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Abstract

In this chapter, an introduction to the basics of principal component analysis (PCA) is
given, aimed at presenting PCA applications to image compression. Here, concepts of
linear algebra used in PCA are introduced, and PCA theoretical foundations are explained
in connection with those concepts. Next, an image is compressed by using different
principal components, and concepts such as image dimension reduction and image recon-
struction quality are explained. Also, using the almost periodicity of the first principal
component, a quality comparative analysis of a compressed image using two and eight
principal components is carried out. Finally, a novel construction of principal components
by periodicity of principal components has been included, in order to reduce the compu-
tational cost for their calculation, although decreasing the accuracy.

Keywords: principal component analysis, population principal components, sample
principal components, image compression, image dimension reduction, image
reconstruction quality

1. Introduction

Principal component analysis, also known as the Hotelling transform or Karhunen-Loeve trans-

form, is a statistical technique that was proposed by Karl Pearson (1901) as part of factorial

analysis; however, its first theoretical development appeared in 1933 in a paper written by

Hotelling [1–8]. The complexity of the calculations involved in this technique delayed its devel-

opment until the birth of computers, and its effective use started in the second half of the

twentieth century. The relatively recent development of methods based on principal components

makes them little used by a large number of non-statistician researchers. The purposes of these
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notes are to disclose the nature of the principal component analysis and show some of its

possible applications.

Principal component analysis refers to the explanation of the structure of variances and covari-

ances through a few linear combinations of the original variables, without losing a significant

part of the original information. In other words, it is about finding a new set of orthogonal axes

in which the variance of the data is maximum. Its objectives are to reduce the dimensionality of

the problem and, once the transformation has been carried out, to facilitate its interpretation.

By having p variables collected on the units analyzed, all are required to reproduce the total

variability of the system, and sometimes the majority of this variability can be found in a small

number, k, of principal components. Its origin lies in the redundancy that there exists many

times between different variables, so the redundancy is data, not information. The k principal

components can replace the p initial variables, so that the original set of data, consisting of n

measures of p variables, is reduced to n measures of k principal components.

The objective pursued by the analysis of principal components is the representation of the

numerical measurements of several variables in a space of few dimensions, where our senses

can perceive relationships that would otherwise remain hidden in higher dimensions. The

abovementioned representation must be such that, when discarding higher dimensions, the

loss of information is minimal. A simile could illustrate the idea: imagine a large rectangular

plate that is a three-dimensional object, but that for practical purposes, we consider it as a flat

two-dimensional object. When carrying out this reduction in dimensionality, a certain amount

of information is lost since, for example, opposite points located on the two sides of the

rectangular plate will appear confused in a single one. However, the loss of information is

largely compensated by the simplification made, since many relationships, such as the neigh-

borhood between points, are more evident when they are drawn on a plane than when done

by a three-dimensional figure that must necessarily be drawn in perspective.

The analysis of principal components can reveal relationships between variables that are not

evident at the first sight, which facilitates the analysis of the dispersion of observations, highlight-

ing possible groupings and detecting the variables that are responsible for the dispersion.

2. Preliminaries

The study of multivariate methods is greatly facilitated by means of matrix algebra [9–11]. Next,

we introduce some basic concepts that are essential for the explanation of statistical techniques,

as well as for geometric interpretations. In addition, the relationships that can be expressed in

terms of matrices are easily programmable on computers, so we can apply calculation routines to

obtain other quantities of interest. It is a basic introduction about concepts and relationships.

2.1. The vector of means and the covariance matrix

Let X ¼ X1 … Xp

� �t
be a random column vector of dimension p. Each component, Xi, is a

random variable (r.v.) with mean E Xi½ � ¼ μi and variance V Xi½ � ¼ E Xi � μi

� �2
h i

¼ σii. Given
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two r.v., Xi and Xj, we define the covariance between them as Cov Xi;Xj

� �

¼ E Xi � μi

� ��

Xj � μj

� �

� ¼ σij. The expected values, variances, and covariances can be grouped into vectors

and matrices that we will call population mean vector, μ, and population covariance matrix,
P

:

μ ¼ E X½ � ¼
μ1

⋮

μp

0

B

@

1

C

A
,
X

¼ Cov X½ � ¼ E X� μð Þ X� μð Þt
� �

¼
σ11 ⋯ σ1p

⋮ ⋱ ⋮

σp1 ⋯ σpp

2

6

4

3

7

5
(1)

The population correlation matrix is given by r ¼ rij

h i

, where rij ¼
σij
ffiffi

σ
p

ii
ffiffiffiffi

σjj
p .

In the case of having n values of the r.v.s, we will consider estimators of the previous popula-

tion quantities, which we will call sample estimators.

Definition 2.1: Let X ¼
x11 ⋯ x1p

⋮ ⋱ ⋮

xp1 ⋯ xpp

2

6

4

3

7

5
be a simple random sample of a p-dimensional r.v. ordered

in the data matrix, with the values of the r.v.s in each column. The p-dimensional sample mean column

vector is X ¼ xi½ �, where xi ¼ 1
p

P

p

m¼1

xim. The sample covariance matrix is S ¼ sij
� �

¼ n
n�1Sn ¼ n

n�1

X-X
� �

X-X
� �t

. The generalized sample variance is the determinant of S, Sj j: The sample correlation

matrix is R ¼ rij
� �

, where rij ¼ sij
ffiffi

s
p

ii
ffiffiffi

sjj
p with i, j ¼ 1…p.

Proposition 2.1: Let X1,…,Xp be a simple random sample of a p-dimensional r.v. X with mean vector

μ and covariance matrix
P

. The unbiased estimators of μ and
P

are X and S:.

2.2. Eigenvalues and eigenvectors

One of the problems that linear algebra deals with is the simplification of matrices through

methods that produce diagonal or triangular matrices, which are widely used in the resolution

of linear systems of the form Ax ¼ b:

Definition 2.2: Let A be a square matrix. If vtAv ≥ 0 for any vector v, A is a nonnegative definite

matrix. If Av ¼ λv, with v 6¼ 0, λ is an eigenvalue associated with the eigenvector v.

Proposition 2.2: Let A be a symmetric p by p matrix with real-valued entries. A has p pairs of

eigenvalues and eigenvectors, λ1; e1ð Þ,…, λp; ep
� �

, such that:

1. All the eigenvalues are real. Also,

a. A is positive definite if all the eigenvalues are positive.

b. A is nonnegative definite if all the eigenvalues are nonnegative.
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2. The eigenvectors can be chosen with 2-norm equal to 1.

3. The eigenvectors are mutually perpendicular.

4. The eigenvectors are unique unless two or more eigenvalues are equal.

5. The spectral decomposition of A is A ¼ λ1e1e
t
1 þ⋯þ λpepe

t
p.

