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Abstract

Ever increasing energy demand urges to impelled extensive research in the develop-
ment of new eco-friendly energy harvesting and storage technologies. Energy harvesting 
technology exploiting renewable energy sources is an auspicious method for sustainable, 
autonomous, and everlasting operation of a variety of electronic devices. A new concept 
of an integrated self-powered system by combining an energy harvesting device with an 
energy storage device has been established to harvest renewable energy and simultane-
ously store it for sustainable operation of electronic devices. In this chapter, describes the 
fabrication of a self-powered system by integrating the supercapacitor with energy har-
vesting devices such as nanogenerator and solar cells to power portable electronic devices. 
Initially synthesis and electrochemical characterization of various electroactive materials 
for supercapacitors and further, fabrication of supercapacitor device were discussed. In 
conclusion, this chapter demonstrates self-powered system by the integration of energy 
harvesting, energy storage module with portable electronic devices. The various result 
validates the feasibility of using supercapacitors as efficient energy storage components 
in self-powered devices. The proposed self-powered technology based on energy conver-
sion of renewable energy to electrical energy which stored in energy storage device and it 
will be used to operate several electronic devices as a self-powered device.

Keywords: energy harvesting, energy storage, supercapacitors, self-powered system, 
portable electronics
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1. Introduction

Recently, a massive demand on the highly reliable energy sources with higher energy den-

sity and longer life to operate advanced electronic and optoelectronic devices, which have 

impelled extensive research in the development of new eco-friendly energy harvesting and 

storage technologies [1–5]. The advancement of portable electronics, enormous demand for 

electric vehicles, integration, and development of internet of things (IoT) was highly demand-

ing the high-performance energy storage device with added functionalities like flexibility, 
light-weight, cost-effective, renewable, and eco-friendly features [6, 7]. At the same time, the 

ultimatum of our society is also looking for an advanced version of multifunctional electronic 

devices, which are swelling day by day towards the trend of being a portable, flexible, light-
weight, wearable and self-powered devices.

In fact, there is a increasing interest in the energy generation from environment for powering 

the micro/nano-systems, because it is available everywhere and abundant. However, limited by 

time, location, weather and other factors [8, 9]. For example, solar and wind energies are inter-

mittent energy but renewable. But, we will not get sunshine during the night time and as well 

as wind on our demand, which results instability or unsustainable power supply to electronic 

devices [10, 11]. In order to alleviate these problems, renewable energy converters like solar and 

vibrational harvesters would be better choice to integrate with energy storage device, to achieve 
sustainable operation by storing the generated electric energy  from energy harvesting devices. 

The nanogenerator is a device which can efficiently convert mechanical energy into electrical 
energy through piezoelectric and triboelectrification processes from our living/working environ-

ment. However, these mechanical energy sources are uncontrollable fluctuation which reflects 
in output power [11–13]. Therefore, it cannot be used directly to power electronic devices. In this 

circumstance, an intermediate efficient energy storage system required to store this irregular 
renewable energy to achieve independent power source (stable and durable output). The devel-

opment of self-powered micro/nano-device by integrating energy harvesting device with elec-

trochemical energy storage devices such as supercapacitor and battery is a promising solution 
for the limitation of both energy harvesting and storage devices. Among them, supercapacitors 

are superior than lithium-ion batteries because of its higher power capacity, more extended cyclic 
stability, and fast charging/discharging capability, environmental benignancy, etc. [10, 14–16].

Recently, researchers have been attempted to develop a new hybrid system by integrating the 
energy harvesting device (solar cell and nanogenerator) along with a storage device (lithium-

ion battery and supercapacitor) to perform a self-powered operation [8, 17–23]. However, the 

obtained results are not up to real-world application level due to low energy conversion and 

storage efficiency of the devices as well as power management circuit, and further research is 
required to improve the output performance. The performance of self-powered systems will 
be substantially improved with a better power management circuit and a rational design of 
energy harvesting and storage devices. In recent years, significant endeavors have been dedi-
cated to building an integrated sustainable self-power system for the smart electronics with 

the improved architecture of energy harvesting and storage devices.

This chapter describes the fabrication and electrochemical performance of the supercapaci-

tor device with various electrode materials and integration of supercapacitor device with  
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different energy harvesters such as solar, vibration for self-powered device applications. Briefly, 
(i) fabrication and integration of supercapacitor device with vibrational energy harvesters such 

as piezoelectric and triboelectric nanogenerator and (ii) fabrication and integration of superca-

pacitor device with solar energy harvesters such as a dye-sensitized solar cell (DSSC).

2. Fabrication and testing of self-powered systems

2.1. Fabrication and integration of supercapacitor device with vibrational energy 

harvesters

Recently, a higher attention has been given to the development of two dimensional (2D) 
materials for various application such as electronic, catalytic, energy conversion and storage 

application due to their exceptional property like electrical, optical and chemical properties. 

