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Abstract

Metrology is the science of measurement. The chapter contains introductory mate-
rial, terminology and units used in the optical radiation metrology. Optical radiation 
metrology provides an applied understanding of essential optical measurement con-
cepts, techniques and procedures. In this chapter, we focus on electromagnetic radia-
tion with wavelengths from approximately 100 to 2500 nm. We describe the principles 
used to measure photometry and radiometry quantities such as total flux, intensity, 
illuminance, luminance, radiance, exitance and irradiance. Measurement results should 
be expressed in terms of estimated value and an associated uncertainty, we provide 
an explanation to how to estimate and build the uncertainty budget of measurements. 
Metrology is based on measurements and comparisons. The unit is a unique name we 
assign to the measures of that quantity. Base standards must be both accessible and 
invariable. The metrological traceability chain is the sequence of measurement stan-
dards and calibrations that were used to relate the measurement result to the reference. 
The uncertainty budgets for photometric and radiometric quantities are represented in 
this chapter.

Keywords: photometry, radiometry, illuminance, luminance, total flux, radiance, 
irradiance intensity, luminous intensity, irradiance, traceability, accreditation 
laboratory, uncertainty

1. Introduction

Optical radiation metrology is the radiometry and photometry science of measurements.  

Optical radiation metrology provides an applied understanding of essential optical mea-

surement concepts, techniques and  procedures. In this chapter, we focus on electromagnetic 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



radiations with wavelengths from approximately 100 to 2500 nm. We describe the prin-

ciples used to measure photometry and radiometry quantities such as total flux, intensity, 
illuminance, luminance, radiance, exitance and irradiance. Measurement results should be 

expressed in terms of estimated value and an associated uncertainty, we provide an expla-

nation how to estimate and build the uncertainty budget of measurements. Metrology is 

based on measurements and comparisons. We measure each quantity in its own units, by 

comparison with a standard. The unit is a unique name we assign to the measures of that 

quantity. Base standards must be both accessible and invariable. The metrological trace-

ability chain is the sequence of measurement standards and calibrations that were used to 

relate the measurement result to the reference.

Optical radiations bathe the world in which we live [1]. Very early in our history, it was 

observed that light can be produced by different means depending upon the daily rotation 
of the earth. New ways of using light were discovered to effect changes upon many of the 
materials we found in the world around us. In this chapter, we discuss some of the procedures 

and equipment necessary to obtain accurate measurements of the amount of optical radiation 

that will act on our activities. The principal purpose of the science of photometry is to evalu-

ate visible radiation or light, so the results match as closely as possible with a normal human 

observer exposed to that radiation. In order to achieve this aim, one must take into account 

the light stimulus, the radiation entering the eye and the characteristics of the visual organ 

that produce the relevant sensation of light [2]. Light is essential for vision, the world is only 

visible when light reflected or emitted by objects reaches our eye. Light is a kind of energy 
and is portion of a broad range of the electromagnetic spectrum. The visible light spectrum 

is a little part of this spectrum, between 380 and 760 nm (see Figure 1). The total light energy 

emitted from a source or falling on a surface can be measured. This total energy can cover a 
part of the visible spectrum, including ultraviolet and infrared energy. The branch of science 

in which we study light measurement is known as photometry and a subset of the broader 

field is radiometry.

Figure 1. Electromagnetic radiation spectrum [3].
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2. Optical radiation quantities

To understand the measurement of several basic optical radiation quantities used to determine 

absolute amounts of optical radiation, it is useful to study the two aspects of quantitative optical 

radiation measurements: the geometrical optical radiation that we wish to measure and the spec-

tral components of this special geometrical compound of radiation [1]. Our discussion concen-

trates on electromagnetic radiation with wavelengths from approximately 100 to 2500 nm, which 

is an extension from the visible wavelength range, which is approximately from 380 to 760 nm.

