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Abstract

Soybean is a most important crop providing edible oil and plant protein source for human 
beings, in addition to animal feed because of high protein and oil content. This review 
summarized the progresses in the QTL mapping, candidate gene cloning and functional 
analysis and also the regulation of soybean oil and seed storage protein accumulation. 
Furthermore, as soybean genome has been sequenced and released, prospects of multiple 
omics and advanced biotechnology should be combined and applied for further refine 
research and high-quality breeding.

Keywords: soybean, seed oil content, seed storage protein

1. Introduction

Soybean (Glycine max [L.] Merr.) accounts around 60% of the world’s oilseed consumption 

and also 68% of world protein meal consumption (http://www.soystats.com), which plays an 
important role year by year. In addition, during oil purification, protein-rich soybean meal is 
produced, which also provided around 75% of protein meal for animal feed worldwide [1]. 

Thus, improvement of soybean quality is important for worldwide commercial production, 

and it is also a key target for soybean breeding.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1.1. Soybean protein and oil content QTL analysis

Soybean oil and protein content were quantitative trait and effected by multiple genes and 
environments factors [2, 3]; there were over 312 soybean oil QTLs and 231 soybean protein 

QTLs having been detected by different population and environments (SoyBase, http://www.
soybase.org), with the main mapping methods including the analysis of variance (ANOVA; 

[4]), interval mapping (IM; [5–7]), composite interval mapping (CIM; [8, 9]), multiple inter-

val mapping (MIM; [10]) and inclusive composite interval mapping (ICIM; [11]). Among the 

published soybean oil content QTLs, some of them showed ‘hot regions’ that have been iden-

tified four or more times at the same or similar intervals in different studies, which include 
Gm05: 35.2–40.8 Mb, Gm09: 40.3–46.8 Mb, Gm12: 34.1–40.6 Mb, Gm14: 33.8–49.2 Mb, Gm15: 
0.8–13.9 Mb, Gm18: 51.6–59.8 Mb, Gm19: 32.9–48.0 Mb and Gm20: 23.5–34.6 Mb [12]. For soy-

bean protein content, there were also some ‘hot regions’ included Gm04: 43.6–47.7 Mb, Gm05: 
39.7–41.4 Mb, Gm07: 4.2–9.6 Mb, Gm08: 5.8–10.2 Mb, Gm14: 4.8–9.6 Mb, Gm15: 0.0–7.5 Mb, 
Gm18: 47.9–54.0 Mb, Gm19: 35.5–42.1 Mb and Gm20: 2.1–34.2 Mb [13, 14]. Meta-analysis is a 

statistical method that could combine results from different sources in a single study [15]; it 

can increase QTL precision and validity by using mathematical models to refine the integra-

tion of QTLs [16] and have been performed in maize [17] and soybean [18] at the beginning 

of application. Meta-analysis method has also been employed to analyze the soybean oil and 

protein content separately by Qi et al. [19, 20].

However, soybean oil and protein content always showed the opposite relationship [21, 22], 

with the observation and data collections from many classical genetic analysis, the high oil vari-

ety with lower protein content and high protein variety with lower oil content [23]. And also, 

many classical genetic and breeding books or data noted the opposite relationship for soybean 

oil and protein content [2, 24–34]. Although it was very hard to find the locus which could 
increase soybean oil and protein content at the same time [35], based on the big amounts of QTL 

mapping results, few regions showed the same direction of contribution to soybean oil and pro-

tein content in the same genetic population. Orf et al. [36] mapped the additive QTL affected the 
soybean oil content at 39.5–41.2 Mb of Gm05 with the population crossed by Minsoy and Noir1, 

the results implied Minsoy bring the positive alleles for increasing soybean oil and protein con-

tent, however, Specht et al. [37] identified the similar region with the opposite results that Noir1 
bring the positive alleles. Hyten et al. [38] identified a QTL at 4.8–8.7 Mb of Gm07 and the parent 
Williams bring the positive alleles for both traits. Reinprecht et al. [39] also demonstrated that 

the variety OX948 bring the positive alleles. Mao et al. [40] identified the additive QTLs affected 
the soybean oil and content at 51.2–56.3 Mb of Gm01, 1.0–2.3 Mb of Gm09 and 39.4–46.1 Mb of 

Gm19 in the cross population of Hefeng47 and Heinong37, which indicated that the soybean 

variety Heinong37 bring the positive alleles of those regions that could increase the soybean oil 

and protein content at the same time. Heinong37 was the only one Chinese variety, which may 

bring the positive alleles for both traits based on published data.

