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Abstract

The review of the theoretical models, which describes mechanisms of deformation twin-
ning in nanocrystalline and ultrafine-grained materials, is presented. Realization of special
mechanisms of nanoscale deformation twin generation at locally distorted grain bound-
aries (GBs) in nanocrystalline and ultrafine-grained materials is observed. In particular,
the micromechanisms of deformation twin formation occur through (1) the consequent
emission of partial dislocations from GBs; (2) the cooperative emission of partial disloca-
tions from GBs; and (3) the generation of multiplane nanoscale shear at GBs. The energy
and stress characteristics of the deformation nanotwin generation at GBs in nanocrystal-
line and ultrafine-grained materials are calculated and analyzed. Competition between
the twin generation mechanisms in nanocrystalline and ultrafine-grained materials is
discussed.

Keywords: nanocrystalline and ultrafine-grained materials, nanotwins, plastic
deformation, grain boundaries, dislocations

1. Introduction

At present, the study of the plastic behavior of nanostructured solids is one of the most

important and rapidly developing directions in the mechanics of deformed solid and in the

physics of condensed state. Nanostructured solids have unique physical, mechanical and

chemical properties and are of great interest, both for fundamental and applied research [1].

For example, the strength and hardness of nanostructured materials are several times higher

than those of conventional coarse-grained analogues of the same chemical composition. How-

ever, most nanocrystalline materials show low tensile ductility, which are highly undesirable for

their practical applications. Increasing the ductility and fracture toughness of nanomaterials is a
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very important task, the solution of which can significantly expand the field of their applica-

tion. With a large volume fraction occupied by GBs which act as effective obstacles for lattice

dislocation slip (the dominant deformation mechanism in conventional coarse-grained poly-

crystals), the conventional lattice dislocation slip is hampered in nanostructured materials. At

the same time, the specific features of the structure of nanocrystalline materials provide the

action of specific deformation mechanisms, and the effect of which in coarse-grained materials

was not observed or was insignificant. Identification of these specific mechanisms of plastic

deformation is a key problem for understanding the nature of ductility and fracture toughness

of nanostructured solids. According to modern concepts of plastic flow processes, the follow-

ing specific mechanisms of plastic deformation act in nanocrystalline and ultrafine-grained

materials: GB sliding [2, 3], rotational deformation mode [4–6], GBs migration [7–9] and

deformation twinning [10–13]. The analysis of experimental investigations of deformation

mechanisms allows us to formulate the main difference between nanocrystalline materials

exhibiting low and high ductility. The point is that each nanocrystalline sample consists of a

number of structural elements: grains of different sizes, GBs of various types and misorienta-

tions. In this case, several mechanisms of plastic deformation can act simultaneously in a

nanocrystalline sample under mechanical loading. In general, different mechanisms of plastic

deformation dominate in neighboring grains of different sizes and adjacent GBs. In nanocrys-

talline materials with low ductility, different mechanisms of deformation act independently of

each other, which lead to a substantial inhomogeneity of plastic deformation and can cause the

nucleation and evolution of nanocracks. At the same time, in nanocrystalline materials

exhibiting high ductility, different mechanisms of plastic deformation effectively interact with

each other. Intensive crossovers occur between different deformation mechanisms which

accommodate the inhomogeneities of plastic deformation. One of the main specific deforma-

tion modes which contribute greatly to plastic flow in nanocrystalline and ultrafine-grained

materials is considered deformation twinning mechanism. Following numerous experimental

data, computer simulations and theoretical models [10–17], nanoscale twin deformation effec-

tively operates in nanomaterials with various chemical compositions and structures. In doing

so, in contrast to coarse-grained polycrystals where deformation twins are typically generated

within grain interiors, in nanomaterials under mechanical load, twins are often generated at

GBs; see [12] and references therein. In order to explain this experimentally documented fact

indicative of specific deformation behavior of nanomaterials, it was suggested that nanoscale

deformation twinning occurs through consequent emission of partial dislocations from GBs

[10–13]. However, in this situation, partial dislocations should exist on every slip plane or be

transformed from pre-existent GB dislocations which is hardly possible in real materials [13].