2.1. Solid angle (ω)

A solid angle (ω) is defined by the surface area of a sphere subtended by the lines and by the 
radius of that sphere, as shown in Figure 2. The dimensionless unit of solid angle is the stera-

dian, with 4π steradians in a full sphere [4].

2.2. Radiometry

Radiometry is the science of electromagnetic (EM) radiation measurement. The spectrum cov-

ered by the science of radiometry is the range from 100 to 2500 nm.

2.2.1. Radiant flux (Φ
e
)

Radiant flux is defined as power emitted, transmitted or received in the form of radiation as 
shown in Figure 3 [4]. The International System of Units (SI unit) of radiant flux is Watt.

2.2.2. Radiant intensity (I
e
)

Quotient of the radiant flux (dΦ
e
) leaving the source and propagated in the element of solid 

angle ( d𝜔 ) containing the given direction divided by the element of solid angle. The SI unit for 

radiant intensity is Watt/steradian (Watt/sr) as shown in Figure 4 [4].

Figure 2. Solid angle [5].
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   I  
e
   =   

d  Φ  
e
  
 ____ 

d𝜔
    (1)

2.2.3. Radiance (L
e
)

Quotient of the radiant flux (  Φ  
e
   ) leaving, arriving at or passing through an element of surface 

at this point and propagated in directions defined by an elementary cone containing [7]:

   L  
e
   =   

 d   2   Φ  
e
  
 ____________  

dω ⋅  dA .   cos ε    (2)

where is the angle between the normal of the surface element and the direction of propaga-

tion under question. The SI unit for radiance is Watt/square meter steradian (Watt/m2 sr), as 

shown in Figure 5.

2.2.4. Irradiance (E
e
)

Flux per unit area passing through a plane from all directions in one hemisphere [7].

Figure 3. Radiant flux [6].

Figure 4. Radiant intensity [6].

Metrology78



   

 E  
e
   =   ∫ 

2π
  
 

    L  
e
  (ε, ϕ )   cos  ε dω (ε, ϕ )

    
=   ∫ 

ϕ=0

  
2π

      ∫ 
ε=0

  
2π

      L  
e
  (ε, ϕ )   cos  ε  sin  ε dε dϕ   ω  

0
    
   (3)

  ω  
0
   = 1 sr unit of solid angle.

where the angles ε and ϕ are as shown in Figure 6.

The amount of incident radiant flux per unit area of a plane surface in Watt/square meter 
(Watt/m2), as shown in Figure 7.

2.2.5. Exitance (M) [4]

It is the radiant flux emitted by a surface per unit area. The SI unit of radiant exitance is the 
amount of radiant flux per unit area leaving a plane surface in W/m2, as shown in Figure 8.

2.3. Photometry

Photometry has a unique position in the science of physics. It is influenced by vision science 
and is a branch of optical radiometry. The science of photometry has been developed to 

quantify light and its properties accurately [9, 10]. The human eye reacts to electromagnetic 

Figure 5. Radiance.

Figure 6. Illustrating the definition of the irradiance produced on a plane by  a distributed source [7].
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radiation only in a certain part of the spectrum, that is, to a limited range of wavelengths 

or frequencies. The radiation of sufficient power within a wavelength range of approxi-
mately 380–830 nm only can stimulate the eye, and it is called light. Light enters the human 

eye through the cornea, a tough transparent membrane on the front of the eye as shown in 

Figure 9. It is refracted by the cornea and lens to form an image on the retina at the back of 

the eye. The sensitivity of the human eye to radiation is not the same for each of the wave-

lengths. This subjective nature of the visual system sets photometric quantities apart from 
purely physical quantities.

2.3.1. Photopic and scotopic vision

The human eye adapts to the changes in brightness and color conditions, but a lux meter 

does not. [12]. CIE measured the light-adapted eyes of a sizeable sample group and compiled 

the data into the CIE standard luminosity function. During the daytime, the cones of the eye 

are the primary receptors and the response is called photopic vision, . During the nighttime, 
the rods become the primary receptors, and the eye’s response changes to scotopic vision,. 