1.2. Soybean fatty acid composition biosynthesis and transcriptional regulation

The accumulation of starch, lipid and protein supplied the raw materials and energy for soy-

bean seed growth and maturity. Lipid was one of the three significant raw materials, although 
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the biochemical pathway about synthesis of lipid has been studied thoroughly, the regulation 

mechanism is unclear till now [41–47]. De novo synthesis of fatty acid mainly started in plant 
plastid. Acetyl -CoA is a precursor of soybean seed fatty acid synthesis. It is an important 
intermediate of many cellular metabolisms, and it synthesizes a lot in plant cell and then 

acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, 
acetyl-CoA carboxylate to malonyl-CoA [48]. After that, malonyl-CoA has been catalyzed 

by fatty acid synthase complex (FAS) and proceeding of continuous polymerization reaction 
based on the acyl carbon chains synthesized with a frequency of two carbons per cycle. The 

growing acyl carbon chain binds to acyl-carried proteins (ACP) and termination with the 

acyl-ACP thioesterase or acyltransferase form into acyl ACP. Furthermore, different lengths 
of acyl ACP synthesized the acyl-CoA with acyl-CoA synthetase and transferred from the 

plasmids to the endoplasmic reticulum or the cytoplasm. At last, fatty acids were attached to 
glycerol to synthesize triacylglycerides (TAGs) with three different acyltransferases respec-

tively [49–52]. Till now, seed oil content can be increased by changing the expression levels 

of individual enzymes involved in oil metabolism [53–59]. However, the key enzyme respon-

sible for TAG assembly is encoded by diacylglycerol acyltransferase 1 (DGAT1) [59–61], and 

expression of DGAT1 can be used to draw fatty acids into TAG; overexpression of DGAT1 

could increase both seed oil content (by 9–12%) and seed weight (40–100%) in Arabidopsis [55]. 

Overexpression of TmDGAT1a and TmDGAT1b could increase soybean seed oil content [62]. 

SiDGAT1 encoding acyl-CoA could also increase soybean seed oil content [63]. When express-

ing VgDGAT1A, (from Vernonia galamensis) it could make soybean oil content increase obvi-

ously [64]. Furthermore, the speed limit of fatty acid biosynthesis enzyme in dicotyledonous 
plants is biotin carboxylase (BC), which is a vital subunit of acetyl-CoA. Li et al. [65] cloned 

four genes encoding BC from Brassica napus and elucidated the evolution and the regulation 

of ACCase in the Brassica. The cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase 

(GAPC) catalyzes a key reaction in glycolysis, whose levels are directly correlated with seed 

oil accumulation [66].

Fatty acid composition were determined mainly by five fatty acids, palmitic (C16:0), stearic 
(C18:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) [67, 68]. Most palmitic acid (16:0) 
produced by the type II synthase is elongated to stearic acid (18:0) [67, 69]. In recent decades, 

there were many reports about the QTLs of each components of fatty acid, and there were 
also some ‘hot regions’ for soybean seed linoleic included Gm05 39.36–40.87 Mb and Gm18 

48.35–50.78 Mb (with the original QTLs from Diers and Shoemaker [70]; Bachlava et al. [71]; 

Li et al. [65]; Xie et al. [72]); for soybean seed linolenic included Gm02 17.07–34.9 Mb, Gm09 

34.56–37.74 Mb, Gm14 17.08–39.5 Mb and 45.68–46.78 Mb, Gm15 6.7–7.71 Mb, 13.07–25.6 Mb 

and Gm19 35.75–37.38 Mb (with the original QTLs from Li et al. [65], Bachlava et al. [71]; Diers 

and Shoemaker [70]; Spencer et al. [73]; Reinprecht et al. [39]; Xie et al. [72]; Shibata et al. [74]; 

Hyten et al. [38]); for soybean seed oleic included Gm05 39.07–40.80 Mb and Gm18 49.24–

51.95 Mb (with the original QTLs from Diers and Shoemaker [70]; Reinprecht et al. [39]; Xie 

et al. [72]); for soybean seed palmitic included Gm05 2.84–3.92 Mb, Gm09 7.74–11.83 Mb and 

34.59–38.73 Mb, Gm15 9.13–13.16 Mb, Gm17 7.60–9.45 Mb and Gm18 38.38–41.09 Mb (with 

the original QTLs from Li et al. [75]; Wang et al. [76]; Xie et al. [72]; Hyten et al. [38]; Li et al. 