Among the other 2D materials, graphene offered higher electrical conductivity, surface area 
(2600 m2 g−1), and excellent mechanical flexibility due to their excellent physio-chemical prop-

erties by honeycomb structured carbon atom with atomic thick [24–28]. Because of higher sur-

face area and good conductivity of graphene attracts to energy storage application. However, 
the specific capacitance, energy and power density of the graphene supercapacitors are lower 
than the expected values, which varies with synthesis methods. Until now, a various method 

has been adapted for synthesis of graphene in different forms like pristine graphene, gra-

phene, reduced graphene oxide (rGO), and graphitic oxides by micromechanical exfoliation 

from graphite, chemical vapor deposition, chemical reduction methods [29–34]. Herein, a 

flexible graphene-coated fabric electrodes were fabricated by using a simple-cost effective 
dip-coating technique followed by thermal reduction at 170°C in Ar for 2 h. This fabrication 
method allows making binder-free, highly flexible, lightweight supercapacitor device and 
fabrication process is very simple, cost-effective and possible to extend large scale fabrication. 
A thin, binder-free coating of graphene allows higher electrical conductivity, surface area, 

and electrochemical activity.

2.1.1. Fabrication and characterization of the thermally reduced graphene oxide  

(TRGO)-coated fabric electrode

The fabrication of thermally reduced graphene oxide nanosheets electrode is schematically 

represented in Figure 1a. Briefly, the graphene oxide (GO) was prepared from graphite by 
modified hummer’s method [35]. The prepared GO solution was used to coat on conducting 

fabric by repeated dip-coating. After each coating, the GO-coated fabric was dried at 60°C 
for 30 min; this process was repeated for five times. The GO-coated fabric was reduced to a 
graphene-coated fabric by thermal treatment at 170°C for 2 h in Ar. The surface morphology 
of the as-prepared film was characterized through Field emission scanning electron micros-

copy (FE-SEM) analysis, and results are indicating that the uniform deposition of TRGO on 

the fabric surface which is noted in Figure 1b–c. Further, the chemical reduction of GO depos-

ited fabrics was confirmed through Raman, Fourier transforms infrared (FT-IR), and X-ray 
photoelectron spectroscopy (XPS) analysis and results are presented in Figure 2. From Raman 

spectra (Figure 2a), two characteristic peaks were observed at 1602 (G-band) and 1354 cm−1 
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(D-band) of graphitic carbon in both GO and TRGO and corresponds to the defects and dis-

order in the hexagonal graphitic layers and optical E
2g

 mode in-plane vibration phonon at the 

Brillouin zone center, respectively [26, 36, 37]. Moreover, the chemical reduction of GO into 

TRGO by characteristics peak shift toward lower wave number and a slight increase in I
D
/I

G
  

ratio from 0.95 to 0.97, it is due to structural disorder (defects) generated during thermal 

reduction process [33]. The FT-IR spectra (Figure 2b.) also clearly indicating the reduction 

of GO into TRGO through the observation of reduced intensities of the absorption bands at 

3340 (O▬H stretching vibration), 1728 (C〓O stretching vibration), 1623 (skeletal vibration of 

un-oxidized graphitic domains), 1386 (O▬H deformation of C▬OH groups), 1233 (C▬OH 

stretching vibration), and 1057 cm−1 (C▬O stretching vibration) [38]. In XPS spectra, three 
peaks were observed at 284.6, 286.4, and 288.6 eV, which correspond to C〓C/C▬C (aromatic 

rings), C▬O (hydroxyl and epoxy), and C〓O (carbonyl) groups, respectively [26, 36]. The 

peak intensities of the oxygen-containing groups in the TRGO was lower than GO due to 

thermal reduction (Figure 2c–d). From, these results concluded that the GO was reduced  

to TRGO after thermal treatment in Ar environment. Moreover, thermal treatment allowed 

to transform sp3 to sp2 hybridization by reduction of the oxygenating functional group [39].

Figure 1. (a) Schematic diagram of the formation of thermally reduced graphene oxide nanosheets. (b-c) FE-SEM images 

of TRGO on the fabric surface. Figures are reproduced with permission from Ref. [19]. Copyright of Elsevier.

Advancements in Energy Storage Technologies170



2.1.2. Electrochemical characterization of TRGO-coated fabric electrode

The electrochemical performance of the as-prepared TRGO-coated fabric electrode was mea-

sured in 1 M H
3
PO

4
 electrolyte using the three-electrode system. Figure 3a shows the cyclic 

voltammetry (CV) curves of the TRGO-coated fabric electrode at various sweep rates from 

5 to 125 mV s−1. The resultant CV curve shows a rectangular-like shape, which indicates the 

electrochemical double-layer capacitance. Further, the rectangular CV curve accompanied 

with redox peaks at ~0.32 V of anodic scan and ~0.29 V of the cathodic scan. The co-existence 

of redox peaks confirmed the Faradic reaction by oxygenated functional groups (carbonyl and 
quinone groups) in TRGO [36, 40–42], which significantly contributes pseudocapacitance to 
the system (Inset of Figure 3a). The calculated specific capacitance at various scan rates was 
shown in Figure 3b. At a scan rate of 5 mV s−1, the higher specific capacitance of 414 F g−1 was 

observed and drops with increasing scan rates [43]. Further, galvanostatic charge-discharge 

(GCD) was measured at different current densities and results are shown in Figure 3c. The 

resultant GCD curve shows a linear and symmetric shape with a significantly low plateau. 
The symmetric nature of GCD confirms the double-layer capacitive nature and small plateau 

Figure 2. (a) Raman, (b) FT-IR and (c-d) C1s XPS spectra of GO and TRGO. Figures are reproduced with permission from 
Ref. [19]. Copyright of Elsevier.
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appeared due to the faradic reaction. The existence of redox peak in GCD curve well agrees 

with CV curve. The calculated specific capacitances (Figure 3d) were 413, 333, 218, 150, and 

106 F g−1 at various current densities of 0.5, 0.75, 1, 2.5 and 5 mA cm−2, respectively. These 

values are comparable as well as higher than previously reported values [26, 36, 44–47]. The 

shorter diffusion path, higher conductivity and higher active surface area of the fabricated 
TRGO electrode enhances the specific capacitance.