Relative spectral sensitivity here means the ratio of the perceived optical stimulus to the 

Figure 7. Irradiance [8].

Figure 8. Exitance [8].
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incident radiant power as a function of wavelength, normalized to unity at the maximum of 

the function [13] (see Figure 10). Special optical filters are used to give photometers nearly 
the same response as the average eye.

The photometric quantities are related to the corresponding radiometric quantities by the CIE 

standard luminosity function. We can think of the luminosity function as the transfer function 

of a filter which approximates the behaviors of the average human eye as shown in Figure 11.

2.3.2. Luminous flux (  Φ  
v
   )

Quantity derived from radiant flux (  Φ  
e
   ) by evaluating the radiation according to its action 

upon the CIE standard photometric observer, as shown in Figure 12 [4]. The unit is lumen 

(lm) = 683 × W (Watt) × V(λ).

Figure 9. Human eye structure [11].

Figure 10. The photopic vision V(λ) and the scotopic vision V’(λ) functions [14].
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2.3.3. Luminous intensity (  I  
v
   )

Quotient of the luminous flux (  Φ  
v
   ) leaving the source and propagated in the element of solid 

angle  dω  containing the given direction divided by the element of solid angle, as shown in 

Figure 12 [4]. The unit is candela (cd).

   I  
v
   =   

d  Φ  
v
  
 ____ 

d𝜔
    (4)

2.3.4. Illuminance (  E  
v
   )

Quotient of the luminous flux Φ v incident on  asurface divided by the area dA of that element, 

as shown in Figure 12 [4]. The unit is lux (lx) and is equal to lumen per square meter (lm/m2).

   E  
v
   =   

d  Φ  
v
  
 ____ 

dA
    (5)

Figure 11. Relationship between radiometric units and photometric units.

Figure 12. Luminous flux, luminous intensity, illuminance, and luminance [15].
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2.3.5. Luminance (  L  
v
   )

Quantity defined by the formula [4]:

   L  
v
   =   

d  Φ  
v
  
 ___________ 

dA . cos θ .  dω    (6)

where  d  Φ  
v
    is the luminous flux transmitted by an elementary beam passing through the given 

point and propagating in the solid angle  d𝜔  containing the given direction,  dA  is the area of a 

section of that beam containing the given point, B is the angle between the normal to that sec-

tion and the direction of the beam. The unit is candelas per square meter (cd/m2).

3. Traceability and the accreditation of the laboratories

The traceability to the SI unit through a National Metrology Institute (NMI) is defined as the 
property of the result of measurement or the value of a standard whereby, it can be related 

to stated references, usually national or international standards, through an unbroken chain 

of comparisons all having stated uncertainties [16], as shown in Figure 13. Traceability only 

exists when metrological evidence is collected to document the traceability chain and quan-

tify its associated measurement uncertainties. In most cases, the ultimate reference for a mea-

surement result is the SI definition of the appropriate unit and the stated reference is usually 
a national laboratory that maintains a realization of the unit. This is a practical way of stating 

traceability and reflects the usual chain of measurement comparisons.

Figure 13. The traceability chain [17].
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Generally, goods and services are produced by a process that operates under a quality sys-

tem. Nowadays, people are more conscious about quality more than before. In modern 

economy, calibration and testing activities play important roles in assuring the quality of 

goods, services and purchasing decisions. Currently, quality system registration seems to be 

a popular method of providing assurance of product quality, but it has become quite clear 

that, for testing and calibration activities, this is not good enough. The internationally recog-

nized standard for the accreditation of laboratories is ISO 17025: General Requirements for 
the Competence of Testing and Calibration Laboratories [18]. Accreditation is verification that 
a laboratory has executed a featured system appropriate for its operations. It is verification of 
measurement uncertainty claims and of traceability to the International System of Units (SI). 
Accreditation facilitates trade and commerce by eradicating technical barriers to trade. The 

accreditation of calibration laboratories is particularly important through its impact on inter-

national commerce. A final benefit is that an accredited laboratory has been found to perform 
better in interlaboratory comparisons than unaccredited laboratories, providing additional 
assurance to users of accredited services [19].

