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Abstract

In this chapter, we consider special compound 4n x 4n magic squares. We determine a
2n — 3 dimensional subspace of the nullspace of the 4n x 4n squares. All vectors in the
subspaces possess the property that the sum of all entries of each vector equals zero.

Keywords: null space, magic squares, mathematical induction

1. Introduction

A semi-magic square is an n x n matrix such that the sum of the entries in each row and
column is the same. The common value is called the magic constant. If, in addition, the sum of
all entries in each left-broken diagonal and each right-broken diagonal is the magic constant,
then we call the matrix a pandiagonal magic square. Rosser and Walker show that a
pandiagonal 4 x 4 magic square with magic constant 2s has in general the following structure.

A B C @

E 0 ¢ p
s—C S—w s—A s—B
s—¢ s—p s—E s—0
where

w=2s—-—A-B-C

0=2s—A—-B—-E
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c=A+E-C

p=B+C—-E.

This result was developed by Rosser and Walker. Hendricks proved that the determinant of a
pandiagonal magic square is zero. We note that every antipodal pair of elements add up to

one-half of the magic constant. Al-Amerie considered in his M.Sc thesis some of the results
here. There are three fundamental primitive pandiagonal squares which are 4 x 4. Kraitchik

(see [3, 8]) has shown how to derive all pandiagonal squares from three particular ones.

We define a certain class of 6 x 6 magic squares, which has a similar structure to the structure
of a pandiagonal 4 x 4 magic square. In this class each antipodal pair will add up to one-third

of the magic constant. Precisely, we have:

Definition 1: A 6 x 6 magic square with 3s as a magic constant is called panmagic if

The following matrix is a possible form for this kind of squares:

a;j + ay = s, for each i, j, k, [ such that i = k (mod 3) and j = I (mod 3).

M R w T K
Q J I H G
P E D C A
s—T s—L s—K s—M s—R s—W
s—H s—G s—F s—Q s—] s—1
s—C s—B s—A s—P s—E s—D
where
M=]+I+H+E+D+C—-L—-K——,
W=K-I+F-D+A,
P=3—-E-D-C—-B-A
Q=3—-]—-1I-H-G-F,
9s
T:E—L—K—H—G—F—C—B—A.
Note that we have the following relations:
M+Q+P=T+H+C
R+J+E=L+G+B, (1)

W+1+D=K+F+ A.



Nullspace of Compound Magic Squares
http://dx.doi.org/10.5772/intechopen.74678

Using Maple we can show that the 6 x 6 panmagic square possesses a nontrivial null space,
which can be written in the following form:

{Z(x17x2a x37 _x17 _x27 _x3)/ tZ ER}

where
x1=(A-D)(G-])(B-E)I-F),
xp =(F=1)(B+2C+E —3s)+2FD —2Al+ (D — A)(G+ ] +2H — 3s),
x3=(B—E)F+I1+2H)+ (A+D+2C+2B+2E —-3s)(] - G).

Note that the sum of all entries of the vectors is zero. For example:

—51 39 26 0 9 13
54 —10 -2 -5 4 -5
-5 1 2 3 17 18
12 3 -1 63 —27 —14
17 8 17 —42 22 14
9 -5 —6 17 11 10

has as nullspace {z(34, 115, —132, —34, -115,132)" : z€R}.

Definition 2: A 8 x 8 square consisting of 4 pandiagonal magic squares Ay, A1z, A1, A hav-
ing the same magic sum in the form

{An A ]
Ax Ap
is called a compound magic square if the following relation holds:

A + A = Arp + Asr.
It is easy to check if the last relation guarantees that the square is a magic 8 x 8 square. In the
same manner we can combine four panmagic squares in a magic square.

Definition 3: Let By, Bi1, Bip, Bo1 be panmagic squares having the same magic constant.
Assume that By, + B11 = B2 + Bp1. Then the matrix

[Bn B1; }
By Ba
is called the compound 12 x 12 magic square.

The condition By, + Bi1 = Bz + By ensures that the compound 12 x 12 magic square is magic.
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2. Main results

We prove first a simple result for a compound square of 4 x 4 squares. We then generalize this
result for an arbitrary number of squares.

Proposition 1: The compound 8 x 8 magic square processes a three-dimensional subspace of its
nullspace.