6. If P ¼ e1;…; ep
� �

is an orthogonal matrix and Λ is a diagonal matrix with main diagonal entries

λ1;…;λp

� �

, the spectral decomposition of A can be given by A ¼ PΛPt. Therefore,

A�1 ¼ PΛ�1Pt ¼
P

p

i¼1

1
λi
eie

t
i .

Remark 2.1: Let X be a matrix with the values of a simple random sample in each column of a p-

dimensional r.v., and let yti ¼ xi1;…; xinð Þ, with i ¼ 1…p, be the ith row of X. Let 1tn ¼ 1;…; 1ð Þ be the
n by one vector with all its coordinates equal to 1. It can be proven that:

1. The projection of the vector yti on the vector 1n is the vector xi1n, whose 2-norm is equal to
ffiffiffi

n
p

xij j.

2. Matrix Sn is obtained from the residuals ei ¼ yi � xi1n, the squared 2-norm of ei is equal to

n� 1ð Þsii, and the scalar product of ei and ej is equal to n� 1ð Þsij.

3. The sample correlation coefficient rij is the cosine of the angle between ei and ej.

4. If U is the volume generated by the vectors ei, with i ¼ 1…p, then Sj j ¼ U2

n�1ð Þp. Therefore, the

generalized sample variance is proportional to the square of the volume generated by deviation

vectors. The volume will increase if the norm of some ei is increased.

2.3. Distances

Many techniques of multivariate statistical analysis are based on the concept of distance. Let

Q ¼ x1; x2ð Þ be a point in the plane. The Euclidean distance from Q to the origin, O, is

d Q;Oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

. If Q ¼ x1;…; xp
� �

and R ¼ y1;…; yp

� �

, the Euclidean distance between

these two points of ℜp is d Q;Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � y1
� �2 þ⋯þ xp � yp

� �2
r

. All points x1;…; xp
� �

whose square distance to the origin is a fixed quantity, for example, x21 þ⋯þ x2p ¼ c2, are the

points of the p-dimensional sphere of radius cj j.

For many statistical purposes, the Euclidean distance is unsatisfactory, since each coordinate

contributes in the same way to the calculation of such a distance. When the coordinates

represent measures subject to random changes, it is desirable to assign weights to the coordi-

nates depending on how high or low the variability of the measurements is. This suggests a

measure of distance that is different from the Euclidean.
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Next, we introduce a statistical distance that will take into account the different variabilities

and correlations. Therefore, it will depend on the variances and covariances, and this distance

is fundamental in multivariate analysis.

Suppose we have a fixed set of observations in ℜp, and, to illustrate the situation, consider n

pairs of measures of two variables, x1 and x2. Suppose that the measurements of x1 vary

independently of x2 and that the variability of the measures of x1 are much greater than those

of x2. This situation is shown in Figure 1, and our first objective is to define a distance from the

points to the origin.

In Figure 1, we see that the values that have a given deviation from the origin are

farther from the origin in the x1 direction than in the x2 direction, due to the greater variabil-

ity inherent in the direction of x1. Therefore, it seems reasonable to give more weight in

the coordinate x2 than in the x1. One way to obtain these weights is to standardize the

coordinates, that is, x∗1 ¼ x1=
ffiffiffiffiffiffi

s11
p

and x∗2 ¼ x2=
ffiffiffiffiffiffi

s22
p

, where sii is the sample variance of

the variable xi. Thus, the statistical distance from a point Q ¼ x1; x2ð Þ to the origin is

d Q;Oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1

s11
þ x2

2

s22

q

. Therefore, the points that are equidistant from the origin of a constant

distance c are on an ellipse centered at the origin, whose major axis coincides with the

coordinate that has the greatest variability. In the case that the variability of one variable is

analogous to that of the other and that the coordinates are independent, the Euclidean

distance is proportional to the statistical distance.

If Q ¼ x1;…; xp
� �

and R ¼ y1;…; yp

� �

are two points of ℜp, the statistical distance between

them is d Q;Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1�y1ð Þ2
s11

þ⋯þ xp�ypð Þ2
spp

r

, with sii being the sample variance of the variable

xi. The statistical distance defined so far does not include most of the important cases where

the variables are not independent. Figure 2 shows a situation where the pairs x1; x2ð Þ seem to

have an increasing trend, so the sample correlation coefficient will be positive. In Figure 2,

Figure 1. Scatter plot with more variability in x1 than in x2. (a)Scatter plot (b) Ellipse of constant distance.
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we see that if we make a rotation of amplitude α and consider the axes g1; g2
� �

we are in

conditions analogous to those of Figure 1 (a). Therefore, the distance from the point

Q ¼ g1; g2
� �

to the origin will be d Q;Oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1

~s11
þ g2

2
~s22

q

, where ~sii is the sample variance of the

variable gi.

The relationships between the original coordinates and the new coordinates can be expressed as

g1 ¼ x1cos αð Þ þ x2sin αð Þ
g2 ¼ �x1sin αð Þ þ x2cos αð Þ (2)

and, after some algebraic manipulations, d Q;Oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11x21 þ 2a12x1x2 þ a22x22

q

, where aij are

values that depend on the angle and the dispersions, and also must meet the condition that

the distance between any two points must be positive.

The distance from a pointQ ¼ x1; x2ð Þ to a fixed point R ¼ y1; y2
� �

in situations where there is a

positive correlation is d Q;Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11 x1 � y1
� �2 þ 2a12 x1 � y1

� �

x2 � y2
� �

þ a22 x2 � y2
� �2

q

. So, in

this case, the coordinates of all points Q ¼ x1; x2ð Þ verify the equation a11 x1 � y1
� �2 þ 2a12 x1ð

�y1Þ x2 � y2
� �

þ a22 x2 � y2
� �2 ¼ c2, which is the equation of an ellipse of center R ¼ y1; y2

� �

and with axes parallel to g1; g2
� �

. Figure 3 shows ellipses with constant statistical distances.

This distance can be generalized to ℜp if a11,…, app, a12,…, ap�1,p are values such that the

distance from Q to R is given by.

d Q;Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ B
p

,where
A ¼ a11 x1 � y1

� �2 þ⋯þ app xp � yp

� �2

B ¼ 2a12 x1 � y1
� �

x2 � y2
� �

þ⋯þ 2ap�1,p xp�1 � yp�1

� �

xp � yp

� �
(3)

This distance, therefore, is completely determined by the coefficient aij, with i, j∈ 1;…; pf g,
which can be arranged in a matrix given by

Figure 2. Scatter plot with positive correlation.
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A ¼

a11 ⋯ a1p

⋮ ⋱ ⋮

ap1 ⋯ app

2

6

4

3

7

5
(4)

The elements of Eq. (4) cannot be arbitraries. In order to define a distance over a vector space,

Eq. (4) must be a square, symmetric, positive definite matrix. Therefore, the sample covariance

matrix of a data matrix, S, is a candidate to define a statistical distance.