2.1.3. Fabrication and electrochemical performance of the flexible solid-state symmetric 
supercapacitor (SSC) device

A solid-state SSC was fabricated by sandwiching a H
3
PO

4
/PVA gel electrolyte and filter paper 

between two pieces of the TRGO-coated fabric electrodes. The electrochemical performance 

of the solid-state supercapacitor such as CV and GCD was measured at different scan rates 
and current densities and results shown in Figure 4. The CV curve (Figure 4a.) of the fabri-

cated supercapacitor device showed rectangular-like shapes even at high scan rates, which 

is ideal capacitive and fast charge/discharge behavior of the supercapacitor device. The  

Figure 3. (a) CV curves of TRGO-coated fabric electrodes (inset at 5 mV s−1). (b) Specific capacitance of TRGO-coated 
fabrics at different scan rates. (c) GCD curves of TRGO-coated fabric electrodes. (d) Specific capacitance of TRGO-coated 
fabrics at different current densities. Figures are reproduced with permission from Ref. [19]. Copyright of Elsevier.
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specific capacitance as a function of scan rate is shown in Figure 4b. The calculated single elec-

trode specific capacitance decreased from 281 to 54 F g−1, when scan rate increased from 5 to 

125 mV s−1 and it is due to inefficient diffusion of ions at higher scan rates [48, 49]. Further, GCD 

of solid-state device was measured at various current density, which is shown in Figure 4c.  

The resultant GCD curve shows symmetric nature, which confirms the good capacitive nature 
of the device. The calculated specific capacitance was shown in Figure 4d. The estimated 

specific capacitance of the cell (flexible supercapacitor) was 70.4 F g−1 at 5 mV s−1. The high-

est specific capacitance (single electrode) of 169 F g−1 was achieved at a current density of 

0.1 mA cm−2; this value is comparable to those previously reported results for solid-state super-

capacitors [45, 50, 51]. Further, the power and energy densities are two significant parameters 
to evaluate the performance of the supercapacitor device. The maximum energy and power 

densities of the solid-state device reached 5.8 W h kg−1 at a power density of 27.7 kW kg−1 and 

a power density of 277.6 kW kg−1 at an energy density of 1.5 W h kg−1. The obtained values are 

higher and comparable to the previously reported values [44, 50, 52–60]. The excellent electro-

chemical performance of the solid-state SSC device mainly attributed to the following factors: 
(1) binder-free deposition of graphene on fabric current collector reduces the conduct resis-

tance, which facilitates faster electrical conduction during electrochemical reaction; (2) the  

Figure 4. (a) CV curves and (b) specific capacitance of fabric SC at different scan rates. (c) GCD profiles and (d) specific 
capacitance of fabric SC at current densities. Reproduced from Ref. [19] with permission from the Elsevier.
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deposition of thin TRGO nanosheets provides a large accessible surface area which allowed 

abundant ions access (adsorption/desorption) for electrochemical reaction; (3) direct deposi-

tion of electroactive material allows strong adhesion with fabric current collector provide 

higher mechanical flexibility to device.

2.1.4. Integration and functional characterization of self-powered UV sensor

To demonstrate the self-powered application, fabricated SSC device was integrated with 

piezoelectric nanogenerator and photosensor. Here, piezoelectric nanogenerator used as an 

energy harvester, which converts the mechanical vibration, environmental noises into electri-

cal energy. The harvested alternate current (AC) electrical signal was stored in the fabricated 

SSC device with the help of rectifier. The stored energy was used to monitor the ultraviolet 
(UV) light by integrating the photosensor with this system. The detailed circuit configura-

tion was presented in Figure 5a. Here, a commercial piezoelectric nanogenerator was used 

as the energy source; it generated an average open-circuit voltage and short-circuit current of 

8 V and 20 μA, respectively, under continuous finger pressure. The serially connected super-

capacitors were charged (0.3 V over 280 s) by piezoelectric nanogenerator under constant 

finger pressing (Figure 5b). To demonstrate a self-powered application, the photodetector 

was connected to the supercapacitor to monitor UV light (Figure 5a) by closing switch S2 and 

opening switch S1. Here, photodetector was powered by serially connected supercapacitor 

and photodetector act as a variable load resistance for supercapacitor. The resistance of the 

photodetector varied linearly with the incident light intensity. The change of load resistance 

considerably changes the discharge current. The stability of the self-powered device is mea-

sured by multiple ON/OFF cycles under a constant illumination intensity of 8 mW cm−2 at a 

wavelength of 365 nm and results showed a stable response during measurement (Figure 5c). 