In order to avoid the discussed discrepancy, Zhu and coworkers [13] suggested new

micromechanism of partial dislocation multiplication which realized due to successive pro-

cesses of dislocation reactions and cross-slips providing existence of the partial dislocations at

a GB on every slip plane. Thus, further consequent emission of such partial dislocations from

GB can provide a nanoscale formation at GB [13]. At the same time, this approach operates

with dislocation reactions each transforming a partial dislocation into two dislocations: a full

dislocation and another partial dislocation. Such reactions are specified by very large energy

barriers (being around the energy of a full dislocation), and thereby they are hardly typical in

real materials. In order to respond to these questions, in theoretical works [14, 15], alternative
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mechanism of nanoscale twin formation at locally distorted GBs in deformed nanomaterials

was suggested. According to results of the theoretical works [14, 15], GB dislocation can

exist at locally distorted GB on every slip plane due to preceding plastic deformation and

thereby cause nanoscale twin formation at GB. Taking this approach into account [14, 15],

micromechanisms of deformation nanotwin formation can occur through (1) the consequent

emission of partial dislocation from locally distorted GBs; (2) the cooperative emission

of partial dislocations from locally distorted GBs; and (3) the generation of multiplane nano-

scale shear at locally distorted GBs. Realization of these mechanisms is discussed in the next

sections.

2. Mechanisms of deformation twin generation at locally distorted grain

boundaries in nanocrystalline and ultrafine-grained materials

In this chapter, theoretical description of deformation twin generation mechanisms is based on

results of the following theoretical papers [14–17]. According to these papers [14–17], genera-

tion of nanotwins occurs at locally distorted GB segments (GB segments being rich in GB

dislocations) which were produced due to either events of consequent trapping of extrinsic

lattice dislocations by GB and their splitting transformations into a wall of climbing GB

dislocations (Figure 1a–d) or GB deformation processes involving slip and climb of GB dislo-

cations (Figure 1e–h). The splitting of extrinsic dislocations at high-angle GBs is a well exper-

imentally documented process [18] resulting at its initial stage in the formation of several

closely located GB dislocations (Figure 1a). These processes allow GB dislocations to exist on

almost every slip plane and thereby form a nanowall of GB dislocations (Figure 1d). In this

situation, under action of external shear stress, a head dislocation of a pile-up is trapped by GB

and splits into the GB dislocations (Figure 1a and b). After this process, the second lattice

dislocation of the pile-up moves to and is trapped by GB where this dislocation splits into new

GB dislocations (Figure 1c). In this case, after the splitting of the head dislocation of the pile-

up, its second dislocation can reach the GB where this extrinsic dislocation splits into new GB

dislocations (Figure 1b and c). Thus, consequent events of the splitting transformations of the

head lattice dislocations forming pile-up into GB dislocations and climbing of these GB dislo-

cations along GB can form a nanowall of GB dislocations located on almost every slip plane

(Figure 1d). Both the transformation of GB dislocation into partial dislocations and emission of

partial dislocation into grain interior are capable of producing a deformation nanotwin (for

details, see below).

As follows from works [14, 15], formation of local distorted segments of GBs can be associated

with GB plastic deformation processes. First, a nanostructured specimen is deformed by GB

sliding that produces pile-ups of GB dislocations stopped by triple junctions of GBs

(Figure 1e). Under the action of the external shear stress, the head GB dislocations of the pile-

up split at triple junction and climb along GB (Figure 1f–h). As a result, a wall of climbing GB

dislocations located on every (or almost every) slip plane is formed (Figure 1h). In general,

local GB fragments being rich in GB dislocations can be formed at GBs “globally” distorted by

plastic deformation. Such GBs are typical structural elements of bulk nanostructured materials
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Figure 1. Mechanisms of formation of locally distorted GBs (grain boundaries) in nanocrystalline specimen under

mechanical load (schematically). (a)–(d) Formation of a nano-sized wall of extra GB dislocation A
0
B

0 through successive

splitting of the head dislocations belonging to the pile-up of lattice edge dislocations stopped by GB AB and climb process

of GB dislocations along the GB AB. (e)–(h) Formation of a nano-sized wall of extra GB dislocation AB through successive

splitting of the head dislocations belonging to the pile-up of GB dislocations stopped by GB AA
0 and climb process of GB

dislocations along the GB AA
0.
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fabricated by severe plastic deformation methods, and they can contain nanoscale fragments

with GB dislocations located on every slip plane.

Thus, micromechanisms of nanotwin formation at locally distorted GB segments represent: (1)

the consequent emission of partial dislocations from GBs; (2) the cooperative emission of

partial dislocations from GBs; and (3) the generation of multiplane nanoscale shear at GBs.