[65]; Kim et al. [77], Reinprecht et al. [39]). In soybean, stearoyl-acyl carrier protein desaturase 
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(SAD) catalyzes the first step in seed oil biosynthesis, converting stearoyl-ACP to oleoyl-ACP, 
which plays a key role in determining the ratio of total saturated to unsaturated fatty acid in 
plants [35, 78, 79].Then, microsomal oleate desaturase (FAD2) and linoleoyl desaturase (FAD3) 

catalyze oleic to linoleic acid mainly in the sn-2 position, and then, fatty acid elongase converts 
fatty acids into a long-chain fatty acid [80]. The FAD2 gene family of soybean was consisted of 

at least five members in four genome regions and was responsible for the conversion of oleic 
acid to linoleic acid [81–84]. The FAD3 enzyme contributes to the synthesis of α-linolenic acids 
(18:3) in the polyunsaturated fatty acid pathway. To improve soybean oil quality, we aim at 
reducing the percentage of α-linolenic acids. GmFAD3 mutant can reduce α-linolenic acid con-

tent in soybean seed oil, which has been verified in many studies [58, 85–87].

However, overexpression of a single gene of fatty acid synthesis does not significantly improve 
the fatty acid biosynthesis [88, 89]. Fatty acid synthesis is regulated by some major classical 
transcription factors coupling with seed development, including WRINKLED1 (WRI1) LEAFY 

COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3) 

[90–95] were the plant-specific B3 transcription factor family, LEC1 was an NFY-B-type or 
CCAAT-binding factor-type transcription factor [96] and WRI1 encodes a transcription factor 

of APETALA2-ethylene responsive element-binding protein (AP2-EREBP) family [90]. WRI1 

is a potential global regulator of de novo fatty acid biosynthesis that specifies the regulatory 
action of the direct target of LEC2 [97]. Overexpression of the transcription factor WRI1, which 

controls the expression of genes involved in lipid metabolism, including glycolysis and fatty 
acid biosynthesis, increased seed oil content by 10–20% compared to the wild type [40, 90, 

98–101]. LEC1 function was partially dependent on ABI3, FUS3 and WRI1 in the regulation of 

fatty acid biosynthesis; both LEC1 and LEC1-like genes were acted as key regulators to coor-

dinate the expression of fatty acid biosynthetic genes [92]. LEC2 can regulate WRI1 directly 

and is necessary for the regulatory action of fatty acid metabolism [97]. Ectopic expression of 

FUS3 can trigger the expression of fatty acid biosynthetic genes [41], and interaction of FUS3 

and AKIN10 positively regulates auxin biosynthesis and indirectly regulates fatty acid biosyn-

thesis [102]. Furthermore, few new soybean transcription factors have been identified for fatty 
acid biosynthesis in recent years, mainly including GmbZIP123 regulates lipid accumulation 

indirectly through the sugar translocation [103]; GmMYB73 was functioned as a repressor for 

negative regulator GLABRA2 (GL2) [104] and relieved GL2-inhibited expression of PLDα1 to 

accelerate conversion of phosphatidylcholine to TAG [43]; GmZF351 will improve oil accumu-

lation by directly activating WRI1, BCCP2, KASIII, TAG1 and OLEO2 [104]; GmNFYA has been 

identified to increase seed oil content based on RNA-seq and gene coexpression networks [46] 

and GmDOF4 and GmDOF11 can increase lipid content in seeds by direct activation of lipid 

biosynthesis genes [41, 105]. In recent, regulatory mechanisms of seed oil content have been 

updated by duplicated genes in soybean [106].

In addition, other transcription factors have been identified to affect oil content in Arabidopsis, 
including GL2, TT1, TT2, bZIP67, MED, MYB [58, 107, 108] and BASS2 [43, 107–112].

1.3. Soybean seed storage protein (SSP) and transcriptional regulation

Soybean seed storage proteins (SSP) have been identified and classified into four basic catego-

ries, including albumins (water-soluble), globulins (salt-soluble), prolamins (alcohol- soluble) 
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and glutelins (weak acid/weak base-soluble) [113, 114]. Globulin is the main component 

of SSP and can be classified into four groups according to different sedimentation coeffi-

cients, which are 2S (including trypsin inhibitors and cytochrome and other ingredients), 7S 

(β-conglycinin), 11S (glycinin) and 15S (polymer of glycinin) [115]. 7S and 11S are the main 

components of soybean seed storage protein, and they are accounting for 60–80% of the whole 

soybean seed storage protein [116–120]. Till now, about the genetic mechanisms of 7S and 