Additionally, the photoresponse was measured at 0.8 mW cm−2 steps for incident light inten-

sity ranging from 0.8 to 8 mW cm−2 (Figure 5d). The photoresponse current was calculated 

using the following relation [61]:

    |  I  
PR

   |   =  ( I  
OFF

   −  I  
ON

  )   (1)

where, IPR is the photoresponse current, I
OFF

 is the discharge current at UV light “off” condi-
tion, and I

ON
 is the discharge current at UV light “on” condition. The photoresponse current 

increased linearly with increasing incident intensity (Figure 5e). This study suggested that 

the self-powered device has a massive potential in wearable and portable device applications.

2.2. Fabrication and electrochemical characterization of flexible transparent 
supercapacitor device

First, silver nanowire (AgNW) was spin-coated on polydimethylsiloxane (PDMS) substrate 
and subsequently dried. Then, PEDOT: PSS/PU nanocomposite was spin-coated over the 
AgNW/PDMS substrate and film was dried at 150°C for 1 hr. The PEDOT:PSS/PU nanocom-

posite was prepared by mixing PEDOT:PSS (5–8 wt% dimethyl sulfoxide (DMSO) & 1 wt% 
zonyl) with 4 wt% polyurethane dispersion (PU). The morphology of the fabricated film was 
measured through FE-SEM image and result was shown in Figure 6a. The resultant FE-SEM 
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image is clearly indicating that the deposition of Ag NWs on the flexible PDMS substrate 
and Ag NWs are randomly oriented on the substrate. Further, spin-coating PEDOT:PSS/PU  

Figure 5. (a) Electric circuit diagram of the self-powered photosensor. (b) Charging of F-SCs by piezoelectric nanogenerator; 

inset is the structure of F-SC. (c) Time-dependent response of multiple ON/OFF cycles at a constant illumination intensity 

of 8 mW cm−2 at λ = 365 nm. (d) Time-dependent photoresponse with different illumination intensity. (e) Photoresponse 
current versus light intensity. Figure is adapted with permission from the Ref. [19]. Copyright of Elsevier.
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deposition eliminates the Ag NWs adhesive problems and connect silver nanowires. Moreover, 

deposition of PEDOT:PSS/PU nanocomposite provides higher flexibility and stretchability to 
the device by embedding the Ag NW inside polymer matrices. Finally, the flexible super-

capacitor device was fabricated by sandwiching poly(vinyl alcohol)/phosphoric acid (PVA/
H

3
PO

4
) film between two PDMS/AgNW/PEDOT: PSS/PU substrate [23]. The transparent, 

stretchable supercapacitor device was schematically illustrated in Figure 6b. The performance 

of the fabricated flexible supercapacitor device was evaluated based on CV and GCD curves 
at a different scan rate and current densities and results displayed in Figure 6c and d. The fab-

ricated PDMS/AgNW/PEDOT:PSS/PU symmetric supercapacitor delivered a maximum areal 
capacitance of 190 μF cm−2 and 396 μF cm−2 at a scan rate of 50 mV s−1 and a current density of 

4 μA cm−2, respectively.

2.2.1. Fabrication and characterization of transparent, stretchable self-powered patchable 
sensor

The arch type triboelectric nanogenerator (TENG) device was fabricated by placing an arch-

shaped PES/AgNW/PEDOT:PSS/PU on PDMS/AgNW/PEDOT:PSS/PU and schematic was 
shown in Figure 6e. The fabricated device designed to contact the arch-shaped PES sur-

face with PDMS surface. The transparent, stretchable strain sensor was fabricated same as  

Figure 6. (a) FE-SEM image of the AgNW/PEDOT:PSS/PU film on PDMS substrate. (b) Schematic representation, (c) CV 
and (d) galvanostatic charge-discharge curves of the fabricated transparent flexible supercapacitor device. Schematic 
illustration of fabricated (e) TENG, (f) transparent strain sensor, and (g) strain sensor on different parts of human body. 
(h) Digital photograph of the self-powered strain sensor. Figure adapted with permission from the Ref. [23]. Copyright 

of American Chemical Society.
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supercapacitor electrode and additionally, PDMS layer was covered over the electrode to avoid 
the delamination and increase the stretchable nature. Here, AgNW/PEDOT:PSS/PU coated 
PDMS substrate was used as an active strain sensor and schematic representation of the fabri-
cated electrode was given in Figure 6f. Further, the schematic representation of strain sensor 

placed on different parts of the human body is shown in Figure 6g. To demonstrate the capa-

bility of the fabricated strain sensor, it has integrated with supercapacitor device. The original  

Figure 7. Monitoring of strain caused by muscle movement for functions of the trachea and esophagus. (a) Stretchable 

and transparent strain sensor attached to the neck. Resistance change (ΔR/R
0
) of the strain sensor versus time measured 

by source measurement unit, (b) breathing, (c) coughing, (d) drinking, (e) saliva swallowing, and (f) eating. (g) Circuit 

diagram of strain according to the sensor with SC charged by TENG. Resistance change (ΔR/R
0
) of the strain sensor 

versus time measured by SC charged by TENG, through (h) breathing, (i) coughing, (j) drinking, (k) saliva swallowing, 

and (l) eating, respectively. Figures are reproduced with permission from Ref. [23]. Copyright of American Chemical 

Society.
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Figure 8. Charging property of the transparent and stretchable SC charged by a TENG. (a) Schematic of the rectifying 

circuit and SC. (b) Charging curve of the SC charged by the power generated by the TENG, and charging steps of the SC 

(inset). Figure is adapted with permission from the Ref. [23]. Copyright of American Chemical Society.