The former two micromechanisms of nanoscale twins generation occur through splitting of the

GB dislocations into immobile GB dislocations and mobile partial dislocations (Figures 2 and 3).

Consequent (Figure 2) or cooperative (Figure 3) gliding of the mobile dislocations along neigh-

boring slip planes in a grain interior results in formation of a nanotwin.

Note that an energy barrier specifying the transformation of a GB dislocation at a local

distorted GB segment into another GB dislocation and a partial dislocation (Figures 2 and 3)

is around the energy of a partial dislocation. Thus, this barrier is lower than the barrier

required for multiplication of partial dislocations (being around the energy of a full disloca-

tion) considered by Zhu and coworkers [13]. In these circumstances, the splitting transforma-

tion (Figures 2 and 3) is more energetically favored as compared to the multiplication reaction.

Figure 2. Mechanism of formation of nanoscale twins at locally distorted GBs (grain boundaries) through successive

emission of partial dislocations in a nanocrystalline specimen under mechanical load (schematically). (a)–(d) Processes of

successive dislocation emission from locally distorted GB fragment AB that move in adjacent grain interior and form a

nanoscale twin ABCD.
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The third mechanism for nanotwin formation at a locally distorted GB is multiplane nanoscale

shear (Figure 4) firstly defined in Letter [19]. Following [19], a multiplane nanoscale shear is an

ideal (rigid body) shear occurring simultaneously along several neighboring crystallographic

planes within a nanoscale region—a three-dimensional region having two or three nanoscopic

sizes—in a crystalline solid (this notion is based on that of multiplane ideal shear in infinite

crystals [20]). The multiplane shear is characterized by the shear magnitude s (which is

identical at any time moment, for all the planes where the shear occurs) gradually growing

from 0 to the partial dislocation and geometric sizes of the nanoscale region where the shear

occurs. For certain value of s, a nanotwin is generated within the region in question (Figure 4).

Let us discuss in more detail geometric and energetic characteristics of the three mechanisms

for nanotwin formation at locally distorted GBs.

2.1. Nanotwin formation due to consequent emission of partial dislocations

Figure 2 illustrates geometric features of nanotwin formation at locally nonequilibrium GBs in

nanomaterials in the situation where local GB fragments with extra GB dislocations are formed

Figure 3. Mechanism of formation of nanoscale twins at locally distorted GBs (grain boundaries) through cooperative

emission of partial dislocations in a nanocrystalline specimen under mechanical load (schematically). (a)–(c) Partial

dislocation cooperatively emit from locally distorted GB fragment AB and move in adjacent grain interior toward the

opposite GB forming a nanoscale twin ABCD.
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due to both GB sliding and stress-driven climb of GB dislocations. As a result, a nanoscale wall

configuration AB of GB dislocations is formed at GB AA’ (Figure 2a). In the framework of the

model, the GB dislocations forming the wall of climbing dislocations transform into immobile

GB dislocations (staying at the GB AA’) and mobile partial dislocation which are emitted from

the GB AA’ and can move along neighboring slip planes {111} in an adjacent grain (Figure 2b–d).

In terms of the continuum approach, the emission of partial dislocations can be represented as

formation of dislocation dipoles with Burgers vectors �b and stacking faults (Figure 2b–d).

Consequent generation of such dipoles of partial dislocations joined by stacking faults is capable

of forming a nanoscale twin (Figure 2b–d). Such consequent events of partial dislocation emis-

sion from GBs were examined in several theoretical works (see, e.g., [16, 17]), which, however,

did not concern formation of locally nonequilibrium GB structures considered here as initial

ones for nanotwin generation.

The angle α specifies orientation of {111} slip planes for partial dislocations relative to the GB

AA’ plane (Figure 2a). The magnitude of Burgers vectors of partial dislocations is equal to

b ¼ a=
ffiffiffi

6
p

. The distance δ is between the neighboring slip planes {111} and is related to the

Figure 4. Mechanism of formation of nanoscale twins at locally distorted GBs (grain boundaries) through nanoscale

multiplane shear in a nanocrystalline specimen under mechanical load (schematically). (a)–(d) Generation of nanotwin

ABCD through subsequent transformation of non-crystallographic dislocations with Burgers vectors �s into twinning

partial dislocations.
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crystal lattice parameter a as follows δ ¼ a=
ffiffiffi