Proof: First we note that the vector

(1,1,1,1,-1,-1,-1,-1)
is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

Now, the square Aj; (res. Ajp) has a nonzero vector vq; (res. v12), which belongs to the
nullspace of the square, since Ayj(res. Ajz) is a pandiagonal magic square. We look for four
numbers f,, f1,, 21,2, such that the vector

(fllvn + f12012 >
favn +frvn
belongs to the nullspace of the square. To do this we compute the following matrix multiplication:

(fuvll + f12012 > (All (fnvll +f127’12) + An (fzﬂ’ll +f227]12) )
for011 + f 012 At (fnvn +f12012) + A (fzﬂ]n +f22012)

Al Ap
Ay Ax

According to the choice of v;; and v, we obtain the vector (gl, gz)' as the result of matrix
multiplication, where:

g1 = A1if 012 + Avaf 5011,
Sy = A21v11f 11 + Anviaf 1, + (Ao + Aoion )f 5 + (A21v12 — Anvnn)f -

Note that we used the relation Ay, = A1y + Ay — A11. We can rewrite the vector (gl , 82)/ in the

form.
fn
0 A11012 A127)11 0 f12 (2)
Anvnn Anve (A + Ao (A — An)on for
fa

According to Al-Ashhab (see [3]) we can assume that the vectors in the nullspace of the
pandiagonal magic square are
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/!
_ % sk k sk s c
v = <vi]-,vi]- , — U —Uj; > Jori=1,j=1,2

Further, we can assume that

ai]' bi]' CZ']' d,’j
€ij fii 8ij hij
Aj = =12
5 — Cjj S—di]‘ 5 — 4djj S—bi]‘
5 — 8jj s—hij s—e; s—fi].
Hence, we can assume that:
aij Ul']' + bljv;;* — Cij?];kj — dl]v;;* (az] C1])UZ']' + (bz] dl])vj]'
* sk * Ly o * I P e
eij vy + f 05" — &;vi — it (e,] 8ij> v + (f i hl]) Ui
it = vt — gt gl + by | —(aij — ci)vf — (bij — dij) v}
Ul 1] Ul 1] Ul 1] Ul 1] 1 ) 1] ) ) ij
8ij i hivi" + ey + f iiVij - (311 - gij)vij - (f ij hl]>vij

Since the sum of two pandiagonal magic squares is pandiagonal magic, we deduce that four
rows in the matrix in Eq. (2) are redundant. Since we have the relations

apten=cn+g8y = 411 —C11= —(6’11 - gn)
bi+fy =du+hn = bu—dn=—(f;; —hn)

the application of elementary row operations on the matrix in Eq. (2) yields to

[0 1o 721 0 i
Juu 12 T21 TGy Gip — T2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0 0 |

where

This analysis enables us to conclude the following relations from (2):
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If we set

112121 + 11712 — G721 —q1p + 112 21
f11:_ f21+ 01 fzz/fu:_ fz

f12=0 fn=0 for =011, f11 =712 —4q1p

£,
12

which is consistent with the previous relations, we conclude that the vector

(

(”2 - ‘112)011
411912

)

belongs to the nullspace of the square. We can make another choice as follows.

fo2 =0 fo =112q11, f10 = =721y , f11 = 12115 — T12 (”21 + 411)

and we obtain a vector belonging to the nullspace of the square, which is

( (”21‘712 — T2 (r21 + ‘711))7’11 - r21q11012>

—121411911

Now, the vectors vy, v1; are linearly independent, since they correspond to different magic
squares. Hence, the last two vectors are linearly independent. Also the vector

(1,1,1,1,-1,-1,-1,-1)

is linearly independent with the last two vectors, since its first two entries are not the opposite

of the third and fourth entry. [|

For example, the following square is a compound 8 x 8 magic square.

-12
23

—16

21

-19

16
-17

20

13

—10

16

—21

13
—11

16

—14

-22
12

24
—20

10
11

For this square we can construct as described the following two vectors in its nullspace
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222 170, —544, 170, 544

87238 72 *
55’57 5

(_ 216006 85026 216006 85026

5 ’ 5 ’ 5 ’ 5 ’ ’ ’ ’ )

In fact, its nullity is 3. Thus, these two vectors together with
(17 17 17 17 _17 _17 _17 _1)/
form a basis of its nullspace.

We prove now a similar result to the previous proposition, where we replace the 4 x 4 square
with a 6 x 6 one.