Figure 4 shows a cloud of points with center of gravity, x1; x2ð Þ, at point R. At the first glance, it

can be seen that the Euclidean distance from point R to point Q is greater than the Euclidean

Figure 3. Ellipses of constant statistical distance. (a) Point Q at a constant distance from R. (b) Ellipse x2=3þ 4y2 ¼ 1

rotated and moved and scatter plot.

Figure 4. Scatter plot with center of gravity R and a point Q.
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distance from point R to the origin; however, Q seems to have more to do with the cloud of

points than the origin. If we take into account the variability of the points in the cloud and take

the statistical measure, then Q will be closer to R than the origin.

The above given explanation has tried to be an illustration of the need to consider distances

other than the Euclidean.

3. Population principal components

Principal components are a particular case of linear combinations of p r.v.s, X1,…, Xp. These

linear combinations represent, geometrically, a new coordinate system that is obtained by

rotating the original reference system that has X1,…, Xp as coordinate axes. The new axes

represent the directions with maximum variability and provide a simple description of the

structure of the covariance.

Principal components depend only on the variance/covariance matrix
P

(or on the correlation

matrix r) of X1,…, Xp, and it is not necessary to assume that the r.v.s follows an approximately

normal distribution. In case of having a normal multivariate distribution, we will have inter-

pretations in terms of ellipsoids of constant density, if we consider the distance that defines the
P

matrix, and the inferences can be made from the population components.

Let X ¼ X1 … Xp

� �t
be a p-dimensional random vector with covariance matrix

P

and

eigenvalues λ1 ≥λ2 ≥⋯ ≥λp. Let us consider the following p linear combinations:

Y1 ¼ lt1X ¼ l11X1 þ⋯þ lp1Xp

⋮

Yp ¼ ltpX ¼ l1pX1 þ⋯þ lppXp

(5)

These new r.v.s verify the following equalities:

V Yi½ � ¼ ltiΣli i ¼ 1,…, p

Cov Yi;Yj

� �

¼ ltiΣlj i, j ¼ 1,…, p i 6¼ j
(6)

Principal components are those linear combinations that, being uncorrelated among them,

have the greatest possible variance. Thus, the first principal component is the linear combina-

tion with the greatest variance, that is, V Y1½ � ¼ lt1Σl1 is maximum. Since if we multiply l1 by

some constant the previous variance grows, we will restrict our attention to vectors of norm

one, with which the aforementioned indeterminacy disappears. The second principal compo-

nent is the linear combination that maximizes the variance and is uncorrelated with the first

one, and the norm of the coefficient vector is equal to 1.

Proposition 3.1: Let
P

be the covariance matrix of the random vector X ¼ X1 … Xp

� �t
. Let us

assume that
P

has p pairs of eigenvalues and eigenvectors, λ1; e1ð Þ,…, λp; ep
� �

, with λ1 ≥λ2 ≥⋯ ≥λp.

Then, the ith principal component is given by
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Yi ¼ etiX ¼ e1iX1 þ⋯þ epiXp i ¼ 1,…, p (7)

In addition, with this choice it is verified that:

1. V Yi½ � ¼ etiΣei ¼ λi i ¼ 1,…, p .

2. Cov Yi;Yj

� �

¼ 0 i, j ¼ 1,…, p i 6¼ j .

3. If any of the eigenvalues are equal, the choice of the corresponding eigenvectors as vectors of

coefficients is not unique.

4. σ11 þ⋯þ σpp ¼
P

p

i¼1

V Xi½ � ¼ λ1 þ⋯þ λp ¼
P

p

j¼1

V Yj

� �

.

Remark 3.1: For the demonstration of these results, expressions are used on maximums of quadratic

forms between vectors of fixed norm maxl 6¼0
ltΣl
ltl

¼ λ1

� �

. Also, the Lagrange multipliers method can be

used, expressions when the abovementioned maximum is subject to orthogonality conditions and

properties on the trace of a matrix (if Σ ¼ PΛPt, then tr Σð Þ ¼ tr PΛPt
� �

¼ tr Λð Þ).

Due to the previous result, principal components are uncorrelated among them, with variances equal to

the eigenvalues of
P

, and the proportion of the population variance due to the ith principal component

is given by λi

λ1þ⋯þλp
.

If a high percentage of the population variance, for example, the 90%, of a p-dimensional r.v., with large

p, can be attributed to, for example, the five first principal components, then we can replace all the r.v.s

by those five components without a great loss of information.

Each component of the coefficient vector eti ¼ e1i;…; epi
� �

, eki, also deserves our attention, since

it is a measure of the relationship between the r.v.s Xkand Yi.

Proposition 3.2: If Y1 ¼ et1X,…, Yp ¼ etpX are the principal components obtained from the covari-

ance matrix
P

, with pairs of eigenvalues and eigenvectors λ1; e1ð Þ … λp; ep
� �

, then the linear

correlation coefficients between the variables Xk and the components Yi are given by

rXk ,Yi
¼ eki

ffiffiffiffiffi

λi

p
ffiffiffiffiffiffi

σkk
p i, k ¼ 1,…, p (8)

Therefore, eki is proportional to the correlation coefficient between Xkand Yi.

In the particular case that X has a normal p-dimensional distribution, Νp μ;Σ
� �

, the density of

X is constant in the ellipsoids with the center at μ given by X� μð ÞtΣ�1 X� μð Þ ¼ c2 that have

axes �c
ffiffiffiffiffi

λi

p
ei and i ¼ 1,…, p, where λi; eið Þ are the pairs of eigenvalues and eigenvectors of

P

.

If the covariance matrix,
P

, can be decomposed into Σ ¼ PΛPt, where P is orthogonal and Λ

diagonal, it can be shown that Σ�1 ¼ PΛ�1Pt ¼
P

p

i¼1

1
λi
eie

t
i . Also, if it can be assumed that μ ¼ 0,

to simplify the expressions, then
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c2 ¼ xtΣ�1x ¼
1

λ1
et1x
� �2

þ
1

λ2
et2x
� �2

þ⋯þ
1

λp
etpx

� �2
(9)

If the principal components y1 ¼ et1x,…, yp ¼ etpx are considered, the equation of the constant

density ellipsoid is given by

c2 ¼
1

λ1
y21 þ

1

λ2
y22 þ⋯þ

1

λp
y2p (10)

Therefore, the axes of the ellipsoid have the directions of the principal components.