11S, globulin subunits are clear in general [121–124]. β-conglycinin is accounting for roughly 
30–40% of the total seed protein and is mainly composed of α-(76kD), α ‘-(72kD) and β-(53kD) 
subunits [125–127]. Glycinin is accounting for roughly 40–60% of the total seed protein and 

is mainly composed of G1, G2, G3, G4 and G5 subunits (approximately 56, 54, 54, 64 and 58 

kD, respectively) [113, 118, 128]. In the past several years, few QTL mapping researches were 

conducted for soybean seed 7S and 11S; the QTL region of 11S includes Gm09 45.6–47.6 Mb 

and 103.7–105.8 Mb, Gm17 79–81 Mb, Gm19 55.1–57.1 Mb, Gm19 60.3–62.35 Mb and Gm20 

81.7–83.7 Mb [129]; the QTL region of 7S includes one QTL of α’-7S located on Gm08 35.7–
37.7 Mb and nine QTLs of β-7S located on Gm01 65–104 Mb, Gm03 75.4–77.49 Mb, Gm17 
26–81 Mb, Gm19 30–31 Mb, 100.7–115 Mb and Gm20 92–98 Mb [129, 130]. The genes of 11S 

and 7S have been reported, the genes of 11S subunit include Gy1, Gy2, Gy3, Gy4, Gy5 and 

Gy7 and the genes of the 7S subunit mainly include CG-alpha-1 (7sα), CG-alpha’-1 (7sα’) and 

CG-beta-1 (7sβ) [131–134]. Three genes encoding 11S, AtCRU1, AtCRU2 and AtCRU3, have 

been verified in Arabidopsis thaliana [135]. Wang et al. [136] mapped a QTL qBSC-1 (7S), which 

could regulate the SSP. Knockdown of 7S globulin subunits can change nitrogen content in 

transgenic soybean seeds [137]. Furthermore, the ratio of 11S to 7S is ranged from 0.5 to 1.7 

among cultivar soybean and affects nutritional quality and functional properties of soybean 
seed storage protein directly [138, 139]. And also, it is amusing that the content of 7S and 

11S are significantly negative correlation [140]. Yang et al. [141] demonstrated that the lack 

of 11S4A induced the compensatory accumulation of 7S globulins. By adjusting the subunit 
composition of soybean seed storage protein, it can remove sensitization protein efficiently; 
at the same time, it is an approach to improve the quality of the soy protein nutrition and 

production and processing [42, 103, 142, 143].

Accumulation of soybean seed storage protein is always coupling with TAGs and some key 

transcription factors involved in the process [144]. B3-type transcription factors can act directly 
on the expression of SSP genes [145]. The B3 domain, identified as the DNA-binding motif, 
recognizes the RY motif (CATGCA) as the target sequence [146], and RY motif (CATGCA) is a 

cis-acting element as a seed-specific promoter, which is the most legume seed storage protein 
gene that contain one or more RY repeating elements [65, 128]. Several studies have shown 

that the binding of the ABI3 with the RY motif can regulate the accumulation of storage 

proteins in Arabidopsis seeds [147–150]. The seed-specific B3 domain transcription factors, 
LEC2, FUS3 and ABI3, have been identified, and the mutations of these genes often showed 
the negative accumulation of seed storage proteins [151–154]. In addition of ABI3, ABI4 and 

LEC1 also showed the interaction to regulate the SSP [96, 155]. Some previous studies showed 

that these genes affect the induction of storage protein gene expression directly [156–159]. 

Furthermore, expression OLEOSIN required activation of LEC2 and two RY elements on its 

promoter [146]. Both LEC1 and LEC2 act as positive regulators upstream of ABI3 and FUS3, 

function analysis showed influence on the expression of seed storage protein (SSP) genes [44, 
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153, 158, 160, 161]. LEC1 and L1L can active the promoter of CRUCIFERIN C (CRC), and LEC1 

can also regulate CRC and other SSP genes working with FUS3 and ABI3 [161]. In addition 

to RY motifs, the presence of G-Box elements is also proper activation of target promoters of 
LEC1, LEC2, ABI3 and FUS3 [162]. Some studies showed that LEC2, ABI3 and FUS3 collabo-

rate with bZIPs TFs that interact with these G-Box elements to activate SSP genes [163, 164]. 

Furthermore, GmDOF4 and GmDOF11 can bind with the promoter of CRA1 to regulate the 

expression of SSP [41]. GmDREBL can be upregulated by GmABI3 and GmABI5 and be regu-

lated by the late stage of SSP genes [44]. DGAT can reduce the soluble carbohydrate content of 

mature seeds and increase the seed protein content at the same time [165]. Therefore, in addi-

tion to WAR1, LEC1, LEC2, ABI3 and FUS3, transcription factors of MYB, bZIP, MADS, DOF or 

AP2 families are also involved in the accumulation of storage compounds (oil and SSPs) and 

seed development regulatory network, as partners or direct target genes [162].