Proposition 2: The compound 12 x 12 magic square possess a three-dimensional subspace of
its nullspace.

Proof: First we note that the vector

(1,1,1,1,1,1-1,-1,-1,-1, -1, -1

is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

We look for scalars v, vy, U3, 4, U5, U6 such that

ay b o odin oenn fy aw b cn din e fy [o1 ] [07
811 bt in j11 ki I 812 hiy i j12 ko lip 02 0
myp mi1 011 Pyp 4y Y1 M2 N2 012 P g T2 U3 0
S—duS—611S—fHS—alls—buS—C115—dlzs—€12S—f125—u125—b12S—C12 —U1 0
S —juuSs—kiis—h1s—g5—his—1i115 —j;,5 —kios —l1ps — §,5 — hips — i -0y 0
S—P11S— 4118 —T118 — M11S — 1118 — 0118 — P18 — 1S — 112§ — M128 — N128 — 012 —U3 . 0
ayn by oon da oen fy an bn cxn dn en fy Nos | |0
S hxn i1 jy ka1 &y M2 i jyy k2 I Us 0
Mp1  M21 021 Pory Gy 121 M2 N2 022 Poy fpp 122 (43 0
S—d21S—€21S—f21S—ale—buS—C215—dzzS—6225—f22s—ﬂ225—b225—C22 —04 0
S—j21S—k21S—121S—g21S—h21S—i21S—jZZS—kzzS—lzzS—gZZS—hzzs—izz —Us 0
_s—p21s—q21s—r21s—m21s—n21s—021s—p225—q225—r225—mzzs—nzzs—on_ L—0¢ _0_

We transform this equation into a linear system, in which we eliminate the redundant equa-
tions. The system becomes

(a1 — di1)vr + (b — en1)va + (e — f11)vs + (12 — di2)vs + (b2 — e12)vs + (c12 — f1,)v6 = 0
(811 — J11) o1 + (h11 — kin)voa + (i1 — l1)vs + (890 — Jip)0a + (h12 — ki2)vs + (in2 — l2)vs = 0
(mn - pn)m + (7111 - L]H)Uz + (011 — r11)v3 + (mu - plz)m + (7112 - L]u)vs + (012 —112)v6 = 0
(a21 — do1)v1 + (ba1 — e21)v2 + (Czl —f21)7’3 + (a2 — dn)vs + (b2 — €22)v5 + (sz —fzz)vs =0
(821 = Jo1) 01 + (h21 — ka1)v2 + (21 — 121)v3 + (820 — Jop) Vs + (22 — ko )vs + (22 — Ia2)vs = 0
(m21 - P21)01 + (”21 - %1)02 + (021 — 121)v3 + (mzz - pzz)w; + (nzz - q22)05 + (022 — 122)vs =0

65
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From the definition of the panmagic square we know that

aij + gy + My = dij + j; +py; = (@ —dyj) + (gij _jij> - _<mif - pi]’) )
bij + hij + nij = e + kij + g5 = (b —e) + (hyj — e5) = — (”if - %’) (4)
Cij + li]' =+ 0jj :fij + lij + i = (Cij _fij> + (iij — lij) = — (Oi]' — 1’1']') (5)

Thus, due to Egs. (3)-(5), we can reduce the linear system to the following

(411 — di1)or + (bir —en)va + (c11 — f11)vs + (a12 — d12)vs + (b12 — €12)vs + (c12 — f1,)v6 =0
(811 = Jun)or + (h = knn)vz + (i1 — h1)vs + (1 = fio) s + (M2 — k12)vs + (in2 — h2)vs = 0
(a21 — da1)v1 + (ba1 — e21)v2 + (021 —f21)v3 + (a2 — d22)vg + (b2 — ex)vs + (622 —fzz)vﬁ =0
(821 = Jo1)v1 + (h21 — ko1)va + (i1 — I21)v3 + (§2p — Jop) Vs + (22 — ka2)vs + (2 — lan)vs = 0

We can verify using the computer that the coefficient matrix of this system has in general the
rank four. Hence, we deduce that vy, v, v3, v4 depends on v5 and ve. By letting vs and v take
the values 0 and 1 we obtain two linearly independent vectors in the nullspace. These two
vectors do not possess the property that the first six elements are the opposite of the last six
elements. Hence, they are independent of the vector (1,1,1,1,1,1 -1, -1, -1, -1, -1, -1)"[]

Remark: We did not here make use of the relation By, + By; = Bz + By;. It actually does not
affect the proof.