Example 3.1: Let X1, X2, X3 be the three-unidimensional r.v.s and X ¼ X1;X2X3½ �t, with covariance

matrix

Σ ¼

2 0 0

0 8 �3

0 �3 2

2

6

4

3

7

5
(11)

It can be verified that the pairs of eigenvalues and eigenvectors are λ1 ¼ 9:243; et1 ¼ 0 0:924½
�

�0:383�Þ, λ2 ¼ 2; et2 ¼ 1 0 0½ �
� �

, and λ3 ¼ 0:757; et3 ¼ 0 0:383 0:924½ �
� �

. Therefore, the

principal components are the following:

Y1 ¼ et1X ¼ 0:924X2 � 0:383X3

Y2 ¼ et2X ¼ X1

Y3 ¼ et3X ¼ 0:383X2 þ 0:924X3

(12)

The norm of all the eigenvectors is equal to 1, and, in addition, the variable X1 is the second principal

component, because X1 is uncorrelated with the other two variables.

The results of Proposition 3.1 can be verified for this data, for example, V Y1½ � ¼ 9:243 and

Cov Y1;Y2½ � ¼ 0. Also,
P

3

i¼1

V Xi½ � ¼ 2þ 8þ 2 ¼ 12 ¼ 9:243þ 2þ 0:757 ¼
P

3

j¼1

V Yj

� �

. Thus, the pro-

portion of the total variance explained by the first component is λ1=12 ¼ 77%, and the one explained by

the first two is λ1 þ λ2ð Þ=12 ¼ 93:69%, so that the components Y1 and Y2 can replace the original

variables with a small loss of information.

The correlation coefficients between the principal components and the variables are the following:

rX1,Y1
¼ 0 rX2 ,Y1

¼ 0:993 rX3 ,Y1
¼ �0:823

rX1,Y2
¼ 1 rX2 ,Y2

¼ 0 rX3 ,Y2
¼ 0

rX1,Y3
¼ 0 rX2 ,Y3

¼ 0:118 rX3 ,Y3
¼ 0:568

(13)

In view of these values, it can be concluded that X2and X3 individually are practically equally important

with respect to the first principal component, although this is not the case with respect to the third
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component. If, in addition, it is assumed that the distribution of X is normal, Ν3 μ;Σ
� �

, with a null

mean vector, ellipsoids of constant density xtΣ�1x ¼ c2 can be considered. An ellipsoid of constant

statistical distance and projections is shown in Figure 5.

The ellipsoid with c2 ¼ 8 has been represented in Figure 5 (a), together with its axes and the ellipsoid

projections on planes parallel to the coordinate axes. The aforementioned projections are ellipses of red,

green, and blue colors that are reproduced in Figure 5 (b). Also, in this figure, the black ellipse obtained

by projecting the ellipsoid on the plane determined by the first two main components has been

represented. The equation of this ellipse is
y21
a2
þ y22

b2
¼ 8, where a ¼ c

ffiffiffiffi

η1
p and b ¼ c

ffiffiffiffi

η2
p , with η1 and η2 being

the two smallest eigenvalues of Σ�1, and the axes are determined by Y1 and Y2. As can be seen, the

diameters of the ellipse determined by the first two components are larger than the others. Therefore, the

area enclosed by this ellipse is the largest of all, indicating that it is the one that gathers the greatest

variability.

3.1. Principal components with respect to standardized variables

The principal components of the normalized variables Z1 ¼ X1�μ1
ffiffiffiffiffi

σ11
p ,…, Zp ¼

Xp�μp
ffiffiffiffiffi

σpp
p can also be

considered, which in matrix notation is Z ¼ V X-μð Þ, where V is the diagonal matrix whose

elements are 1
ffiffiffiffiffi

σ11
p ,…, 1

ffiffiffiffiffi

σpp
p . It is easily verified that the r.v. Z verifies E Z½ � ¼ 0 and

Cov Z½ � ¼ VΣV ¼ r, where r is the correlation matrix of X.

Principal components of Z are obtained by the eigenvalues and eigenvectors of the correlation

matrix, r, of X. Furthermore, with some simplification, the previous results can be applied,

since the variance of each Zi is equal to 1.

Let W1,…,Wp be the principal components of Z and vi;u
t
i

� �

, i ¼ 1,…, p, the pairs of eigen-

values and eigenvectors of r, since they do not have to be the same.

Figure 5. Ellipsoid of constant statistical distance and projections. (a) Ellipsoid of constant density and projections on the

coordinate planes. (b) Projections on the coordinate planes and the base plane Y1;Y2f g.
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Proposition 3.3: Let Z ¼ Z1;…;Zp

� �t
be a random vector with covariance matrix r. Let

v1;u1ð Þ,…, vp;up

� �

be the pairs of eigenvalues and eigenvectors of r, with v1 ≥⋯ ≥ vp. Then, the ith

principal component is given by W i ¼ ut
iV X-μð Þ, i ¼ 1,…, p. In addition, with this choice it is verified

that:

1. V W i½ � ¼ vi, i ¼ 1,…, p.

2. Cov W i;W j

� �

¼ 0, i, j ¼ 1,…, p, i 6¼ j.

3. If any of the eigenvalues are equal, the choice of the corresponding eigenvectors as vectors of

coefficients is not unique.

4.
P

p

i¼1

V W i½ � ¼ v1 þ⋯þ vp ¼
P

p

j¼1

V Zj

� �

¼ p.

5. The linear correlation coefficients between the variables Zk and the principal components W i are

rZk ,W i
¼ uki

ffiffiffiffi

vi
p

and i, k ¼ 1,…, p.

These results are a consequence of those obtained in Proposition 3.1 and Proposition 3.2

applied to Z and r instead of X and
P

.

The total population variance of the normalized variables is the sum of the elements of the

diagonal of r, that is, p. Therefore, the proportion of the total variability explained by the ith

principal component is vi
p , i ¼ 1,…, p.

Example 3.2: Let X1 and X2 be the two-unidimensional r.v.s and X ¼ X1;X2½ �t with the covariance

matrix,
P

, and correlation matrix, r, given by

Σ ¼
1 2

3 4

" #

r ¼
1 0:2

0:2 1

" #

(14)

It can be verified that the pairs of eigenvalues and eigenvectors for S are λ1 ¼ 100:04; et1 ¼
�

�0:02 �0:999½ �Þ and λ2 ¼ 0:96; et2 ¼ �0:999 0:02½ �
� �

. Therefore, the principal components are

the following:

Y1 ¼ et1X ¼ �0:02X1 � 0:999X2

Y2 ¼ et2X ¼ �0:999X1 þ 0:02X2

(15)

Furthermore, the eigenvalues and eigenvectors of r are v1 ¼ 1:2;ut
1 ¼ 0:707 0:707½ �

� �

and

v2 ¼ 0:8;ut
2 ¼ � 0:707 0:707½ �

� �

; hence, the principal components of the normalized variables are

the following:
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W1 ¼ ut
1Z ¼ 0:707Z1 þ 0:707Z2 ¼ 0:707 X1 � μ1

� �

þ 0:0707 X2 � μ2

� �

W2 ¼ ut
2Z ¼ �0:707Z1 þ 0:707Z2 ¼ �0:707 X1 � μ1

� �

þ 0:0707 X2 � μ2

� �

(16)

Because the variance of X2 is much greater than that of X1, the first principal component for Σ is

determined by X2, and the proportion of variability explained by that first component is λ1

λ1þλ2
¼ 0:99.