4. Evaluating and expressing uncertainty

Accurate measurements and associated uncertainty propagation are the backbone of science 

and industry [20]. Measurements have been the cornerstone of the quantitative sciences since 

antiquity. However, concepts, terms, units and methods for expressing measurement results 

[21] and their uncertainties are still contested despite extensive and successful attempts at 
international consensus resulting in the International Vocabulary of Metrology (VIM) and 
Guide to the Expression of Uncertainty in Measurement (GUM) more than a decade ago [22–26]. 

The philosophy of measurement also continues to be a dynamic field of enquiry [27–30] rekin-

dled since the early 2000s [31–34] when the Bureau International des Poids et Mesures (BIPM) 
began to engage in chemical measurements in addition to physical measurements.

The concept of uncertainty as a quantifiable attribute is relatively new in the history of measure-

ment, although error and error analysis have long been a part of the practice of measurement 

science or metrology. It is now widely recognized that, when all of the known or suspected 

components of error have been evaluated and the appropriate corrections have been applied, 

there still remains an uncertainty about the correctness of the stated result, that is, a doubt 

about how well the result of the measurement represents the value of the quantity being mea-

sured. The uncertainty of the result of the measurement reflects the lack of exact knowledge of 
the value of the measurand. The result of a measurement after correction for recognized sys-

tematic effects is still only an estimate of the value of the measurand because of the uncertainty 
arising from random effects and from imperfect correction of the result for systematic effects.

The ideal method for evaluating and expressing the uncertainty of the result of a measurement 

should be applicable to all kinds of measurements and to all types of input data used in mea-

surements. Also, the actual quantity used to express uncertainty should be directly derivable 

from the components that contribute to it. A measurement is a set of operations having the 

object of governing values of a particular quantity called the measurand. In general, the result 

Metrology84



of a measurement is only an estimate of the value of the measurand and thus is complete only 

when accompanied by a statement of the uncertainty of that estimate [35]. In general, a mea-

surement has imperfections that give rise to an error in the measurement result. Traditionally, 

an error is viewed as having a random component and a systematic component. Random error 

presumably arises from unpredictable variations of influence quantities. It is not possible to 
compensate for the random error of a measurement, but increasing the number of observa-

tions can usually reduce it. A systematic error arises from a recognized effect of an influence 
quantity on a measurement; it can be quantified and a correction can be applied to compensate 
for the effect. According to GUM [35], it is assumed that the result of a measurement has been 

corrected for all recognized significant systematic effects and that every effort has been made 
to identify such effect. Uncertainty components are grouped into two categories based on their 
method of evaluation “A” and “B.” Both types are based on probability distributions, and the 

uncertainty resulting from either type is quantified by variances or standard deviations. Type 
A standard uncertainty is calculated from series of repeated observations and is the square 

root of the statistically estimated variance (i.e., the estimated standard deviation). Type B stan-

dard uncertainty is also the square root of an estimated variance, but rather than being evalu-

ated by repeated measurement, it is obtained from an assumed probability density function 

based on the degree of belief that an event will occur. This degree of belief is usually based 

on a pool of comparatively reliable information such as previous measurement data, experi-

ence, manufacturer’s specifications, calibration certificates, and so on. Once all the uncertainty 
components, either Type A or Type B, have been estimated, they are used to calculate the com-

bined standard uncertainty, which equals the square root of the combined variance obtained 

from all variance and covariance components using what is termed as the law of propagation 

of uncertainty. When reporting expanded uncertainty instead of combined standard uncer-

tainty, the multiplying factor k should be stated as well as the approximate level of confidence 
associated with the interval covered by the expanded uncertainty.