photocopy of the integrated device was shown in Figure 6h. The ability of the fabricated device 

was calibrated by attaching the device at neck to monitor the muscle movements of the trachea 
during breathing and coughing and esophagus during drinking, swallowing, and eating. At 

first, the integrated device was charged by the external power source and used to run the strain 
sensor. The measured output signal from the embedded device was shown in Figure 7, and it 

is clear that the fabricated device highly sensitive to the muscle movement, well distinguish-

able between the nature of applied strain. To demonstrate the self-powered operation of the 

integrated device, the supercapacitor was charge through the triboelectric nanogenerator by 

mechanical vibration (pushing). The charging performance of the supercapacitor device with 

integrated TENG was shown in Figure 8. The results indicating that the integrated superca-

pacitor device charge up to 0.9 V at the short period (1500 s) of mechanical vibration.

Further, the self-charged power was used to power the strain sensor to monitor the muscle 

movement. The output performance of the sensor powered by self-charged supercapacitor 

device is highly sensitive and almost same type of response observed as like externally charged 

device. The output performance of the strain sensor was given in Figure 7h–i. Similarly, the 

fabricated device showed higher sensitivity to the various human body activity like twisting, 

turning the wrist, clenching, etc. This result opens up to use self-powered systems for mul-

tiple application in wearable application as well internet of things (IoT).

2.3. Fabrication and integration of supercapacitor device with solar energy 

harvesters

2.3.1. Synthesis and characterization of 3D-NiCo
2
O
4
/Ni fiber electrodes

The three dimensional (3D) porous nickel (Ni) films on metal fiber substrate were deposited 
using electrodeposition with a hydrogen bubble template method [62]. Briefly, the 3D porous 
Ni film was electrodeposited at a constant current of 2.5 A using DC power supply with 
the electrolyte containing a 0.1 M NiCl

2
 and 2 M NH

4
Cl and then dried at 60°C for 12 h in 

hot air over. The 3D-NiCo
2
O

4
/Ni nanostructures were prepared by the electrodeposition of 
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bimetallic (Ni, Co) hydroxide in a standard three-electrode system in an aqueous solution 
containing 1:2 molar ratio of 0.02 M nickel nitrate (Ni(NO

3
)

2
.6H

2
O) and 0.04 M cobalt nitrate 

(Co(NO
3
)

2
.6H

2
O) at a constant potential of -1 V for 5 min and followed by thermal transforma-

tion into spinel NiCo
2
O

4
 at 300°C for 2 h [63]. The construction of 3D architectures electrode 

would be predictable to exhibit better electrochemical performance in terms of high specific 
capacitance, high-rate capability, and high energy density. The expectation of enriched per-

formance is mainly due to the enlarged active surface area and open pores which facilitates 

the diffusion of electrolyte, highly porous interconnected network of nickel metal improves 
the fast electron transport, the large surface area of electrode contact with the electrolyte as 

well as lower resistance, better adhesion between the substrate and electroactive material.

The morphology of 3D porous Ni films and 3D-NiCo
2
O

4
/Ni nanostructures were examined 

by FE-SEM. Figure 9a–b. depicts the 3D porous interconnected Ni dendritic walls. The den-

dritic walls were composed of numerous interlinked nanoparticles and display continuous 

interspaces. The FE-SEM images of 3D-NiCo
2
O

4
/Ni (Figure 9c–d) shows the highly porous 

flower-like nanostructures over the Ni surface. The elemental composition of the as-prepared 
3D-NiCo

2
O

4
/Ni nanostructure film was evaluated by energy-dispersive X-ray spectroscopy 

and shown in Figure 9e–f. The Energy-dispersive X-ray spectroscopy (EDS) spectrum shows 
the distinctive peaks of Ni, Co and O elements present in the sample, which confirmed the 
formation of 3D-NiCo

2
O

4
/Ni. Further, the elemental mapping images clearly display the 

uniform distribution of Ni, Co and O elements within the 3D-NiCo
2
O

4
/Ni structure. Also, 

XRD spectrum of 3D-NiCo
2
O

4
/Ni exhibited the distinct diffraction peaks at the diffraction 

angles of 37.1°, 59.1° and 64.9° correspond to the (311), (511) and (440) plane reflections of 
spinel NiCo

2
O

4
 crystalline structure (JCPDS file no: 20-0781). The electrochemical character-

ization of as-prepared electrode was analyzed by CV and GCD curves in 2 M KOH electro-

lyte. Figure 9g–h shows the CV and GCD curves of 3D-NiCo
2
O

4
/Ni fiber electrodes. The CV 

curves of the 3D-NiCo
2
O

4
/Ni electrodes show two pairs of redox peaks during the electro-

chemical process, which attributed to the reversible faradaic redox processes of Ni2+/Ni3+ and 