When considering the normalized variables, each variable also contributes to the components deter-

mined by r, and the dependencies between the normalized variables and their first component are

rZ1,W1
¼ u11

ffiffiffiffiffi

v1
p

¼ 0:707
ffiffiffiffiffiffiffi

1:2
p

¼ 0:774 and rZ2,W1
¼ u21

ffiffiffiffiffi

v1
p

¼ �0:707
ffiffiffiffiffiffiffi

1:2
p

¼ �0:774. The pro-

portion of the total variability explained by the first component is v1
p ¼ 0:6.

Therefore, the importance of the first component is strongly affected by normalization. In fact, the

weights, in terms of Xi are 0:707 and 0:0707 for r, as opposed to �0:02 and �0:999 for Σ.

Remark 3.2: The above example shows that the principal components deduced from the original

variables are, in general, different from those derived from the normalized variables. So, normalization

has important consequences.

When the units in which the different one-dimensional random variables are given are very different and

in the case that one of the variances is very dominant compared to the others, the first principal

component, with respect to the original variables, will be determined by the variable whose variance is

the dominant one. On the other hand, if the variables are normalized, their relationship with the first

components will be more balanced.

Principal components can be expressed in particular ways if the covariance matrix, or the

correlation matrix, has special structures, such as diagonal ones, or structures of the form

Σ ¼ σ2A.

4. Sample principal components

Once we have the theoretical framework, we can now address the problem of summarizing the

variation of n measurements made on p variables.

Let x1,…, xn be a sample of a p-dimensional r.v. Xwith mean vector μ and covariance matrix Σ.

These data have a vector of sample means x, covariance matrix S, and correlation matrix R.

This section is aimed at constructing linear uncorrelated combinations of the measured char-

acteristics that contain the greatest amount of variability contained in the sample. These linear

combinations are called principal sample components.

Given n values of any linear combination lt1xj ¼ l11x1j þ⋯þ lp1xpj, j ¼ 1,…, n, its sample mean

is lt1xj, and its sample variance is lt1Sl1. If we consider two linear combinations, lt1xj and lt2xj,

their sample covariance is lt1Sl2.
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The first principal component will be the linear combination, lt1xj, which maximizes the sample

variance, subject to the condition lt1l1 ¼ 1. The second component will be the linear combina-

tion, lt2xj, which maximizes the sample variance, subject to the condition that lt2l2 ¼ 1 and that

the sample covariance of the pairs lt1xj; l
t
2xj

� �

is equal to zero. This procedure is continued until

the p principal components are completed.

Proposition 4.1: Let S ¼ sikð Þ be the p by p matrix of sample covariances, whose pairs of eigenvalues

and eigenvectors are λ̂1; ê1

� �

,…, λ̂p; êp

� �

, with λ̂1 ≥ λ̂2 ≥⋯ ≥ λ̂p ≥ 0. Let x be an observation of the p-

dimensional random variable X, then:

1. The ith principal component is given by ŷi ¼ êtix ¼ ê1ix1 þ⋯þ êpixp, i ¼ 1,…, p.

2. The sample variance of ŷk is λ̂k, k ¼ 1,…, p.

3. The sample covariance of ŷi; ŷk
� �

, i 6¼ k, is equal to 0.

4. The total sample variance is
P

p

i¼1

sii ¼ λ̂1 þ⋯þ λ̂p.

5. The sample correlation coefficients between xkand ŷi are rxk, ŷ i
¼ êki

ffiffiffiffi

λ̂ i

p
ffiffiffiffi

skk
p , i, k ¼ 1,…, p.

In the case that the random variables have a normal distribution, the principal components can

be obtained from a maximum likelihood estimation Σ̂ ¼ Sn, and, in this case, the sampling

principal components can be considered as maximum likelihood estimates of the population

principal components. Although the eigenvalues of S and Σ̂ are different but proportional,

with constant proportionality fixed, the proportion of variability they explain is the same. The

sample correlation matrix is the same for S and Σ̂. We still do not consider the particular case

of normal distribution of the variables, so as not to have to include hypotheses that should be

verified for the data under study.

Sometimes, the observations x are centered by subtracting the mean x. This operation does not

affect the covariance matrix and produces principal components of the form ŷi ¼ êti x� xð Þ,
and in this case ŷi for any component, while the sample variances remain λ̂1,…, λ̂p.

When trying to interpret the principal components, the correlation coefficients rxk, ŷ i
are more

reliable guides than the coefficients ê ik, since they avoid interpretive problems caused by the

different scales in which the variables are measured.

4.1. Interpretations of the principal sample components

Principal sample components have several interpretations. If the distribution of X is close to

Np μ;Σð Þ, then components ŷi ¼ êti x� xð Þ are realizations of the main population components

Yi ¼ eti X� μð Þ, which will have distribution Np 0;Λð Þ, where Λ is the diagonal matrix whose

elements are the eigenvalues, ordered from major to minor, from the sample covariance
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matrix. Keeping in mind the hypothesis of normality, contours of constant density,

Ep ¼ x∈ℜ
pj x� xð ÞtS�1

x� xð Þ ¼ c2
	 


, can be estimated and make inferences from them.

Although it is not possible to assume normality in the data, geometrically the data are n points

ℜ
p, and the principal components represent an orthogonal transformation whose coordinate

axes are the axes of the ellipsoid Ep and with lengths proportional to

ffiffiffiffiffi

λ̂i

q

, with λ̂i being the

eigenvalues of S. Since all eigenvectors have been chosen such that their norm is equal to 1, the

absolute value of the ith component ŷi ¼ ê
t
i x� xð Þ

�

�

�

�

�

is the length of the projection of the vector

x� xð Þ on the vector êi. Therefore, the principal components can be seen as a translation of the

origin to the point x and a rotation of the axes until they pass through the directions with

greater variability.

When there is a high positive correlation between all the variables and a principal component

with all its coordinates of the same sign, this component can be considered as a weighted

average of all the variables or the size of the index that forms that component. The components

that have coordinates of different signs oppose a subset of variables against another, being a

weighted average of two groups of variables.