The Joint Committee for Guides in Metrology (JCGM) provides authoritative guidance docu-

ments to address measurement needs and is currently developing an expanded Guide to 

the Expression of Uncertainty in Measurement (GUM) that will provide measurement uncer-

tainty propagation methods for a range of applications. Therefore, a comprehensive set of 

new worked examples to support modern industrial and research practices and to promote 

the consistent evaluation of measurement uncertainties are needed for this document [36].

4.1. Type A evaluation

In the simplest case (and fortunately the most usual one) of Type A evaluation, the input 
quantity X

i
 is treated as a random variable and is reasonably well approximated by the normal 

distribution [10]. The best estimate of the expected value of the random variable is denoted by 

x
i
 and is obtained from the arithmetic mean of a series of n independent observations obtained 

under the same conditions of measurement:

  

(7)
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The individual observations   x  
i,k

      differ in values because of random variations in the influence 
quantities or random effects. The experimental variance of the observations, which estimates 
the variance of the probability distribution of X

i
, is given by:

  (8)

This estimate of variance and its positive square root,  S( x  
i,k

   )  termed as the experimental stan-

dard deviation, characterize the variability of the observed values   x  
i,k

   .

According to statistical theory, the best estimate for the variance of the mean x
i
 is given by:

  (9)

The Type A standard uncertainty for that component is then defined as the positive square 
root of this last quantity:

  (10)

The number of observations n should be large enough to ensure that x
i
 provides a reliable 

estimate of the expectation for X
i
 and that   u   2 ( x  

i
   )  provides a reliable estimate of the variance of 

the expectation for X
i
. The number of degrees of freedom, defined as   v  

i
   = n − 1  should always 

be given when Type A evaluations of uncertainty components are documented.

4.2. Type B evaluation

With Type B evaluation, an estimate x
i
 of an input quantity X

i
 has not been obtained from 

repeated observations and the associated standard uncertainty is evaluated by scientific  
judgment based on all of the available information on the possible variability of X

i
 [10]. This 

information may include previous measurement data, experience, manufacturer’s specifica-

tions, calibration certificates, and so on. Type B evaluation calls for insight based on experi-
ence and general knowledge; it is, however, as reliable as Type A evaluation.

4.3. The typical uncertainty budget for measurements

4.3.1. The components of a typical uncertainty budget for luminous intensity calibrations 
(detector-based method) [9]

The following are the descriptions of the abovementioned uncertainty budget items [9] (Table 1):

• Calibration of reference photometers: The uncertainty of reference photometer is stated 

in the calibration report issued by the national laboratory or the calibration laboratory that 

conducted the calibration.
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• Long-term drift of the reference photometers between recalibrations: Estimated maxi-

mum drift of the reference photometer between calibrations.

• Photometer temperature variation: If the photometer has no temperature controller or 

temperature sensor, and the laboratory temperature is kept within

• Distance scale of the bench (0.5 mm in 3 m)

• Alignment of the lamp distance (1 mm in 3 m)

• Spectral mismatch correction

• Lamp-current regulation (0.01%)

• Lamp-current measurement uncertainty (0.01%)

• Stray light

• Random noise (lamp drift, etc.)

• Repeatability of the test lamp (including alignment)

4.3.2. The typical uncertainty budget for total luminous flux measurements

The components of a typical uncertainty budget for total luminous flux measurements are 
shown in Table 2 [9].

Uncertainty factor Type Relative standard uncertainty (%)

Calibration of reference photometers B

Long-term drift of the reference photometers between recalibrations B

Photometer temperature variation A

Distance scale of the bench (0.5 mm in 3 m) B

Alignment of the lamp distance (1 mm in 3 m) A

Spectral mismatch correction B

Lamp-current regulation (0.01%) A

Lamp-current measurement uncertainty (0.01%) B

Stray light B

Random noise (lamp drift, etc.) A

Repeatability of the test lamp (including alignment) A

Relative combined standard uncertainty

Relative expanded uncertainty (k = 2)

Table 1. Typical uncertainty budget for luminous intensity calibrations (detector-based method).
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The following are the descriptions of the abovementioned uncertainty budget items:

• Calibration of luminous-flux standard lamps: The uncertainty of the luminous-flux stan-

dard lamps is stated in the calibration report issued by the national laboratory or the cali-

bration laboratory that performed the calibration. This uncertainty normally includes the 

repeatability of the lamp.