For example, the following square is a compound 12 x 12 magic square.

—51 39 26 0 9 13 6 17 15 —6 0 4
54 -10 -2 -5 4 -5 20 5 2 0 9 0
-5 1 2 3 17 18 —24 6 7 8 19 20
12 3 -1 63 —27 —14 18 12 8 6 -5 -3
17 8 17 —42 22 14 12 3 12 -8 7 10
9 -5 —6 17 11 10 4 -7 -8 36 6 5

2 53 45 —131 33 34 59 31 34 —137 24 25
-10 0 10 11 12 13 —44 15 14 16 17 18
-89 21 22 23 29 30 —108 26 27 28 31 32
143 —21 -22 10 —41 -33 149 -12 -13 —47 -19 -22
1 0 -1 22 12 2 —4 -5 —6 56 -3 -2
-11 -17 —18 101 -9 —10 —16 -19 —20 120 —14 —15

Using the computer we can verify that its nullity is 3. In other words, the constructed subspace
is the nullspace itself.
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We can generalize the previous result for an arbitrary number of squares involved in the
compound square.

Theorem 1: Let A;; be the distinct pandiagonal magic square with magic constant 2s having the
structure:

[ 4 bj ¢ dij ]
Cij Fi 8ij hij

S—Cij S—dij S—ai]’ S—bi]‘

|s—8; s—hj s—ej s—f;]

such that A;; = Ayj + Aix — Aqq for i,j =1, ..., n. Assume that (a11 + c12 — c11 — a12) # 0. Then,

the following 4nx 4n matrix

[A11A1n Agz... Ay, ]
An1Ap Adz...Ax
Az1Azy Asz...As,

| AntAny Aps.. . Apn

possesses a 2n — 3 dimensional subspace of its nullspace, which is generated by the vectors

by1-di1-b1 + dip

—(a11 +c12 — c11 — a12)
—(b11-d11-b12 + d12)
(a11 + c12 — c11 — an2)
—(b11-d11-b12 + d12)
a1 +C12 — €11 — a2
(b11-d11-b12 + d12)
—(a11 +c12 — c11 — a12)

(0]

and

67



a2 + €13 — C12 — 413

0

—(a12 + c13 — c12 — a13)
0

—(an — e + i3 —m3)
0

ap —c11 +c13 —4a13

0

ap + C1i2 —Ci11 — a2

0

—(a11 +c12 —c11 — an2)
0

(0]

(0]

68 Matrix Theory-Applications and Theorems

by —dig — biz +dis
—(a11 + c12 — c11 — an2)
—(b11 —di1 — b1z +di3)
ap +ci2 —Cc11 —an
—(by1 —di1 — biz +di3)
0

by —din — b1z +dis

0

0

ap +Ci2 —C11 — an

0

—(a11 +c12 — c11 — an2)
(0]

(0]

a12 + Cip — C12 — A1

0

—(a12 + c1n — 12 — a14)
0

—(a11 — 11+ ey — 1)
0

ap — ¢+ Cip — A1

0

(0]

(0]
an + ¢z —ci1 — a2

0

—(a1 +c12 —c11 —ar2)
0

by —diy — by, +diy
—(a11 +c12 — c11 — an)
—(b11 —d11 — biy +din)
a1 +C12 —C11 — a2
—(b11 —du — by, +din)
0

by —din — b1y +diy

0

0
0
0

an + Ci2 — €11 — a2
0

—(a11 +c12 — c11 — an)

Proof: We will check first that these vectors belong to the nullspace of the matrix. When we
multiply the first vector with the matrix, we obtain a vector having in the first row

(a11 — c11)(b11 — d11 — b1z + d12) + (b11 — d11) (a1 — c11 — a12 + ¢12) — (@12 — c12) (b1 — d11 — b1z + din)—
(b12 — d12)(a11 — c11 — a12 + c12)
= (bn —dip — b+ du)[(ﬂn - C11) - (ﬂlz - C12)] - {(ﬂll —C11 —ap + C12)[(b11 - dn) - (b12 - dlz)]} =0

Since we know that

(a1 —c11) = —(e11 — §qp), (b1 —dn1) = —(fy; — h11).

