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1. Introduction

Conventional hemodialysis (HD) treatment, which is the most prevalent dialysis modality and 

can be performed in hospital and at home, has been associated over the past 40 years with 

reduction in mortality rate [1], and in recent years, it has been associated with slight incremental 

improvement in survival rate [2]. However, its prescription remains far from being optimal in 

replacing the function of normal kidneys, and its unphysiologic clearance pattern and inability 
to remove all types and sizes of uremic toxins resulted in inter- and intradialytic complications, 

higher hospitalization rate, poor quality of life and an unacceptably high rate of cardiovascular 

and all-cause mortality [3–5]. The major HD-contributing factors to high mortality and morbid-

ity rates are excess fluids (hypervolemia) and retention of middle and larger size uremic toxins.

Fluid retention in patients on dialysis has been associated with increased blood volume and 

cardiac output, which can result in increased blood pressure, left ventricular hypertrophy 

(increased left ventricular mass) and consequently heart failure [3, 6]. Fluid (and cumulative 

fluid) overload has been significantly associated with greater risk of mortality [7]. Moreover, 

removal of accumulating fluids with conventional HD has been accompanied with symptom-

atic hypotension. Frequent episodes of hypotension can lead to ischemic insults to myocar-

dium (stunning), which can lead to functional and structural changes and result in systolic 

dysfunction and consequently heart failure [8, 9]. In addition, fast removal of fluids of more 
than 10 ml/kg/h can also lead to increase in cardiovascular and all-cause mortality [10]. Recent 

innovations in fluid management include assessment of fluid status by bioimpedance spec-

troscopy [11–13], which is a noninvasive method using a portable device, and by controlled 

modulation of ultrafiltration rate and dialysate sodium using biofeedback hemocontrol [14].

Conventional HD, using low-flux dialyzers, is capable of removing only small-size uremic tox-

ins of molecular weight less than 500 Daltons (D) such as urea and creatinine. However, this 

modality of HD is not capable of clearing middle and larger size uremic toxins of more than 
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500 Daltons such as β2-microglobulin, myoglobin, pro-inflammatory cytokines and Kappa (κ) 
and Lambda    (  λ  ) free light chains (Table 1), in which all have potent toxic and pro- inflammatory 
effects [15]. Larger size uremic toxins, such as beta 2-microglobulin, and  protein-bound mol-

ecules, such as indoxyl sulfate and p-cresol, cannot be removed, and their accumulation in 

the blood can lead to hemodialysis-related amyloidosis and endothelial inflammation and 
toxicity, which may explain, at least in part, the higher incidence of morbidity and mortality 

in patients treated with conventional HD.

In recent years, HD treatment witnessed significant improvements in HD machines, including 
designs, weight, mobility, multifunctional touch screens, performance of different modali-
ties of dialysis, assessment of dialysis adequacy and ultrafiltration control [16]. The option of 

controlled ultrafiltration, for example, has been shown to safely remove excess fluids without 
exposing dialysis patients to frequent episodes of hypotension [14, 17]. This hemocontrol tech-

nique, which is based on an automatic slowdown of ultrafiltration rate, sodium transfer and 
the release of the vasoconstrictor arginine vasopressor [18], has been used to support patients 

with excessive fluid retention, especially those who lost their residual renal function and non-

adherent to dialytic prescription, and are predisposed to frequent episodes of intradialytic 

hypotension [14]. The advancement technology of HD machines was accompanied by sig-

nificant improvement in dialyzers compatibility and membrane permeability (including pore 
size, density and distribution, length of fibers and its reduced inner diameter), which include 
high-flux and medium-to-high cut-off membranes [19]. These innovations, together with the 

ability to provide ultrapure and online treated water by modern water treatment plants, did 

not only reduce inflammation, erythropoietin resistance and cost reductions [20], but also 

allowed the implementation of online hemofiltration (HF) and hemodiafiltration (HDF) treat-
ments [21, 25] and the use of high-flux dialyzers. For example, middle size uremic toxins such 

Small

(<500 Daltons)

Medium

(500–15,000 Daltons)

Large

(>15,000 Daltons)

Protein-bound*

(Daltons)

Sodium (23)

Phosphorus (31)

Potassium (35)

Urea (60)

Creatinine (113)

Uric acid (168)

Glucose (180)

Vitamin B12 (1355)

Vancomycin (1448)

ANP (3100)

Endothelin (4300)

Insulin (5200)

PTH (9225)

β
2
-Microglobulin (11,800)

Resistin (12,500)

Cholecystokinin (12,700)

Cystatin C (13,300)

Cytokines (15,000–30,000)

Myoglobin (17,000)

Kappa FLC (22,500)

Complement factor D (27,000)

FGF-23 (32,000)

α1-Microglobulin (33,000)

Erythropoietin (34,000)

Lambda FLC (45,000)

Albumin (68,000)

AOP (various)

AGEP (various)

Phenol (94)

p-Cresol (108)

Homocysteine (135)

Indole-3-acetic acid (175)

Hippuric acid (179)

Carboxymethyl-lysine (204)

Indoxyl sulfate (251)

Acrolein (56)

Abbreviations: ANP, atrial natriuretic peptide; PTH, parathyroid hormone; FLC, free light chains immunoglobulin; FGF-

23; fibroblast growth factor-23; AOP, advanced oxidation products; AGEP, advanced glycation end products.*Protein-

bound molecules are small size solutes, but difficult to clear from circulation as they are protein-bound.

Table 1. Examples of different sizes (molecular weight-Daltons) of solutes and uremic toxins.
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as β2-microglobulin has been shown to be efficiently removed by high-flux dialyzers, but the 
quantity of removal was much more efficiently done by online HDF [21, 25].