3
p

. When the ith dislocation moves in the grain

interior (Figure 2b–d), a stacking fault of the length pi is formed behind it. The stacking fault is

characterized by the specific energy (per its unit area) γ, which serves as a hampering force for

the partial dislocation slip. The dislocation slip is driven by the shear stress τ. The first partial

dislocation is emitted from the triple junction A (Figure 2b) and moves across the grain interior

toward the opposite GB (Figure 2b) when the shear stress reaches its critical value of τс1. After

emission, the first partial dislocation moves toward opposite GB and, depending on shear

stress level τ, reaches the opposite GB or stops in the grain interior moving over some distance

p1 and creates the stress fields hampering emission of a new dislocation. The first emitted

partial dislocation creates stress fields which hamper the emission of the second partial dislo-

cation. As a corollary, the second partial dislocation may be emitted only if the external shear

stress τ increases up to a new critical value τс2 > τс1. More than that, the second dislocation

under the shear stress τс2 does not reach the opposite GB, but moves over some distance p2
shorter than the distance p1 moved by the first dislocation (Figure 2c). It is because the stress

field created by the first dislocation hampers slip of the second partial dislocation.

Also, the discussed trends come into play during emission of other partial dislocations due to

the effects of previously emitted dislocations. That is, the critical stress for emission of the nth

dislocation is larger than that for emission of the n� 1ð Þth dislocation (τc nð Þ > τc n�1ð Þ), and this

stress drives slip of the nth dislocation over the distance shorter than that moved by the

n� 1ð Þth dislocation pn < pn�1

� �

(Figure 2). As a result, the nanotwin has a shape schemati-

cally presented in Figure 2d. Nanotwins of such a shape have been experimentally observed in

nanomaterials [13] (Figure 5).

To analyze the suggested model, we consider the energy characteristics of the nanoscale twin

generation due to consequent emission of partial dislocations from locally nonequilibrium GBs

(Figure 2). First, define the conditions which are necessary for the energetically favorable

emission of the first partial dislocation, which can be represented as formation of a dipole

AD of partial dislocations with Burgers vectors �b (Figure 2b). Generation of this partial

dislocation dipole is characterized by the energy change ΔW1 (per unit length of the pile-

up head dislocation) defined as ΔW1 ¼ ΔW1, final �W1, initial, where W1, final and W1, initial are the

energies of the considered defect configuration in its final (Figure 2b) and initial (Figure 2a)

Figure 5. High resolution electron transmission microscopy image showing a deformation twin which ends in the grain

interior as marked by the white asterisks in electrodeposited nanocrystalline Ni. Reprinted with permission from Ref. [13].

Copyright (2009), AIP Publishing LLC.
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states, respectively. Formation of the dislocation dipole (Figure 2b) occurs as an energetically

favorable process. if ΔW1 < 0. The energy change in question has the five terms:

ΔW1 ¼ Eb þ EΔ�b þ Eb�bgb þ Eτ1 þ Eγ1, (1)

where Eb is the proper energy of the dipole of the Shockley partial dislocations having Burgers

vectors �b; EΔ�b is the energy that specifies the interaction between the partial dislocation

dipole and the wall AB of GB dislocations; Eb�bgb is the energy that specifies the interaction

between the partial dislocation dipole and the pile-up OA of GB dislocations; Eτ1 is the work

spent by the external shear stress τ on movement of a mobile partial dislocation over the

distance p; and Eγ1 is the energy of the stacking fault formed between the partial dislocations

belonging to the dipole AD.

Detailed description of all the terms figuring on the right-hand side of Eq. (1) is given in the

theoretical paper [14, 15]. Using Eq. (1), we calculated the dependences of the energy change

ΔW1 on the distance p1. We performed calculations for nanocrystalline nickel (Ni) and copper

(Cu) for the following model parameter values characterizing Ni: G = 73 GPa, ν ¼ 0:34,

a ¼ 0:352 nm, bgb ≈ 0:1 nm, and γNi ¼ 0:110 J/m2 [21] and Cu: G = 44 GPa, ν ¼ 0:3, a ¼ 0:358

nm, bgb ≈ 0:1 nm, and γCu ¼ 0:045 J/m2 [21]. The dependences ΔW1 p1
� �

were calculated, for

d ¼ 30 nm, nc ¼ 5, τ ¼ 100 MPa and various values of α. The dependences ΔW1 p1
� �

show the

trend that emission of the first dislocation is enhanced when α decreases, and it is the most

favorable at α ¼ 0
�

.