we obtain zero in the second row of the vector. Since the third and fourth rows of the squares
are complementary to the first two rows, we deduce that the third and fourth rows of the
vector are also zero. Now, the fifth entry of the vector is

(a21 — c21)(b11 — di1 — b1z +d12) + (b1 — d21)(a11 — €11 — a1z + c12)—
(6122 - CZZ)(bll —di — b+ dlz) - (bzz - dzz)(ﬂll —Cc11 —ap+ Clz) =
(b11 —d11 — biz +di2)[(a21 — 1) — (a22 — c22)] — { (@11 — c11 — a2 + c12) [(b21 — d21) — (b2 — d22)]}

We use the following relations according to our assumption

Ay = A1 + Ax1 — a1, bop = b1p + by — b1y,
C0 = C12 + €21 — 11, dop = dip +dy1 — diy.

and obtain

(b11 — di1 — b1z +di2)[(a21 — c21) — (a12 + a21 — a11 — 12 — €21 + C11)]
—{(a11 — c11 — a1z + c12)[(b21 — do1) — (b2 + b1 — b11 — d1o — dog +d11)]}
= (bi1 — di1 — bio + di2)[—(a12 — a11 — c12 + c11)] — (@11 — c11 — a2 + c12)[—(b12 — b1 —diz +d11)] =0

We continue checking all rows until we reach the last entry, which is
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(a1 — ¢n1)(b11 —d11 — biz + di2) + (b1 — du1)(a11 — €11 — a12 + ¢12)—
(a2 — cup)(b11 — di1 — biz +d12) — (bup — dpp)(a11 — €11 — a12 + c12) =
(b11 —d11 — bz +di2)[(@a — cm) — (A2 — cn2)] — (@11 — c11 — a2 + c12) [(ba — da) — (b2 — di2)]

We use

App = A12 + Ay1 — A11, by = b12 + b1 — b1y,
Cnp = C12 + €1 — C11, A = d12 + dp — d11.

in order to obtain this value of the entry

(b1 —di1 — bz +di2)[(am — cn1) — (@12 + A1 — a11 — 12 — €1 + C11)]
—{(a11 —c11 — a2 + c12)[(bw1 —dm) — (b1 + by — b1 —dip —di +d11)]}
= (by1 —di — b +di2)[—(a12 — a1 —c12 +c11)] — (a11 — c11 — a1z + c12)[—(b1z — b1 —diz +d11)] =0

Hence, we finished checking the first vector.

Now, we turn our attention to the second vector. When we multiply the matrix with it, we
obtain in the first entry.

(@ =i Nay, =y —ays o) —(ay, —cp @y, —¢y —ay + o) +(a —ep)ay, —¢p —ay, +¢;,) =
(ay, —ce)lay, —ep) —(a; —c)l—(a, —ep)l(ay, —¢) —(a; —¢3)]+(ay; —eplay, —¢y) —(a, —¢y,)]
= (a]l _011)(‘112 _clz)_(all _cll)(a13 _c13)_(a12 —012)(0‘“ _011)+(a|z _clz)(aIS _013)+(a13 _013)(‘111 _cll)

—(a;; —ci3)a, —¢,) =0

Using the relations

(a1 —cnn) = —(611 - gn)
(bi1 —dn) = —(f1; — hn1)

we deduce that the second entry is also zero. In a similar manner we can deal with the third
and fourth entries. The fifth entry will be

(a21 — c21)(a12 — c12 — @13 + ¢13) — (a2 — c22)(a11 — c11 — a13 + ¢13) + (23 — ¢23)(a11 — €11 — A2 + C12)

We use the relations

() = a1p + a1 — a1, €2 = C12 + €21 — C11
(3 = a13 + ax1 — A11, €23 = €13 + €21 — C11

to obtain for the fifth entry.