Co2+/Co3+ transitions [64]. Further, the GCD curves also exhibited a non-linear behavior with 

voltage plateau indicated the faradaic behavior of the electrodes. The calculated volumet-

ric and gravimetric capacitance of the 3D-NiCo
2
O

4
/Ni fiber electrodes were 29.7 F cm−3 and 

300 F g−1, respectively.

Flexible solid-state fiber supercapacitor based on two 3D-NiCo
2
O

4
/Ni used as a positive and 

negative electrode, with polyvinyl alcohol- potassium hydroxide (PVA-KOH) gel electrolyte 
on a polyethylene terephthalate (PET) substrate was fabricated, for real-world applications. 
The two electrodes were assembled in parallel with separation of 1 mm on the PET substrate 
using PVA-KOH. The typical CV curves of F-SC at different scan rates as shown in Figure 10a,  

signifying the typical pseudocapacitive behavior. Figure 10b. shows the GCD curves of F-SC 

at different current densities. The GCD curves of F-SC also reveal symmetry and linear in 
nature, confirms that the device has excellent electrochemical reversibility and capacitive 
behavior. The calculated gravimetric and volumetric capacitance of the full cell is 18.8 F g−1 

and 1.86 F cm−3, respectively. Further, the F-SC exhibited excellent cyclic stability (Figure 10c),  

even after 5000 cycles, with a capacitance retention of ~ 100%. The key parameter of the F-SC 
such as energy density and power density was calculated from the GCD curves (Figure 10d).  
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Figure 9. FE-SEM images of 3D-Ni (a-b) and 3D-NiCo
2
O

4
/Ni (c-d) nanostructures. (e) EDS and (f) X-ray diffraction (XRD) 

spectra of 3D-NiCo
2
O

4
/Ni. (g) CV and (h) GCD curves of 3D-NiCo

2
O

4
/Ni. Figure is adapted with permission from the 

Ref. [7]. Copyright of Royal Society of Chemistry.
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The calculated energy density and power density of the F-SC is 2.18 W h kg−1 (0.21 mWh cm−3) 

and 21.6 W kg−1 (2.1 mW cm−3). The obtained values are higher than or comparable to previ-

ously reported F-SCs [20, 65–67].

2.3.2. Fabrication and characterization of dye-sensitized solar cells (DSSCs)

The fabrication and photovoltaic characterization of the DSSC as follows. First, TiCl
4
 treat-

ment was conducted by immersing the cleaned FTO glass in the 40 mM titanium tetrachloride 

(TiCl
4
) solution for 30 min at 70°C. Then, the photoanode TiO

2
 paste was deposited on the 

TiCl
4
 treated FTO glass by doctor blade process followed by calcination at 550°C for 1 h. After 

that, the dye coating was performed by dipping the as-prepared TiO
2
 in 0.5 mM of N-719 in 

tert-butanol/acetonitrile solution (1:1 vol.) for 12 h. The Pt counter electrode (CE) was depos-

ited on the drilled FTO glass by spin-coating (2000 rpm, 2 times) using 30 mM of the H
2
PtCl

6
 

Figure 10. (a) Cyclic voltammograms of F-SC at different scan rates. (b) Galvanostatic charge/discharge profiles of F-SC 
at various currents. (c) the charge/discharge stability of F-SC at 0.8 mA. (d) Ragone plot of the F-SC. Reproduced from 

Ref. [7] with permission from the Royal Society of Chemistry.
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solution in isopropyl alcohol (IPA) and annealed at 450 ֯C for 30 min. The working electrode 

and CE were assembled using 60 μm of Surlyn, and an electrolyte (0.5 M 1-hexyl-2,3-dime-

thylimidazolium iodide (C-tri), 0.02 M iodine, 0.5 M 4-tert-butylpyridine, and 0.05 M lithium 

iodide in acetonitrile) was added through a pre-drilled hole.

2.3.3. Integration and functional characterization of self-powered device

To demonstrate self-powered application, the fabricated fiber supercapacitor was integrated with 
DSSC and LED. The schematic illustration of the self-powered device is shown in Figure 11a. The 

self-powered system comprises of four series-connected DSSCs and three series F-SC and light 

emitting diode (LED). Here, DSSC served as an energy source to harvest the energy from sun-

light and then to charge the supercapacitor. After that stored energy was utilized to drive LED 

without disruption. Initially, the F-SCs was charged with turning the switch S1 is on to connect 

DSSCs to the circuit. Figure 11b shows the current density-voltage curve of the serially-wound 

DSSCs. The open-circuit voltage, short-circuit current, and power conversion efficiency of the 
serially-wound DSSCs was 3.08 V, 3.94 mA cm−2, and 6.96%, respectively. The inset of Figure 11b 

shows the digital photograph of serially-wound DSSCs. The F-SC charged from 0 to 3.2 V about 

60s signifying the stable output of DSSCs as shown in Figure 11c. Afterwards, to demonstrate 

the self-powered operation, by turning the switch S2 is on, while switch S1 is off to illuminate 
the commercial green LED (Figure 11c) using charged supercapacitors. This study validated that 

fiber supercapacitors could store solar energy harvested from DSSCs, which suggests their mas-

sive application potential in diverse electronic devices.