The HDF technique, which is based on physiologic principles of diffusion and convection and 
the need of large volume of fluid substitution (≥23 L/session or 55–75 L/week) [23, 24] together 

with higher blood flow rate (350 ml/min or more), is also based on the use of high-flux dialyz-

ers. However, high-flux dialyzers are limited in their ability to remove larger-size uremic toxin 
such as κ and  λ  free light chains. The recent innovation of medium cut-off membranes [19], 

which has been shown to remove adequate concentrations of different and larger size uremic 
toxins, including myoglobin, pro-inflammatory cytokines and  λ  free light chains, are expected 

to support patients with retention of high contents of uremic toxins, erythropoietin-resistant 

anemia and malnutrition-inflammation syndrome, and possible positive impact on cardio-

vascular and all-cause mortality [15, 26, 28]. This type of dialyzer can be used on regular HD 

machine with usual blood flow rate (about 300 ml/min), dialysate flow rate (500 ml/min), con-

ventional treated water (bacterial growth <100 U/ml and endotoxin <0.25 EU/ml) and without 

the need of fluid replacement [28]. Other types of improved dialyzers include membranes that 

are internally grafted with heparin, which have been used alone [29] and/or in conjunction 

with minimal systemic anticoagulation [30] or with citrate-containing dialysate [31] to dia-

lyze patients at risk of bleeding and those who are in need of heparin-free HD. Furthermore, 

heparin-avoidance has also been successfully implemented using airless HD tubing. These 

tubing allow blood to flow in a circular and nonturbulent manner, where blood exposure to 
plastic is less than the conventional bloodlines [32].

Over recent years, there has been a significant improvement in the quality, modalities and 
techniques of PD and HD provided to patients with AKI and patients with chronic kidney dis-

ease (CKD) reached end-stage renal disease (ESRD). PD treatment has benefited from a bet-
ter understanding of the molecular mechanisms involved in solute and water transport across 

the peritoneum, the advances in PD technology and in particular catheter placement, types of 

PD solutions, better connecting systems with significant reduction in peritonitis rate, and the 
improved technology of new generation of automated compact easy-to-use cyclers with remote 

monitoring and management [33]. This latter advanced technology allowed nephrologist and 
renal nurses in clinics to monitor PD patients at home and enable them to detect early technical 

problems, nonadherence to treatment and ability to remotely change the prescription [22, 27]. 

This proactive medical care can also reassure patients of continuous support by their clinical 

team [34]. Over many years, PD treatment has shown several beneficial clinical outcomes and 
numerous advantages over that of HD. These advantages include better survival during the first 
1–2 years of therapy especially among nondiabetic and younger diabetic patients, better preser-

vation of residual renal function and consequently better survival rate, delaying the need for vas-

cular access, supporting patients with multiple vascular access failure, hemodynamic stability in 

older age group with cardiovascular disease, lower risk of infection with hepatitis B and C, better 
outcome after transplantation with lower incidence of acute kidney injury and delayed graft 

function, lower costs than HD and better quality of life (reviewed in [35]). PD, when there are 

no contraindications, has been considered an excellent initial choice and first treatment option.

Acute or temporary dialysis is needed in some patients with AKI, who cannot adequately 
benefit from conservative management, and/or in critically ill patients with severe AKI with 
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or without multiorgan failure in ICU. Both HD and PD modalities have been used to treat 

patients with AKI [36–39]. However, AKI patients with sepsis, multiorgan failure and on ven-

tilators in ICU have benefited from modern specific HD machines that permit safe and reliable 
therapy, easy performance and monitoring and are capable of performing continuous renal 

replacement therapy (CRRT) with multiple modalities [40–42]. These well-developed tech-

niques include sequential ultrafiltration, continuous venovenous HD, continuous venove-

nous HF and continuous venovenous HDF [43]. CRRT with HDF has been shown to provide 

better clinical outcomes than intermittent HD or sustained low efficiency HD (SLED) tech-

niques [44] in providing fluid balance control, hemodynamic stability, early renal recovery 
and improvement in intracranial hypertension and brain edema [23, 39, 45, 46]. CRRT is also 

recommended in patients with fulminant hepatic failure and those in need for extracorporeal 

life support therapies [39, 47]. In patients with AKI and sepsis, the removal of inflammatory 
mediators (e.g., endotoxin and pro-inflammatory cytokines) by high cut-off membranes [48] 

and by specific adsorbers [49–51] has contributed to improved hemodynamic stability. More 

recently, specific dialyzers for the removal of excess carbon dioxide (CO
2
) have contributed 

to reduce the need for endotracheal intubation [52, 53]. In addition, it has been found that the 

addition of extracorporeal CO
2
 removal to therapy with CRRT and lung protective ventila-

tion in patients with both adult respiratory distress syndrome and AKI was associated with a 
significant reduction in PaCO

2
 and a significant increase in arterial pH [54].

This book, with its specifically selected chapters by distinguished authors, covers different 
aspects of dialytic modalities and related clinical scenarios. These chapters include an update on 

recent advances in dialysis therapies, body composition and its clinical outcome in maintenance 

HD patients, wide coverage of uremic toxins, high-efficiency HDF, cardiovascular disease in 
dialysis patients, cardiovascular risk factors in ESRD patients such as the impact of conventional 

dialysis versus online HDF, cardiovascular disease and allelic variants of the gene methylene-

tetrahydrofolate reductase in patients on HD, endotoxin-removal columns and other cytokine 

extracorporeal purification techniques, extracorporeal circuit patency in CRRT, RRT in burn 
patients, clinical application of bioimpedance spectroscopy in dialysis patients, lymphangio-

genesis and peritoneal membrane failure during dialysis, and development of HD machines.
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