Now let us consider the energy characteristics of emission of the nth partial dislocation, for

n > 1. Emission of the nth partial dislocation is equivalent to formation of the nth dislocation

dipole (Figure 2) in the nanocrystalline solid initially containing the dislocation-pile up and

n� 1ð Þ dipoles of partial dislocations is characterized by the energy change ΔWn (per unit

length of a partial dislocation) defined as ΔWn ¼ Wn �Wn�1, where Wn and Wn�1 are the

energies of the considered defect configuration with n and n� 1 partial dislocation dipoles,

respectively. Formation of the nth dislocation dipole (Figure 2) occurs as an energetically

favorable process, if ΔWn < 0. The energy change ΔWn can be represented as follows:

ΔWn ¼ E
b nð Þ
Σ

� E
b n�1ð Þ
Σ

þ E
c�b nð Þ
Σ

� E
c�b n�1ð Þ
Σ

þ E
Δ�b nð Þ
Σ

� E
Δ�b n�1ð Þ
Σ

þ E
b�b nð Þ
Σ

� E
b�b n�1ð Þ
Σ

þ E
nð Þ
γΣ

� E
n�1ð Þ
γΣ

þ E
nð Þ
τΣ

� E
n�1ð Þ
τΣ

,
(2)

where E
b n�1ð Þ
Σ

and E
b nð Þ
Σ

are the total self-energies of n� 1ð Þ and n partial dislocation dipoles,

respectively; E
Δ�b n�1ð Þ
Σ

is the elastic interaction energy of n� 1ð Þ partial dislocation dipoles

with the wall AB of GB dislocations; E
Δ�b nð Þ
Σ

is the elastic interaction energy of n partial

dislocation dipoles with the wall AB of GB dislocations; E
c�b n�1ð Þ
Σ

and E
c�b nð Þ
Σ

are the elastic

interaction energies of the GB dislocation pile-up OA with (n� 1) and n partial dislocation

dipoles, respectively; E
b�b n�1ð Þ
Σ

and E
b�b nð Þ
Σ

are the sums of the energies specifying the dipole-

dipole interaction in situations with n � 1 and n dislocation dipoles, respectively; E
n�1ð Þ
γΣ

and
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E
nð Þ
γΣ

are the sums of the energies specifying the stacking faults in situations with n� 1ð Þ and n

dislocation dipoles, respectively; E
n�1ð Þ
τΣ

and E
nð Þ
τΣ

are the sums of the energies specifying the

interaction between the external shear stress τ as well as (n� 1) and n partial dislocation

dipoles, respectively. Detailed description of all the terms figuring on the right-hand side of

Eq. (2) is given in the theoretical papers [14, 15]. With the help of Eq. (2) for the energy change

ΔWn, we calculated dependences of ΔWn on the distance pn. With these dependences, we also

calculated the critical shear stress τc nð Þ (that can be defined as the minimum stress at which

emission of the nth partial dislocation from the GB occurs). The critical stress τc nð Þ is calculated

from the equation ΔWn pn ¼ 1nm
� �

¼ 0. The dependences of critical shear stress τc nð Þ on

nanotwin thickness are presented in Figure 6. As it follows from the dependences τ
с nð Þ hð Þ, the

critical shear stress τc nð Þ decreases when the grain size d increases and/or the nanotwin thick-

ness h decreases. For instance, for d = 50 nm, the generation of a nanotwin having the thickness

h = 3 nm occurs in Cu at the critical shear stress τ
с nð Þ ≈ 2:2 GPa (Figure 6). This value is very

high, but it can be reached in shock load tests of nanocrystalline materials.

2.2. Nanotwin formation due to cooperative emission of partial dislocations

The second micromechanism of nanotwin formation is realized through cooperative emission

of partial dislocations from locally distorted GBs in deformed nanomaterials. As in the previ-

ous case, the initial defect configuration represents a nanoscale wall of GB dislocations AB

located on every (or almost every) slip plane (Figure 3a). In this situation, the GB dislocations

cooperatively emit from GB and move together along neighboring slip plane forming a

nanotwin (Figure 3b and c). This mechanism in the situation where the GB dislocations are

located on every slip plane has been considered in theoretical papers [14, 15]. As a result, the

nanotwin ABCD crosses the grain and joins two opposite GBs (Figure 3c). Such nanotwins

have been experimentally observed in nanocrystalline nickel (Ni) [11] (Figure 7).