2.4. Fabrication and integration of supercapacitor device with hybrid (solar and 

vibrational) energy harvesters

In this work, hybridized self-charging power textile system was developed by Wen et al., [68] 

to simultaneously collect outdoor/indoor sunlight and casual body movement energies and 

stored in an energy storage device for sustainable operation of wearable electronics. Figure 12 

shows the schematic illustration of hybridized self-charging power textile. The self-charging 

power textile system consists of fiber-shaped dye-sensitized solar cells (F-DSSC, top layer), 

Figure 11. (a) Schematic diagram of the integration of F-SCs with DSSCs and LED. (b) J-V curve of the DSSCs connected 

in series under 1 sun irradiation. Inset is the digital image of four DSSCs assembled in series. (c) Charging curve of F-SCs 

module by DSSCs module in series; the inset is the digital photograph of green LED driven by F-SCs charged using 

DSSCs. Figure is adapted with permission from the Ref. [7]. Copyright of Royal Society of Chemistry.
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fiber-shaped triboelectric nanogenerator (F-TENG, middle layer) and fiber-shaped superca-

pacitors (F-SC, bottom layer). In this architecture, each solar cell and supercapacitor unit is 
coupled to one another, making a single triboelectric nanogenerator unit is assembled to scav-

enge body motion energy simultaneously. Both of the harvested energies could be effortlessly 
converted into electricity by using several solar cell units (for solar energy) and TENG (for 

random body motion energy) and then stored as chemical energy in supercapacitor modules 

for the operation of wearable electronics.

2.4.1. Fabrication and characterization of fiber-shaped supercapacitors

The binder-free RuO
2
·xH

2
O on carbon fiber electrode was synthesized using a vapor-phase 

hydrothermal technique [69]. Briefly, a Ruthenium(III) chloride (RuCl
3
) slurry prepared from 

0.1 g of RuCl
3
 and 4 ml of EtOH was coated onto the carbon fibers and dried at 60°C. Then the 

RuCl
3
 coated carbon fibers were placed in a 50-ml Teflon-lined stainless steel autoclave with 

0.1 M NaOH solution in an oven at 190°C for 5 h to get RuO
2
•xH

2
O-coated carbon fibers. Then, 

two fiber electrodes were closely assembled into the PDMS-covered Cu-coated tube and sepa-

rated by a paper septum to form an all-solid-state flexible fiber-shaped supercapacitor. Before 
assembling, the fiber electrodes were immersed in a PVA/H

3
PO

4
 gel electrolyte for 10 min. 

Figure 13a shows the schematic representation of RuO
2
·xH

2
O F-SC. The structural and mor-

phological properties of the as-prepared electrodes were confirmed through SEM and XRD 
analysis. The SEM image (Figure 13b–d) of as-prepared fiber electrode shows the cracked mud 
morphology and the diameter of the fiber are ~10 mm. The XRD pattern of RuO

2
•xH

2
O coated 

carbon fiber electrodes revealed an amorphous with partly rutile crystalline structure [70]. The 

electrochemical performance of F-SC was evaluated by CV and GCD techniques. Figure 13e 

Figure 12. Schematic representation of the self-charging power textile. Reproduced from Ref. [68] with permission from 

the American Association for the Advancement of Science.
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shows the CV curves of F-SC at different scan rates. It can be observed that the CV curves are 
maintained their initial shape even at higher scan rates, revealed their good capacitive behav-

ior and better rate capability. The GCD curves of F-SC at various current densities were shown 
in Figure 13f. The GCD curves displayed the symmetric and triangle in shape under vari-

ous current densities, confirmed the good capacitive behavior. The calculated energy specific 
capacitance and energy density of F-SC is 1.9 mF cm−1 and 1.37 mJ cm−1, respectively. Further, 

the F-SC better cycling stability even after 5000 cycles with no obvious capacitance change as 
well as excellent mechanical stability under various bending conditions (from 0° to 180°).

2.4.2. Fabrication and functional characterization of fiber-shaped hybrid energy harvester 
using dye-sensitized solar cells and triboelectric nanogenerator

Firstly, a photoanode (TiO
2
 nanotube) was prepared on Ti wire surface by anodization tech-

niques in a solution containing 0.3 wt % NH
4
F/EG and 8 wt % H

2
O at 60 V for 6 h using a 

two-electrode cell with Pt wire as a counter electrode [71]. After that, the anodized Ti wire 

was annealed at 500°C for 1 h and then immersed in 40 mM TiCl
4
 solution at 70°C for 30 min. 

Afterwards, the as-prepared samples were annealed again at 450°C for 30 min. Secondly, the 

Figure 13. (a) Schematic diagram and (b) photograph of F-SC. (c-d) SEM images of RuO
2
·xH

2
O-coated carbon fiber 

electrode. (e) CV and (f) GCD curves of F-SC at various scan rates and current densities. Figure is adapted with 

permission from the Ref. [68]. Copyright of American Association for the Advancement of Science.
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prepared photoanode was immersed in a 3 × 10−4 M of N719 dye solution in ACN and tBA 
(v/v = 1/1) at room temperature for 24 h. Thirdly, the platinum counter electrode was fabricated 

by soaking carbon fiber in an H
2
PtCl

6
•6H

2
O aqueous solution (5 mg/ml) for 5 min followed by 

thermal treatment at 400°C for 30 min. Finally, F-DSSC was fabricated by inserting a Pt-coated 
carbon fiber and a dye-sensitized Ti photo anode into the Cu-coated ethylene vinyl acetate 
(EVA) tube in parallel and then injected an electrolyte into the tubing (0.1 M LiI, 0.05 M I2, 0.6 M 

DMPII, and 0.5 M tBP in MPN). Finally, the pipe was sealed with sealing glue to prevent the 
electrolyte leakage. The schematic illustration and digital photograph of F-DSSC are shown in 

Figure 14a. Vertically oriented arrays of TiO
2
 nanotubes with a diameter of ~50 nm on Ti wires 

surface were confirmed through SEM images (Figure 14b–d). The current density-voltage (J-V) 

characteristic of F-DSSC was assessed under standard illumination (100 mW cm − 2; AM1.5). 
The short-circuit current density, open-circuit voltage, fill factor, and power conversion effi-

ciency of the F-DSSC is 11.92 mA cm−2, 0.74 V, 0.64, and 5.64%, respectively.