• Aging of standard lamps: This uncertainty is calculated from the aging rate of the standard 

lamps and their calibration intervals. For example, if the aging rate is 0.02% per hour and 
the lamp is recalibrated every 50 h of its burning time, the uncertainty due to aging of the 

lamp is estimated to be 1.0%.

• Self-absorption correction: Uncertainty of the determination of the correction factor.

• Spectral mismatch correction: Uncertainty of the determination of the spectral mismatch 

correction factor u(SCF) which can be determined regarding Eq. (11) and according to ref-
erence [29] by the following Equation [10, 37]:

  (11)

where

is the relative spectral output of the test source;

 is the relative spectral output of the standard source;

 is the relative spectral responsivity of the photometer; and.

 is the spectral luminous efficiency function that defines a photometric measurement.

  (12)

Uncertainty factor Type Relative standard uncertainty (%)

Calibration of primary standard lamps B

Aging of standard lamps B

Self-absorption correction A

Spectral mismatch correction B

Repeatability of test lamps A

Spatial nonuniformity of the sphere response B

Lamp electrical control A

Relative combined standard uncertainty

Relative expanded uncertainty (k = 2)

Table 2. Typical uncertainty budget for luminous intensity calibration (source-based method) [9].
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• Repeatability of test lamps: Calculated as the standard deviation of the all measurements 

for each lamp.

• Spatial nonuniformity of the sphere response: This uncertainty is associated with differ-

ences of the angular intensity distribution of the test lamps and the standard lamp.

• Lamp electrical control [10]: The uncertainty of less than 0.01% in the calibration of voltme-

ter and standard resistor used for measuring and setting the electrical operating conditions 
of the lamps may result in 0.08% uncertainty in the lamp output.

5. Conclusion

In this chapter, we concentrate on the measurement of absolute amounts of optical radia-

tion, which requires careful definition for the photometric and radiometric quantities such as 
total flux, intensity, illuminance, luminance, radiance, exitance and irradiance. Also, it was 
necessary to distinguish between the difference of the exitance and irradiance quantities in 
the physical meaning. The metrological traceability chain is the sequence of measurement 

standards and calibrations that were used to relate the measurement result to the reference. 

To produce accurate, reproducible and international acceptable results, the measurement of 

absolute amounts of optical radiation needs careful and detailed consideration of a broad 

range of physical concepts. A measurement has imperfections that give rise to an error in the 

measurement result. Therefore, measurement results should be expressed in terms of esti-

mated value and an associated uncertainty. Actually, an error is viewed as having a random 

component and a systematic component. Random error presumably arises from unpredict-

able variations of influence quantities and is not possible to compensate for the random error 
of a measurement, but increasing the number of observations can usually reduce it. We pro-

vide an explanation to how to estimate and build the uncertainty budget of measurements for 

the most important quantities. The components of a typical uncertainty budgets for luminous 

intensity calibrations (detector-based method) and total luminous flux measurements are rep-

resented and explained in detail in this chapter.

Abbreviations

ω solid angle

ω
0
 Steradian unit of solid angle

EM electromagnetic radiation

SI unit International system of units

L
e
 radiance

  Φ  
e

    radiant flux

  I  
e

    radiant Intensity
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E
e
 irradiance

ε the angle between the normal of the surface element and the direction of 

propagation

E
e
 irradiance

M exitance

CIE Commission Internationale del’Eclairage

V(λ) photopic vision (CIE Standard Luminosity Function)

V’(λ) scotopic vision

  Φ  
v
    luminous flux

  I  
v
    luminous intensity

  E  
v
    illuminance

L
v
 luminance
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