However, cooperative emission of partial dislocations from GBs also can occur in situation

where the GB dislocations in the initial wall configuration AB are located on not all of slip

planes. In this case, there are some gaps in arrangement of the GB bgb-dislocations at GB

fragment AB. Transformations of the GB bgb-dislocations can occur in only a part of the set of

Figure 6. Dependences of the critical shear stress τc nð Þ on the nanotwin thickness h in the exemplary cases of nanocrystal-

line (a) nickel (Ni) and (b) copper (Cu), for various values of grain size d = 25 (curve 1), 50 (curve 2) and 100 (curve 3) nm.
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crystallographic {111} planes adjacent to the GB fragment AB (Figure 3). Nevertheless, a

nanotwin can be generated through cooperative emission of partial dislocations from such a

GB fragment, if partial dislocations are generated on slip planes where the initial GB disloca-

tions are absent.

Analyze the energy characteristics of the twin formation due to cooperative emission of

dislocations from GB in nanomaterials (Figure 3). The cooperative emission process (Figure 3)

is characterized by the energy difference ΔW 0

n ¼ W 0

n �W 0, where W 0

n and W 0 are the energies

of the defect configuration in its final (Figure 3b and c) and initial (Figure 3a) states, respec-

tively (after and before the emission process, respectively). In this situation, the nanotwin

generation is energetically favorable, if ΔW 0

n < 0. The energy difference ΔW 0

n has the six basic

terms:

ΔW 0

n ¼ E
b
Σn þ E

c�b
Σn þ E

Δ�b
Σn þ E

b�b
Σn þ E

γ

Σn þ E
τ

Σn, (3)

where Eb
Σn is the total self-energies of n partial dislocation dipoles; EΔ�b

Σn is the elastic interaction

energy of n partial dislocation dipoles with the nanoscale wall AB of GB dislocations; Ec�b
Σn is

the elastic interaction energy of the GB dislocation pile-up OA with n partial dislocation

dipoles; Eb�b
Σn is the elastic energy of all the dipole-dipole interactions for n dislocation dipoles;

E
γ

n is the energy of the twin boundaries; and E
τ

Σn is the elastic interaction energy of the external

shear stress τ with n partial dislocation dipoles.

Calculation of all the terms figuring on the right-hand side of Eq. (3) is given in the theoretical

paper [14, 15]. With the help of Eq. (3) for the energy change ΔW 0

n, we revealed dependences of

Figure 7. High resolution electron transmission microscopy image showing a deformation twin which crosses the grain

interior and joins two opposite grain boundaries in nanocrystalline Ni. Reprinted from Ref. [11]. Copyright (2008), with

permission from Elsevier.
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ΔW 0
n on the distance p moved by the n partial dislocation in bulk of grain. With these results,

we also calculated the critical shear stress τ
0
c nð Þ that is the minimum stress at which the

cooperative emission of n partial dislocation from GB is energetically favorable (Figure 3).

More precisely, the critical shear stress τ
0
c nð Þ can be found from the conditions that

ΔW 0
n p ¼ p0ð Þ ¼ 0 (where p0 ¼ 1nm), ΔW 0

n

�

�

p>p0
< 0, and

∂ΔW 0
n

∂p

�

�

�

p>p0
≤ 0.

Note that, if the inequalities ΔW 0
n

�

�

p>p0
< 0 and

∂ΔW 0
n

∂p

�

�

�

p>p0
< 0 are valid, the dependences of the

energy change ΔW 0
n pð Þ on the distance pmoved by the partial dislocation group within a grain

are monotonously decreasing and negatively valued functions. In this case, the group AB of n

partial b-dislocations is generated from locally distorted GB AA0 and move across the grain

over the distance p ¼ d toward the opposite GB where it is stopped. As a corollary, a nanotwin

is formed which joins the two opposite GBs (Figure 3c).

In another case, the inequalities ΔW 0
n

�

�

p>p0
< 0,

∂ΔW 0
n

∂p

�

�

�

p¼peq

¼ 0 and
∂
2
ΔW 0

n

∂p2

�

�

�

p¼peq

> 0 are valid. In

this case, a function ΔW 0
n pð Þ has its minimum corresponding to the equilibrium distance peq

moved by the group of the emitted partial b-dislocations or, in other words, the equilibrium

position peq of the nanotwin front AB of the nanotwin ABCD (Figure 3b).