= (ﬂ21 - Czl)[(ﬂlz - C12) — (a3 — Cls)] - (ﬂlz +ax — a1 —Ccp —C21 + C11)[(ﬂ11 —cn) — (ﬂ13 - 613)]
+(az + a21 — a1 — c13 — ¢21 + c11)[(a11 — c11) — (312 — c12)]
= (llzl - Czl)(ﬂlz - Clz) - (ﬂzl — (21 (1113 - C13) (ﬂzl - Czl)(ﬂu - C11) + (6121 - Czl)(ﬂls - C13)

)
*(6112 - C12)(0111 - C11) (lllz —C12 (6113 - 013) (ﬂ11 - C11)2 + (6111 - 011)(6113 - C13) + (ﬂ13 - C13)(ﬂ11 - C11)
(

)
*(als - Cls)(ﬂlz - C12) (ﬂzl - C21) ain — C11) (ﬂzl - 021)(ﬂ12 - Clz) - (5111 - C11)2 + (ﬂlz - Clz)(ﬂn - C11) =0
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We continue checking the entries until we reach the last entry, which is
(@n1 — 1) (@12 — c12 — @13 + c13) — (A2 — cn2) (@11 — €11 — @13 + €13) + (An3 — €n3)(A11 — €11 — 412 + C12)

Using the relations

pp = 12 + ay1 — a11, €2 = C12 + Cp1 — C11

Ap3 = 413 + ay1 — a11, €u3 = €13 + Cy1 — C11
we get

= (am — cm)[(a12 — c12) — (@13 — €13)] — (@12 + @1 — a11 — €12 — 1 + c11)[(@11 — c11) — (a13 — c13)]
+(a13 + ap1 — a1 — c13 — ¢ + cnn)[(a11 — c11) — (a2 — c12)]

= (a1 — cm) (@2 — c12) — (a1 — cm) (@13 — €13) — (@1 — c1) (@11 — c11) + (@1 — 1) (@13 — c13)
—(a12 — c12)(a11 — c11) + (a12 — c12) (a3 — c13) + (a1 — C11)2 + (a11 — c11) (a3 — c13)+

(a13 — c13)(a11 — c11) — (@13 — c13) (@12 — c12) + (@1 — Cu1) (@11 — c11) — (@u1 — Cu1)(a12 — C12)—

(a1 — C11)2 + (a2 — c12)(a1 —c11) =0

Hence, the second vector belongs to the nullspace of the (41 x 4n)-matrix.

Similarly, we can check that all the other vectors are included in the nullspace of the (4n x 4n)-

matrix. We check the last vector (the (2nn — 3)-th vector) belongs to the nullspace of the (4n x 4n)-
matrix. The first entry by matrix multiplication is:

(a11 — c11)(b11 — di1 — b1y + din) + (b11 — di1) (@11 — €11 — a12 + ¢12)—
(a12 — c12) (b1 — di1 — b1y +din) — (b1n — din) (a1 — c11 — a2 +c12) =
(bll —di — b1y + dln)[(ﬂn - Cll) - (ﬂlz - Clz)] - (ﬂn —C11 —ap+ Clz)[(bn - dll) - (bln - dln)] =0

As before we deduce also that the second, third, and fourth entries are zero. The fifth entry is

(@21 — c1) (b1 — di1 — b1y + din) + (b2 — do1) (a1 — c11 — a1z + c12)—
(a2 — c) (b1 — di1 — b1y + din) — (boy — dau)(a11 — c11 — a2 +c12) =

( |-

[

by —di — by, + dln)[(azl - C21) - (6122 - sz) (6111 —C11 —ap+ Clz)[(b21 - d21) - (b2n - dZn)] = (bn —dy — by + dln)

(@21 — ¢21) — (@12 + az1 — ang — c12 — c21 + C11)]

We use the relations
A = A1z +dz1 — a1
boy = b1y + b — b
€2 =C12+C1 —C11
doy = d1y +dy1 — dn

Therefore, this entry is

(b11 — di1 — b1y +din)[(a21 — c21) — (@12 + a2 — a1 — c12 — 21 + c11)]
—{(a11 —c11 — a1z + c12)[(b21 — do1) — (bin + b1 — bi1 — diy — do1 +d11)]}
= (b11 —di1 — b1y +din)[—(a12 — an1 — c12 + cn1)] — {(a11 — c11 — a2 + c12)[— (b1 — b1 — din +d11)]} =0
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When we reach the (2n — 3)th entry, we find that it is

(a1 — cn1)(b11 —dir — bin + diy) + (b — dya ) (@11 — c11 — a2 + c12)—
(A — Cun) (b11 — d11 — bin +d1n) — by — dpy) (a11 — €11 — a12 + c12) =
(bll - dll - bln + dln)[(anl - Cnl) (ann - Cnn)