A fiber-shaped triboelectric nanogenerator (F-TENG) was fabricated by connecting a Cu-coated 
EVA tube as a triboelectric electrode and the PDMS-covered Cu-coated EVA tube as another 
electrode. The copper (Cu) electrode with 1 mm thickness was deposited onto the EVA tubing 

surface by physical vapor deposition at 100 W in Ar atmosphere for 40 min. Then, the PDMS-
covered Cu-coated EVA tubing was deposited by dip-coating process [72, 73] and dried at 

room temperature for 12 h. Figure 14e–f displays the schematic diagram and a digital photo-

graph of F-TENG. The output performance of the fabricated F-TENG was studied through the 

periodic contact and separation under different frequencies. The open-circuit voltage (~12.6 V) 
and charge of the device are almost constant (~4.5 nC,) when the frequencies vary from 1 to 
5 Hz, but the short-circuit current (ISC) increased from ~0.06 to ~0.15 μA. These result con-

firmed that the fabricated device could harvest the renewable energy efficiently.

2.4.3. Fabrication and testing of the hybridized self-charging power textile

The hybridized self-charging power textile was fabricated by intertwined several solar cells 

and supercapacitors into the fabric to form a textile structure with serial/parallel connection 

(tune the output voltage and capacitance of devices to drive real wearable electronics). The 

textile-based F-TENG system was constructed by assembling the intertwined F-DSSC textile 

Figure 14. (a) Schematic diagram and (b) photograph of F-DSSC. (c-d) SEM images of TiO
2
 nanotube arrays. (e) Schematic 

illustration and (f) digital photograph of F-TENG. Figure is adapted with permission from the Ref. [68]. Copyright of 

American Association for the Advancement of Science.
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Figure 15. Demonstration of the self-charging powered textile. Digital photograph of the hybrid device under outdoor 

(a), indoor (b), and movement (c) environments. (d) the equivalent circuit of the self-charging powered textile for 
portable electronics. (e) the self-charging curve of the F-DSSC and F-TENG hybrid. (f) Durability studies of the fabricated 

devices for 1000 cycles. Insets show the photographs of bending status between 0° and 180°. Reproduced from Ref. [68] 

with permission from the American Association for the Advancement of Science.

fabric as the top layer to harvest solar energy, and the bottom layer of intertwined F-SC textile 
was used to store harvested energies. Meanwhile, both woven textiles instantaneously engage 

in recreation as triboelectric layers to collect mechanical energies from human body motion, 

which were also stored in F-SC after rectification.

To check the real-time applications, the fabricated textile device was attached with a T-Shirt 
(Figure 15) and harvests both sunlight as well as body motion in outdoor and indoor activi-

ties, respectively. The whole device consists of three F-DSSC and 6 F-SC units in serial and 

then intertwined separately in a 3 × 3 network. The demonstration of self-charging power 

textile under outdoor and indoor activities is shown in Figure 15a–c. Figure 15d shows the 

equivalent circuit of hybridized self-charging power textile. Herein, an AC generated from 
F-TENG was converted into DC by a bridge rectifier, and it stored in F-SC. Moreover, a diode 
in the circuit blocks the inflow current through an F-DSSC. The self-charging characteristic 
was achieved by harvesting solar and mechanical energies from human motion through the 

as-fabricated hybrid device and is presented in Figure 15e. Initially, the F-SC was charged 

through a turn on the switch S0 and S1, which connect F-DSSC to F-SC, while the S2 switch is 

in off. The stable F-DSSCs output charge the F-SC to 1.8 V from 0 at 69 s. The F-SCs charging 
voltage persists at 1.8 V, due to the low output voltage of the F-DSSCs, which limits their reli-

ability and practicability and it indicated by light blue-shaded area in Figure 15e. Further, the 

F-SCs can be charged continuously to a higher voltage as highlighted (light red-shaded area) 
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in charging curves through F-TENGs by turn on the S2 switch. Then the charged F-SCs can 

power the portable electronic devices including LEDs, smart watches, sensors, etc. Moreover, 

the charging efficiency can be improved through impedance matching of DSSCs, TENGs, 
and SCs. Finally, the stability of the fabricated device was tested under continuous bending 

motion for 1000 cycles using the linear motor, as shown in Figure 15f. The advancement in the 

present efforts provides a new path for self-powered systems in wearable technology.

3. Conclusion

In summary, a self-powered system was successfully demonstrated by charging the superca-

pacitor using an energy harvester and powered a photosensor as well as portable devices. The 

various results showed the feasibility of using a supercapacitor as an efficient energy storage 
components and their application in self-powered devices due its high power density (uptake 

pulses) leads to the high energy conversion and storage efficiency. This work offers a welcome 
advancement in the supercapacitor toward the self-powered system application in flexible/
wearable technology, which will pledge promising developments in self-powered flexible dis-

plays, infrastructure, and environmental monitoring, internet of things, defense technologies 

and wearable electronics (artificial electronic skin, smart textiles/watch straps), among others.
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