The interpretation of the results is simplified assuming that the small coefficients are zero and

rounding the rest to express the component as sums, differences, or quotients of variables.

The interpretation of the principal components can be facilitated by graphic representations in

two dimensions. A usual graph is to represent two components as coordinate axes and project

all points on those axes. These representations also help to test hypotheses of normality and to

detect anomalous observations. If there is an observation that is atypical in the first variable,

we will have that the variability in that first variable will grow and that the covariance with the

other variables will decrease, in absolute value. Consequently, the first component will be

strongly influenced by the first variable, distorting the analysis.

Sometimes, it is necessary to verify that the first components are approximately normal,

although it is not reasonable to expect this result from a linear combination of variables that

do not have to be normal.

The last component can help detect suspicious observations. Each observation x can be

expressed as a linear combination of the eigenvectors of S, xj ¼ ŷ1jê1 þ⋯þ ŷpjêp, with which

the difference between the first components ŷ1jê1 þ⋯þ ŷqjêq and the observation xj is

ŷq�1jêq�1 þ⋯þ ŷpjêp, which is a vector with square of the norm ŷ2q�1j þ⋯þ ŷ2pj, and we will

suspect of observations that have a large contribution to the square of the aforementioned

norm.

An especially small value of the last eigenvalue of the covariance matrix, or correlation matrix,

can indicate a linear dependence between the variables that have not been taken into account.

In this case, some variable is redundant and should be removed from the analysis. If we have

four variables and the fourth is the sum of the other three, then the last eigenvalue will be close

to zero due to rounding errors, in which case we should suspect some dependence. In general,

eigenvalues close to zero should not be ignored, and eigenvalues associated with these
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eigenvalues can indicate linear dependencies in the data and cause deformations in the inter-

pretations, calculations, and consequent analysis.

4.2. Standardized sample principal components

In general, principal components are not invariant against changes of scale in the original

variables, as has been mentioned when referring to the normalized population principal

components. Normalizing, or standardizing, the variables consists of performing the following

transformation zj ¼ D xj � x
� �

¼ x1j�x1
ffiffiffiffi

s11
p

;…;

xpj�xp
ffiffiffiffi

spp
p

h it
, j ¼ 1,…, p. If the matrix Z is the p by n

matrix whose columns are zj, it can be shown that its sample mean vector is the null vector

and that its correlation matrix is the sample correlation matrix, R, of the original variables.

Remark 4.1: Applying that the principal components of the normalized variables are those obtained for

the sample observations but substituting the matrix S for R, we can establish that if z1,…, zn are the

normalized observations, with covariance matrix R ¼ rikð Þ, where rik is the sample correlation coeffi-

cient between observations xi and xk, and if the pairs of eigenvalues and eigenvectors of R are

v̂1; û1ð Þ,…, v̂p; ûp

� �

, with v̂1 ≥⋯ ≥ v̂p ≥ 0, then

1. The ith principal component is given by ω̂ i ¼ ût
iz ¼ û1iz1 þ⋯þ ûpizp, i ¼ 1,…, p.

2. The sample variance of ω̂k is v̂k, k ¼ 1,…, p.

3. The sample covariance of ω̂ i; ω̂kð Þ, i 6¼ k, is equal to 0.

4. The total sample variance is tr Rð Þ ¼ p ¼ v̂1 þ⋯þ v̂p.

5. The sample correlation coefficients between zkand ω̂ i are rzk, ω̂ i
¼ ûki

ffiffiffiffi

v̂i
p

, i, k ¼ 1,…, p.

6. The proportion of the total sample variance explained by the ith principal component is v̂ i

p .

4.3. Criteria for reducing the dimension

The eigenvalues and eigenvectors of the covariance matrix, or correlation matrix, are the

essence of the analysis of principal components, since the eigenvalues indicate the directions

of maximum variability and the eigenvectors determine the variances. If a few eigenvalues are

much larger than the rest, most of the variance can be explained with less than p variables.

In practice, decisions about the number of components to be considered must be made in

terms of the pairs of eigenvalues and eigenvectors of the covariance matrix, or correlation

matrix, and different rules have been suggested:

a. When performing the graph i; λ̂i

� �

, it has been empirically verified that with the first

values there is a decrease with a linear tendency of quite steep slope and that from a

certain eigenvalue this decrease is stabilized. That is, there is a point from which the

eigenvalues are very similar. The criterion consists of staying with the components that

exclude the small eigenvalues and that are approximately equal.
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b. Select components until obtaining a proportion of the preset variance (e.g., 80%). This rule

should be applied with care, since components that are interesting to reflect certain

nuances suitable for the interpretation of the analysis could be excluded.

c. A rule that does not have a great theoretical support, which must be applied carefully so as

not to discard any valid component for the analysis, but which has given good empirical

results, is to retain those components with variances, λ̂i, above a certain threshold. If the

work matrix is the correlation matrix, in which case the average value of the eigenvalues is

one, the criterion is to keep the components associated with eigenvalues greater than unity

and discard the rest.

5. Application to image compression

We are going to illustrate the use of principal components to compress images. To this end, the

image of Lena was considered. This photograph has been used by engineers, researchers, and

students for experiments related to image processing.

5.1. Black and white photography

The black and white photograph shown in Figure 6 was considered. First, the image in .jpg

format was converted into the numerical matrix Image of dimension 512 by 512 (i.e., 29x29).

Second, to obtain the observation vectors, the matrix was divided into blocks of dimension

23x23, Aij, with which 4096 blocks were obtained, and each of them was a vector of observa-

tions.

Figure 6. Black and white photograph of Lena.
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Image ¼

A1,1 … A1,64

⋮ ⋱ ⋮

A64,1 … A64,64

2

64

3

75 (17)

Third, each matrix Aij was stored in a vector of dimension 64, x, which contained the elements

of the matrix by rows, that is, x ¼ ai,1;…; ai,8; aiþ1,1;…; aiþ1,8;…; aiþ8,8½ �. This way, we had the

observations xk ∈ℜ
64
��k ¼ 1;…; 4096

	 

, which were grouped in the observation matrix

x ¼ xij
� �

∈Μ4096,64 ℜð Þ.

Fourth, the average of each column, x ¼ x1;…; x64½ �, was calculated obtaining the vector of

means, and from each observation xij, its corresponding mean xj was subtracted. Thus, the matrix

of centered observations U was obtained. The covariance matrix of x was S ¼ UtU∈Μ64,64 ℜð Þ.

Fifth, the 64 pairs of eigenvalues and eigenvectors of S, λ̂i; êi

� �
, were found, and they were

ordered according to the eigenvalues from highest to lowest. The 8 largest eigenvalues are

drawn in Figure 7. As can be seen, the first eigenvalue is much larger than the rest. Thus, the

first principal component completely dominates the total variability.