1.4. Small RNA regulation of seed composition

Small RNAs, such as miRNAs and short interfering RNAs (siRNAs), are key components of 

the evolutionarily conserved system of gene regulation in eukaryotes [166]. Wherein, microR-

NAs (miRNAs) are a class of non-coding small RNAs of 20–24 nt in length that play an impor-

tant role in plant growth and development. Structurally, except for the characteristics of the 

segments, all miRNA precursors have well-predicted stem-loop hairpin structures, and this 

fold-back hairpin structure has a low degree of freedom of energy [167]. The microRNA data-

base (http://www.mirbase.org/) is a searchable database of published miRNA sequences and 
annotations. According to miRBase, miRNA information of 1269 species has been collected, 
including 399 soybean miRNAs. For example, gma-MIR156d belongs to the MIPF0000008, 

MIR156 gene family, described as Glycine max miR156d stem-loop, annotated that microRNA 

(miRNA) precursor mir-156 is a family of plant non-coding RNA. This microRNA has now 

been predicted or experimentally confirmed in a range of plant species (MIPF0000008). The 
products are thought to have regulatory roles through complementarity to mRNA. SFGD is a 

comprehensive database of integrated genomic and transcriptome data and a comprehensive 

database of soy acyl lipid metabolic pathways, including a coexpression regulatory network 

of 23,267 genes and 1873 miRNA-target pairs as well as a set of acyl-lipid pathways contain-

ing 221 enzymes and more than 1550 genes, providing biologists with a useful toolbox [168]. 

In addition, SoyKB is also a website, which provides information on soybean genomics, tran-

scriptomics, proteomics and metabolomics as well as gene function and biology annotation, 

including information like genes, microRNAs, metabolites and mono nucleotide polymor-

phisms (SNPs) [169]. Shi and Chiang used miRNA-specific forward primers and sequences 
complementary to poly(T) linkers as reverse primers to find a simple and effective method 
to determine miRNA expression. Total RNA (including miRNAs) was polyadenylated and 

reverse transcribed into cDNA using poly (T) linkers for real-time PCR.

There are few studies on miRNAs related to plant quality. Soybean cotyledons affect soy-

bean seed yield and quality. Goettel et al. analyzed 304 miRNA genes expressed in soy-

bean cotyledons and predicted their complex miRNA networks to 1910 genes. By analyzing 
extensive biological pathways present in soybean cotyledons, the evolutionary pathways of 
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soybean miR15/49 in soybean cotyledons were further demonstrated [170]. Ye et al. iden-

tified and analyzed the whole genome of miRNA endogenous target gene mimic (eTM) 
and the phagemid-generated siRNA (PHAS) in soybean, with a focus on lipid metabolism-

related genes. Lipid metabolism was found to be regulated by a potentially complex non-

coding network in soybean, of which 28 may be miRNA-regulated and nine may be further 

regulated [171].

2. Conclusion and perspectives

As sequencing development of soybean genome, the cultivar Williams 82 genome has been 

released by Schmutz et al. [172], and it update the quality of assembly of the reference genome 

year by year. In present version (Glycine max Wm82.a2.v1), 56,044 protein-coding loci and 

88,647 transcripts have been predicted, and all related data have been released in Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Gmax). At the basis of the ref-
erence genome, around 265 cultivated soybean varieties, 92 wild soybean varieties and 10 

semi-wild soybean varieties have been resequenced; these information give a foundation for 

functional genomic analyses such as transcriptomic, proteomic, epigenomic and non-coding 

RNA analyses [173].

Although many genes and regulators of seed oil content and SSP have been identified 
and their associated regulatory networks have been well studied in Arabidopsis, there are 

still unclear in soybean in addition to WAR1, LEC1, LEC2, ABI3 and FUS3 due to the 75% 

duplication genome [172]. Combination and application of multiple omics (genomics, func-

tional genomics, transcriptomic, proteomics and epigenomics) and advanced biotechnology 

(genome editing) needed to clarify the soybean seed oil content and SSP gene and regulatory 

network. Secondary population including recombinant heterozygous lines (RHL), chromo-

some segment substitution line (CSSL) and/or near isogenic lines (NIL) need to be applied to 
reduce the variable for analyzing the effects of single gene or transcription factors and used to 
identify the effective alleles and evaluate its effects and contribution. Combination of general 
loci could be further used for design of selection chip assay, which may lead to the foundation 

of high oil or high seed storage protein breeding.
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