Dependences of the critical shear stress τ0
с nð Þ on the nanotwin thickness h, for various values of

nc, are presented in Figure 8. As it is seen in Figure 8, values of the critical shear stresses τ0
с nð Þ

decrease with raising the number nc of GB dislocations in the pile-up OA (see Figure 3).

2.3. Nanotwin formation due to generation of nanoscale multiplane shear

The third mechanism of nanotwin formation is realized through the generation of nanoscale

multiplane shear at locally distorted GBs in deformed nanomaterials (Figure 4). As it has been

noted previously, nanoscale multiplane shear is defined in work [19] as a multiplane ideal

shear occurring within a nanoscale region, a three-dimensional region having two or three

nanoscopic sizes. For instance, nanoscale multiplane shear can occur and produce a twin

Figure 8. Dependences of the critical shear stress τ0c nð Þ on the nanotwin thickness h in the exemplary cases of nanocrystal-

line (a) nickel (Ni) and (b) copper (Cu), for various values of grain boundary dislocations in the pile-up nc = 4 (curve 1), 6

(curve 2) and 8 (curve 3).
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within a nanoscale internal region of a grain of a deformed nanomaterial (Figure 4). More

precisely, in the model situation, a deformation twin is produced under the action of a shear

stress τ (Figure 4) through nanoscale multiplane shear or, in terms of the dislocation theory,

through simultaneous nucleation of n dipoles of noncrystallographic dislocations with tiny

Burgers vectors �s (Figure 4a–d). The noncrystallographic dislocations of the dipoles are

formed at opposite GB fragments, AB and CD, on adjacent {111} planes. The Burgers vectors

�s of all the dislocations are the same in magnitude and grow simultaneously from zero to the

Burgers vectors �b of partial dislocations during the nanotwin formation process. In doing so,

since there are preexistent GB dislocations at the GB fragment AB, the noncrystallographic

dislocations at the GB fragment AB merge with these preexistent GB dislocations. As a corol-

lary, during the nanotwin formation process, evolution of the noncrystallographic dislocations

at the GB fragment AB manifests itself in evolution of the GB dislocations at this fragment

(Figure 4b–d).

In the case of fcc metals (in particular, copper (Cu)), the generated dipoles of noncrystal-

lographic partial dislocations are formed in adjacent slip planes {111} assumed to be normal

to the grain boundary fragments AB and CD. The region ABCD (a rectangle with sizes h and p)

is subjected to nanoscale multiplane shear, which leads to the formation of a nanoscale twin

within this region (Figure 4). In doing so, AB length = CD length = h; and AD length = BC

length = p, where p ¼ d= cosα and d is the grain size (Figure 4a). As with the previously

considered mechanisms for nanotwin formation, the distance δ between neighboring dipoles

of Shockley dislocations is equal to the distance between the neighboring slip planes {111} and

is in the following relationship with the crystal lattice parameter a: δ ¼ a=
ffiffiffi

3
p

.

Analyze energetic characteristics of the generation of nanoscale twins through nanoscale

multiplane shear initiated at locally distorted GBs in nanocrystalline materials (Figure 4). In

this case, in terms of the dislocation theory, a deformation twin is produced under the action of

a shear stress τ through simultaneous nucleation of n dipoles of noncrystallographic disloca-

tions with tiny Burgers vectors �swhose magnitudes n ¼ 3 gradually grow from 0 to b during

the nanotwin formation process (Figure 4).

In general, the energy change ΔWN that characterizes the nanotwin generation through

multiplane nanoscale shear (Figure 4) has the seven key terms:

ΔWN ¼ Es
Σn þ Eс�s

Σn þ EΔ�s
Σn þ Es�s

Σn þW interior sð Þ þWAC�BD sð Þ þ A, (4)

Here Es
Σn is the total self-energies of n dipoles of noncrystallographic �s-dislocations; Ec�s

Σn is

the elastic interaction energy of the pile-up of GB dislocations with n dipoles of noncrystal-

lographic �s-dislocations; EΔ�s
Σn is the elastic interaction energy of the wall AB of GB disloca-

tions with n dipoles of noncrystallographic �s-dislocations; Es�s
Σn is the elastic energy of all

dipole-dipole interactions for n dipoles of noncrystallographic �s-dislocations;W interior denotes

the energy of the interior area of the plastically sheared nanocrystal ABCD; WAD�BC is the

energy of the interfaces, AD and BC, between the sheared region ABCD and the neighboring

material; and A is the work of the external shear stress τ, spent to the plastic shear within the

region ABCD.
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Calculations of all the terms figuring on the right-hand side of Eq. (4) are given in the

theoretical paper [14, 15]. Based on these calculations in the exemplary cases of nanocrystalline