Sixth, with the theoretical results and the calculations previously made, the 64 principal compo-

nents ŷj ¼ êtjx ¼ ê1, jx1 þ⋯þ ê64, jxp, j ¼ 1,…, p, were built. The first principal component was

ŷ1 ¼ �0:1167x1 þ⋯� 0:1166x64. Therefore, an orthonormal basis ofℜ64 was built.

Seventh, each vector êj ¼ ê1, j;…; ê64, j
� �t

was grouped by rows in a matrixΜ8,8:

Figure 7. Graph i; bλ i

� �
, i ¼ 1,…, 8, with bλ i being the eigenvalues ordered from highest to lowest.
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Êj ¼

ê1, j ⋯ ê8, j

⋮ ⋱ ⋮

ê57, j ⋯ ê64, j

2

6

4

3

7

5
(18)

Each of the 64 matrices Ê j was converted into an image. The images of the first three principal

components are shown in Figure 8.

At this point, it is important to mention that the data matrix x has been assumed to be formed

by 4096 vectors of ℜ64 expressed in the canonical base, B. Also, the base whose vectors were

the eigenvectors of S, B0 ¼ ê1;…; ê64f g, was considered. The coordinates with respect to the

canonical basis of the vectors of B0 were the columns of the matrix PC ¼ êt1;…; êt64
� �

. Then,

given a vector v that with respect to the canonical base had coordinates x1;…; x64ð Þ and with

respect to the base B
0 had coordinates y1;…; y64

� �

, the relation between them was

x1;…; x64½ �t ¼ PC y1;…; y64
� �t

. Also, as PC is an orthogonal matrix, y1;…; y64
� �

¼ x1;…; x64½ �PC.

Thus, the coordinates of the 4096 vectors that formed the observations matrix had as coordinates,

with respect to the new base, the rows of the matrix of dimension 4096x64 given by y ¼ x � PC.

Eight, in order to reduce the dimension, it was taken into consideration that if we keep all the

vectors of B0, we can perfectly reconstruct our data matrix, because y ¼ x � PC ) x ¼ y � PC�1

¼ y � PCt. Additionally, for the case under study, to reduce the dimension, if we use the slope

change rule, we can consider the first two principal components; five components if we want

to explain 97% of the variability, because
P5

i¼1 λ̂i=
P64

j¼1 λ̂j ¼ 97%; or eight components if we

want to explain 98% of the total variability.

In order to compress the image, the first vectors of the base B0 were used. Moreover, supposing

that we were left with M, M < 64, the matrix TM given by Eq. (19) was defined:

TM ¼
IMxM 0Mx 64�Mð Þ

0 64�Mð ÞxM 0 64�Mð Þx 64�Mð Þ

" #

(19)

Therefore, the dimension of yM ¼ y � TM was 4096 � 64.

Ninth, to reconstruct the compressed image, each row of yM was regrouped in an 8x8matrix.

The ith row of yM, denoted by yMi ¼ bi,1;…; bi,8; bi,9;…; bi,16;…; bi,64½ �, was transformed into

Figure 8. Images of the matrices of the first three principal components. (a) First component. (b) Second component. (c)

Third component.
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the matrix Bi given by Eq. (20), and the matrix Compressed_image given by Eq. (21) was

built:

Bi ¼

bi,1 ⋯ bi,8

bi,9 ⋯ bi,16

⋮ ⋱ ⋮

bi,57 ⋯ bi,64

2

6

6

6

6

6

4

3

7

7

7

7

7

5

i ¼ 1,…, 4096 (20)

Compressed_image ¼

B1 ⋯ B64

B65 ⋯ B128

⋮ ⋱ ⋮

B4033 B4096

2

6

6

6

4

3

7

7

7

5

(21)

Figure 9. Original and compressed image with two, five, and eight principal components. (a) Original image.

(b) Compression with two components. (c) Compression with five components. (d) Compression with eight components.
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Tenth and finally, Eq. (21) was converted into a .jpg file. Figure 9 shows the original image and

compressed images with two, five, and eight principal components.

By increasing the number of principal components, the percentage of the variability explained

is increased by very small percentages, but, nevertheless, nuances are added to the photo

sufficiently remarkable, since they make it sharper, smooth out the contours, and mark the

tones more precisely.

5.1.1. Objective measures of the quality of reconstructions

The two methods that we will use are the peak signal-to-noise ratio (PSNR) and the entropy of

the error image. The PSNR measure evaluates the quality in terms of deviations between the

processed and the original image, and the entropy of an image is a measure of the information

content contained in that image.

Definition 5.1: Let N be the number of rows by the number of columns in the image. Let

xnjn ¼ 1;…;Nf g be the set of pixels of the original image. Let yn
�

�n ¼ 1;…;N
	 


be the set of

reconstruction pixels. Let rn ¼ xn � yn
�

�n ¼ 1;…;N
	 


be the error. The mean square error (MSE) is

MSE ¼
1

N

X

N

n¼1

r2n (22)

Definition 5.2: Let the images under study be the 8 bit images. The peak signal-to-noise ratio of the

reconstruction is

PSNR ¼ 10log10
28 � 1
� �2

MSE

 !

(23)

Figure 10 (a) shows PSNR of the reconstructions of the image versus the number of principal

components used for the reconstruction, together with the regression line that adjusts the said

cloud of points. Figure 10 (b) shows the values of the PSNR when we use three quarters

(black), half (red), quarter (blue), eighth (green), sixteenth (brown), and the thirty-second part

(yellow) of the components, which means a corresponding reduction in compression. A

behavior close to linearity with a slope of approximately 0:2 can be seen. With the reductions

considered, the PSNR varies between 27 and 63.

If the entropy is high, the variability of the pixels is very high, and there is little redundancy.

Thus, if we exceed a certain threshold in compression, the original image cannot be recovered

exactly. If the entropy is small, then the variability will be smaller. Therefore, the information of

a pixel with respect to the pixels of its surroundings is high and, therefore, randomness is lost.

Definition 5.3: Let I be an 8 bit image that can take the values 0;…; 255f g. Let pi be the frequency

with which the value i∈ 0;…; 255f g appears. Then, the entropy is
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H Ið Þ ¼ �
X

255

i¼0

pilog2 pi
� �

(24)

Figure 11 (a) shows the entropy of the reconstructions from 1 to 256 components. As can be

seen, the entropy is increasing until the first 10 components, and then it becomes damped

tending asymptotically to the value of the entropy of the image (7:4452). It can be seen that the

difference with more than 170 components is insignificant. Figure 11 (b) shows the entropy of

Figure 10. PSNR of the reconstructions according to the used principal components. (a) PSNRof 256 reconstructions.

(b) PSNR of some reconstructions.

