and 244 nm Ar+ laser [81]. With 193 nm inscription, the average index nav in 

the Bi-containing fibre with H
2
 loading (P = 180 bars, T = 80°C, t = 2 days) grows faster than 

that in standard highly photosensitive fibre (GF1) and achieves a maximum average index 
change of 4.5 × 10−4. Despite the large effective index changes, the index modulation n

mod
 is 
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generally found to be quite low in BEDF compared to single-mode germanosilicate fibres. n
mod

 

of the grating in pristine fibre decreases rapidly with the increasing temperature. However, 
the FBG in H

2
-loaded BEDF appears more stable when the temperature is under 750°C [80]. 

Fibre Key 

elements

Bi content H
2
 loading Radiation 

conditions

Δn Reference

BDF Al, Si 0.15–0.3 at% 150 bars for 

2 weeks at room 
temperature

160 mJ/cm2 193 nm 

pulsed ArF excimer 
laser

2.2 × 10−3 [74, 76]

BDF Al, Si 0.02 at% × 500 W/cm2 CW Ar+ 

laser

3.6 × 10−4 [75]

BDF Al, Si 0.02 at% ~150 bars for 
2 weeks at room 
temperature

500 W/cm2 CW Ar+ 

laser

1.9 × 10−3 [77]

BDF Al, Si 0.15–0.3 at% ~150 bars for 
2 weeks at room 
temperature

508 W/cm2 CW Ar+ 

laser

2.5 × 10−3 [78]

BDF Al, Si 0.02 at% ~150 bars for 
2 weeks at room 
temperature

508 W/cm2 CW Ar+ 

laser

1.8 × 10−3 [78]

BMOF Si 0.03 at% × 5.3 kJ/cm2 193 nm 

ArF excimer laser
2.7 × 10−4 [73, 79]

BDF Al, Si 0.02 at% × 5.3 kJ/cm2 193 nm 

ArF excimer laser
1.0 × 10−4 [73, 79]

BEDF Er, Al, P, 
Ge, Si

0.16 mol% Bi
2
O

3
180 bars for 2 days 
at 80 °C

9.66 J/cm2 193 nm 

ArF excimer laser
4.5 × 10−4 [80]

BEDF Er, Al, P, 
Ge, Si

0.16 mol% Bi
2
O

3
× 190 mW CW Ar+ 

laser

1.1 × 10−4 [81]

Note: BMPOF-microstructured optical fibre.

Table 2. Summary of photosensitivity in BDFs.

Figure 11. (a) Change in index modulation, n
mod

, and average index n
av

, in the BEDF and GF1 fibres vs inscription time 
with 244 nm laser. (b) Laser spectrum of the DFB fibre laser in 5 nm scanning range. (Fibre length: 20 cm; grating length: 
4 cm; pump: 980 nm 70 mW).
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Without H
2
 loading, BEDF has shown good photosensitivity @ 244 nm [81], comparable to GF1 

as expected given similar GeO
2
 concentrations, as shown in Figure 11(a). Different from the 

monotonous increase of GF1 vs the inscription duration, the index modulation of BEDF fluc-

tuates, due to the non-uniformity of the BEDF, with an average index modulation of 1.1 × 10−4. 

Especially, based on the phase-shifted gratings fabricated in BEDF, a distributed feedback 
(DFB) fibre laser operated at ~1538 nm has further been achieved, as shown in Figure 11(b).

6. Summary and outlook

Significant progress has been made in research, development and application of BDF and 
BEDF since the first demonstration of NIR luminescence in bismuth-doped glass. Many stud-

ies have been carried out and demonstrated that the performance, functionality as well as sta-

bility, BDF and BEDF of these fibres can be changed by post treatments such as heating, high 
energy ray radiation, laser exposure and H

2
 loading. For example, NIR emission of BAC-Si 

in BDF excited at 808 nm can be enhanced at high temperature. The thermal treatment could 
make Bi ions transfer from higher valence to lower valence, even precipitate to Bi

n
 colloids, 

which would result in irreversible thermal darkening effect. In addition, the degradation of 
BAC could occur by implementing thermal treatment in air, while new BAC could form in 
reduction atmosphere. However, the radiation treatment by gamma ray or electron produces 
more complicated effects. The radiation can activate the BACs, increase the absorption and 
enhance the NIR luminescence, dependent upon fibre compositions. Photo-bleaching effect 
has been observed in both BDF and BEDF by laser radiation. Some photo-bleaching is revers-

ible after undergoing thermal treatment. In addition, the photo-bleaching is found to depend 
upon radiation wavelength, laser radiation power, temperature as well as material environ-

ment. Post treatment by H
2
 will not only enhance the photosensitivity of the BDF and BEDF, 

but also change their spectroscopic properties. As a reducing agent, H
2
 will enhance the reduc-

tion of Bi from higher valence to lower valence. It could result in the formation of new BAC, 
but may not increase luminescence due to the deactivation of excited defects or over-reduction. 
Through the investigations of these post-treatment effects, more understanding of BACs has 
been obtained and alternative ways to control and regulate the BACs in BDF and BEDF for bet-
ter performance could be found.
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