Cu, we revealed dependences of the energy change ΔWN on the Burgers vector magnitude s of

the noncrystallographic dislocations for various sizes of the nanotwin. With functions ΔWN sð Þ,

the critical shear stress τ00
c nð Þ (the minimum stress at which the nanotwin formation occurs) was

calculated. As it follows from the dependences ΔWN sð Þ the critical stress τ
00
с 3ð Þ ≈ 0:5 GPa at

n ¼ 3, and τ
00
с 15ð Þ ≈ 2 GPa at n ¼ 15. The dependences of the critical shear stress τ

00
c nð Þ on the

nanotwin thickness h are presented in Figure 9, for various values of the grain size d. The

dependences τ
00
с nð Þ hð Þ show that the critical shear stress τ

00
с nð Þ decreases when the grain size d

increases and/or the nanotwin thickness h decreases (Figure 9).

3. Comparison of critical shear stress for nanotwin generation at grain

boundaries due to various deformation mechanisms

In this section, we compare critical shear stresses for the considered mechanisms of nanotwin

generation at locally distorted GBs in deformed nanomaterials. The dependences of the critical

shear stresses τ
с nð Þ and τ

0
с nð Þ, for nickel (Ni), and τ

с nð Þ, τ
0
с nð Þ and τ

00
с nð Þ, for copper (Cu) on the

nanotwin thickness h are presented in Figure 10. As it follows from Figure 10, for nickel (Ni),

the cooperative emission of partial dislocations from GBs (Figure 3) is characterized by the

lowest critical shear stress. In the case of Cu, the competition between different deformation

mechanisms is more complicated. Therefore, for Cu, the mechanism of cooperative dislocation

emission is realized at the lowest stress level τ
0
с nð Þ < τ

00
c nð Þ < τc nð Þ in the case of ultrathin

nanotwin generation (with thickness h < 1 nm). At the same time, for Cu, the mechanism of

nanoscale multiplane shear (Figure 4) occurs at the lowest stress level (Figure 10) in the range

of nanotwin thickness h from 1 to 2 nm. For large nanotwins with thickness h > 2 nm, the

mechanism of the cooperative emission of partial dislocations from GBs (Figure 3) is the most

favorable process in copper again (Figure 10).

Figure 9. Dependences of the critical shear stress τ00
c nð Þ on the nanotwin thickness h in the exemplary cases of nanocrystal-

line copper (Cu), for various values of the grain size d = 25 (curve 1), 50 (curve 2) and 100 (curve 3) nm.
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According to results presented in Figure 10, the consequent emission of partial dislocations

from locally distorted GBs is not favored. However, the critical stresses at which nanotwin

generation mechanisms occur are highly sensitive to material parameters and the initial state

of a locally distorted GB. Therefore, in the situations with other initial states and/or other

materials, the consequent emission of partial dislocations from locally distorted GBs may be

favored.

4. Conclusions

Thus, new specific micromechanisms of nanotwin generation at GBs in deformed nanocrystal-

line and ultrafine-grained materials were developed and analyzed. These micromechanisms

describe the formation of deformation nanotwins at locally distorted GBs that contain seg-

ments being rich in GB dislocations produced by preceding plastic deformation. The

micromechanisms of deformation twin formation occur through (1) the consequent emission

of partial dislocations from GBs (Figure 2); (2) the cooperative emission of partial dislocations

from GBs (Figure 3); and (3) the generation of multiplane nanoscale shear at GBs (Figure 4). It

is found that the deformation twinning mechanisms (Figures 2–4) can operate in nanocrystal-

line and ultrafine-grained materials at rather high, but realistic levels of the stress (Figures 6

and 8–10). The suggested representations on generation of nanotwins at locally distorted GBs

(see also [14, 15]) logically explain numerous experimental observations [11, 13] of generation

of nanoscale twins at GBs in nanocrystalline and ultrafine-grained materials. These deforma-

tion twinning mechanisms illustrate complicated interactions between different deformation

modes such as deformation twinning, GB sliding, and GB dislocation climb.
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