Figure 11. Entropy of reconstructions according to the used principal components. (a) Entropy of reconstructions.

(b) Entropy of some reconstructions.
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the reconstructions using 8 components (black), 16 components (brown), 32 components

(green), 64 components (blue), and 128 components (red), respectively.

Finally, we consider the entropy of the images of the errors. Given an image, I, the value of

each of its pixels is an element of the set 0;…; 255f g, and if we have a reconstruction, Î , and

consider the error, E ¼ I � Î , then the value of its pixels will be an element of the set

�255;…; 255f g. Therefore, E cannot be considered as an image. Since a pixel of value eij in E

is an error of the same size as �eij, to consider images we denominate image of the error to

Im Eð Þ ¼ eij
�

�

�

�

� �

, being E ¼ eij
� �

.

Figure 12 (a) shows the entropy of the error image versus the number of principal components

used for the reconstruction, together with an adjusted line of slope � 0.02. Figure 12(b) shows

the entropy when we use 8 components (black), 16 components (brown), 32 components

(green), 64 components (blue), and 128 components (red), respectively. With more than 200

principal components, the entropy of the errors is zero, which means that the errors have very

little variability, and with fewer components, the decrease seems linear with slope �0:02.

5.2. Coordinates of the first principal component

In this section, we will consider the coordinates of the first vectors that form the principal

components. If we consider that the vectors have been obtained as 23x23 dimension blocks,

vectors will have 64 coordinates. Figure 13 shows the coordinates of the first six principal

components with respect to the canonical base.

As can be seen from Figure 13, all coordinates seem to have some component with period 8.

This suggests that there may be some relationship with the shape of the blocks chosen and that

most vectors are close to being periodic with period 8, because when we consider each of the

Figure 12. Entropy of the errors of the reconstructions converted into images according to the used principal components.

(a) Entropy of differences (b) Entropy of some differences.
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Figure 13. Coordinates of the first six principal components with respect to the canonical base. (a) First component.

(b) Second component. (c) Third component. (d) Fourth component. (e) Fifth component. (f) Sixth component.
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Figure 14. Coordinates of the first three principal components when vectors are constructed from blocks of 22x22 and

24x24. (a) First component 22x22 (b) Second component 22x22 (c) Third component 22x22 (d) First component 24x24 (e)

Second component 24x24 (f) Third component 24x24.

Application of Principal Component Analysis to Image Compression
http://dx.doi.org/10.5772/intechopen.75007

131



4096 vectors of 64 components, the first 8 pixels are adjacent to the next 16 pixels, and these are

adjacent to the next 8 pixels, and so on, up to 8 times.

Since the first principal components collect a large part of the characteristics of the vectors, it is

plausible that they also reflect the periodicity of the vectors. Recall that principal components

are linear combinations of vectors and that if all of them had all their periodic coordinates with

the same period, then all components would be periodic as well.

In Figure 14, the coordinates of the first three principal components are shown when the

vectors are constructed from blocks of 22x22(see Figure 14 (a-c)) and from blocks of 24x24 (see

Figure 14 (d-f)). As can be seen, the periodicity in the first components is again appreciated.

Figure 15. Compression with 2 and 8 original and periodic principal components. (a) Compression with two components

(b) Compression with two componentsper. (c) Compression with eight components. (d) Compression with eight

componentsper.
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Figure 16. Differences between the image and the reconstruction according to the number of chosen components.

(a) 1-norm (b) 2-norm (c) ∞-norm.
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5.3. Reduction of the first principal component by periodicity

Using the almost periodicity of the first principal component, we can use less information to

obtain acceptable reconstructions of the image. If in the first principal component of dimension

64 we repeat the first eight values periodically and use k principal components to reconstruct

the image, we go from a reduction of k=64 to another of k� 1ð Þ þ 8=64½ �=64. Figure 15 shows

both the reconstruction of the image with 2 and 8 original principal components and the

reconstruction of the image with 2 and 8 principal components, but with the first component

replaced by a vector whose coordinates have period 8, we call this componentsper.

The first componentsper component is not the true one. Therefore, reconstructions from this set

cannot be made with total precision. If we use to compare the 1-norm, 2-norm, and ∞-norm of

the image and the corresponding reconstruction, with the original principal components and

the principal components using their periodicity, we obtain, by varying the number of used

principal components, the results shown in Figure 16.

With the original principal components (blue), the original image can be completely reconstructed,

while if we use only a few components, in this case 10 or less, approximations similar to the

original ones are obtained with componentsper (green).

6. Conclusions

This chapter has been devoted to give a short but comprehensive introduction to the basics of

the statistical technique known as principal component analysis, aimed at its application to

image compression. The first part of the chapter was focused on preliminaries, mean vector,

covariance matrix, eigenvectors, eigenvalues, and distances. That part finished bringing up the

problems that the Euclidean distance presents and highlights the importance of using a statis-

tical distance that takes into account the different variabilities and correlations. To that end, a

brief introduction was made to a distance that depends on variances and covariances.

Next, in the second part of the chapter, principal components were introduced and connected

with the previously explained concepts. Here, principal components were presented as a

particular case of linear combinations of random variables, but with the peculiarity that those

linear combinations represent a new coordinate system that is obtained by rotating the original

reference system, which has the aforementioned random variables as coordinate axes. The new

axes represent the directions with maximum variability and provide a simple description of

the structure of the covariance.

Then, the third part of the chapter was devoted to show an application of principal component

analysis to image compression. An original image was taken and compressed by using differ-

ent principal components. The importance of carrying out objective measures of quality recon-

structions was highlighted. Also, a novel contribution of this chapter was the introduction to

the study of the periodicity of the principal components and to the importance of the reduction

of the first principal component by periodicity. In short, a novel construction of principal

Statistics - Growing Data Sets and Growing Demand for Statistics134



components by periodicity of principal components has been included, in order to reduce the

computational cost for their calculation, although decreasing the accuracy. It can be said that

using the almost periodicity of the first principal component, less information to obtain accept-

able reconstructions of the image can be used.

Finally, we would not like to finish this chapter without saying that few pages cannot gather the

wide range of applications that this statistical technique has found in solving real-life problems.

There is a countless number of applications of principal component analysis to solve problems

that both scientists and engineers have to face in real-life situations. However, in order to be

practical, it was decided to choose and develop step by step an application example that could be

of interest for a wide range of readers. Accordingly, we thought that such an example could be

one related to data compression, because with the advancements of information and communi-

cation technologies both scientists and engineers need to either store or transmit more informa-

tion at lower costs, faster, and at greater distances with higher quality. In this sense, one example

is image compression by using statistical techniques, and this is the reason why, in this chapter, it

was decided to take advantage of statistical properties of an image to present a practical appli-

cation of principal component analysis to image compression.
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