1=
{(1111 —C11 —ai + Clz)[<bnl - dnl) ( - dnn)]}

We use the relations
Apn = A1 + A1 — a11
bnn = bln + bnl - bll

Cnn = Cln + Cp1 — C11

dnn = dln + dnl - dll

to prove that this entry is

(b11 — d11 — b1y +du) (@ — cm) — (@12 + a1 — @11 — c12 — €1 + €11)]
—{(a11 — c11 — a2+ c12)[(bu1 — dm1) — (b1in + b1 — b1 — diy — di +d11)]}
= (b1 —di — bin +diy)[—(a12 — a1 — c12 +c11)] — (a1 — c11 — a2 + c12)[—(b1w — b11 — d1 +d11)] =0

We prove now that the vectors are linearly independent. Let kq, ko, k3, ..., kon—4, k2y—3 € R such
that

bir —di — b1z +dip a1z + €13 — C12 — 13 bi1 — di — b1y +diy 0
—(a11 +c12 — e —an2) 0 —(a11 +c12 — c11 — an2) 0
—(b11 —di1 — b1z +d12) —(a12 + c13 — c12 — a13) —(b11 — di1 — b1y + d1n) 0
(a11 + c12 — c11 — a12) 0 aiy + C12 — €11 — A1 0
(b1 —di1 — biz +di2) (a1 —c11 +c13 — ar3) —(b11 — di1 — b1y +d1n) 0
a1 + c12 — 011 — 12 0 0 0
(b1 — di1 — b1z +d12) aj — c11 +C13 — 413 b1 — din — by + dun 0
—(a11 +c12 — 11 —ap) 0 0 0
k1] 0 +k| a1 +ci2 —cnn —an + ..+ ks =10
0 0 0 0
0 —(a11 +c12 — c11 — an) 0 0
0 0 0 0
0
0 0 0 0
0 0 aiy + C12 — €11 — A1 0
0 0 0 0
0 0 —(a11 + c12 — c11 — a12) 0

This leads us to the following vector which is a zero vector.
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ki(bi1 —di1 — bi2 +d12) + ka(a2 + c13 — c12 — a13) +k3(bir — di1 — biz +diz) + ...+
kon—a(a12 + c1n — €12 — A1n) + kon—3(b11 — di1 — by + din)

—ki(a11 + c12 — c11 — a) — ks(an + c12 — 11 — arz) — kay—3(an + c12 — c11 — an)
—ki(b11 —di1 — b1z +d12) — ka(a12 + c13 — c12 — a13) — ka(b1y —dig — bz +diz) — ...~
kon—a(ai2 + c1n — c12 — a1,) — kop—3(b11 — di1 — big +d1y)

ki(air + c12 — c11 — are) +ka(ay + ci2 — c11 — arz) + kop-3(a1n + c2 — c11 — a12)
—ki(bir —di1 — bio +di2) — ka(ann — ci1 + c13 — a13) — ka(biy — dig — bz +diz) —...—
kon—a(a11 — c11 + c1y — A1) — kou—3(b11 — dig — by + di1y)

ki(an + c12 — c11 — a12)

ki(b11 —di — bz +di2) + ka(ary — ci1 +c13 — a13) + ka(biy —dig — bis +diz) + ...+
kon—sa(ar1 — c11 + c1n — a1n) + k2p—3 (b1 — di1 — b1y +d1y)

—k1(a11 + c12 — c11 — ar2)

kz(ai1 + c12 — c11 — ap2)

ks(ai1 + c12 — c11 — a12)

—ky(a11 + c12 — c11 — an2)

—ks(a11 + c12 — c11 — a12)

kon—a(a11 + c12 — c11 — a12)
kon—3(a11 + c12 — c11 — a12)
—koy—a(a11 + c12 — 11 — a12)

—koy—3(a11 + c12 — c11 — a12)

From the (4n — 2)-th row of this vector we obtain the equation

kon—3(a11 +c12 —c11 —az) =0

According to our assumptions we must have ky,_3 = 0. Similarly, we obtain k;,,_4 = 0 from the
(4n — 3)-th row. We continue checking all the rows up to the tenth row, which looks like this

ks(ai1 + c12 —c11 —a) =0
Hence, we conclude that k3 = 0. From the ninth (res. eighth) row we obtain k, = 0 (res. k; = 0).

Since all ky, ky, k3, ..., kop—a, kon_3 are zero, we are done. |
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