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Abstract

Micro/nanofluids are the recent alternative solutions for cooling lubrication that can be 
defined as the fluids containing microparticles or nanoparticles, which own superior 
lubrication and cooling characteristics. For these reasons, they have gained significant 
attention in industrial applications, such as automotive, machining, and biomedical 
industries. In this chapter, the authors mainly present the recent progress and applica-
tions of nanofluids in machining processes, as well as some initial researches about micro-
fluids. Nanofluids provide an excellent media in cutting zone for enhancing the thermal 
conductivity and tribological characteristics. Therefore, they help to enhance the cutting 
performance by reducing the coefficient of friction, cutting temperature tool wear, and 
improving the surface quality. Moreover, the application of nanoparticles in vegetable 
oils, which are inherently nontoxic as well as biodegradable, gives them superior lubrica-
tion properties suitable for MQL application, especially for difficult-to-cut materials. The 
novel green technology definitely brings out many new solutions in machining practice.

Keywords: micro/nanofluids, nanofluid, sustainable machining, MQL, hard machining, 
vegetable oil, cutting

1. Introduction

Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of 
their thermophysical properties with proper volumetric fraction of nanoparticles. Much of the 
research on nanofluids are about understanding their behavior, so that they can be utilized 
effectively as an alternative solutions in many industrial applications, nuclear reactors, trans-

portation, electronics, machining, as well as biomedicine and food [1].

Environmental friendliness has become one of the biggest issues in modern industry worldwide, 
especially in machining industry. In addition, recent regulations on environmental problems, 
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such as ISO 14000 and Green Round, have become much stricter for promoting green manufac-
turing approaches. The necessity of reducing environmental loads should be increasingly con-
sidered, and many green manufacturing processes have been developed and studied.

According to the statistics of cost distribution in manufacturing shown in Figure 1, the cool-
ant expense for usage and disposal represents about 15% of total production costs, depending 
on the workpart and the types of cooling system, as well as machining location [3]. In contrast, 
tooling cost contributes only a small value of 4%. On the other hand, health and environmen-
tal issues associated with the airborne cutting fluid particles on factory shop floors motivate 
manufacturing enterprises to drastically reduce coolant consumption and, if possible, elimi-
nate it altogether.

As a result, the conception of dry cutting has been first considered to achieve environmental 
friendliness. Eliminating the cutting fluids in machining processes means that there is no cool-
ing lubricating media, which has three essential functions (i.e., reduction of friction, absorp-
tion of the generated heat, and chip evacuation). Hence, these following problems must be 
considered:

• Workpart: deteriorate surface texture and need additional works (cleaning or deburring)

• Cutting tool: difficulty in chip formation, reduction of tool life or change to expensive ones

• Machine tool: high rigidity, equipment specialized in pushing chips away from the cutting 
zone as well as controlling temperature

Especially in cases of machining difficult-to-machine materials like high-strength and high-
hardness steels, solving the mentioned problems has strong influence on leading industrial 
branches as automotive, roller bearing, hydraulic, and die and mold sectors. The term “hard 
machining” is a recent technology that can be defined as the machining operation of a work-
piece that has a hardness value typically in the 45–70 HRC range, using directly tools with geo-
metrically defined cutting edges [5]. Hard-cutting operations are capable of replacing, in some 
cases, grinding operations and produce comparable surface finish. Various machining opera-
tions in hard machining include milling, boring, broaching, hobbling, and others. Together 

Figure 1. Distribution of manufacturing costs for wet machining [2].
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with the developments of suitable rigid machine tools, superhard cutting-tool materials and 
special tool (toolholders) designs, and complete set-ups, the machining of hardened parts 
has become more easily accessible and widely applied for the modern machining industry. 
However, the challenge of selecting a cutting-tool insert to ensure tool life and high-precision 
machining of the component is the main problem, which slows down the development and 
application of hard machining. Since its broader introduction in the mid-1980s in the form of 
hard turning, people have seen that the cutting inserts, such as coated carbides (PVD (Ti, Al)
N–TiN and CVD Ti(C, N)–Al

2
O

3
-coated tools, etc.), ceramics, and (P)CBN, are widely utilized 

in various dry hard cutting processes.

Without cooling lubricating media, the enormous amount of heat generated from cutting 
zone remains a big question, which limits the cutting condition, reduces the tool life, and 
deteriorates the surface finish (i.e., the so-called “white layer” formation in hard machining). 
This problem has promoted the development of minimum quantity lubrication (MQL) using a 
special nozzle to form oil mist directly supplied to the machining interface with a tiny amount 
of fluid consumption (5–500 ml/hr). Because the cutting fluid mostly vaporizes and leaves dry 
chips, it brings out cost effective and green machining [4]. The very small amount of cutting 
fluids is utilized and delivered effectively to cutting zone, and the formation of oil films in 
contact faces plays an important role in lubrication [7]. Numerous publications have been 
reported on the effectiveness of the MQL technique for enhancing cutting performance [2, 4, 
6, 7]. However, the main drawback of MQL technology is low cooling effect, and so it does not 
work so well in cutting difficult-to-machine materials with high strengths and hardness. To 
improve the MQL technology, nanofluids containing nanoparticles (Al

2
O

3
, MoS

2
, SiO

2
, CuO, 

diamond, and so forth) with at least one of their principal dimensions smaller than 100 nm [3] 
used in MQL technique recently reach a significant attention of worldwide researchers and 
are up-to-date topics to increase the cutting performance and productivity.

2. The effects of nanofluids on machining processes

The applications of nanofluids for MQL machining have been proven to improve the interac-
tion of friction in cutting zone due to the occurrence of nanoparticles. However, the direct 
evaluation of cutting performance faces many difficulties, and so numerous publications are 
focused on the indirect evaluation through machining outputs such as cutting forces, cut-
ting temperature, tool wear, tool life, and surface integrity. In this section, the recent studies 
related to the effects of nanofluids on machining performance will be discussed.

2.1. Thermal properties of nanofluids

From previous investigations, nanofluids have been found to possess enhanced thermophysi-
cal properties such as thermal conductivity, thermal diffusivity, viscosity, and convective heat 
transfer coefficients. The thermal conductivity of more than 50 various nanofluids based on 
water, ethylene glycol, and engine oil containing particles of SiO

2
, Al

2
O

3
, TiO

2
, ZrO

2
, CuO, and 

diamond was experimentally measured [8]. The obtained results had shown that the thermal 
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conductivity coefficient of nanofluids enhances with increasing particle sizes. It has been con-
firmed that the lower the thermal conductivity of the base fluid, the higher the relative thermal 
conductivity coefficient of the nanofluids. The different researches have made to investigate 
convective heat transfer of nanofluids [10]. Based on the results, augmenting nanofluid vol-
ume fraction, Rayleigh and Magnetic numbers lead to improve of the temperature gradient, 
while it reduces with augment of Lorentz forces. Heat transfer improvement augments with 
increase in Kelvin forces, while it reduces with augment of Lorentz forces at high Rayleigh 
number, but different manners are detected for low Rayleigh number. The active method for 
nanofluid heat transfer enhancement by means of EHD was also studied [10]. The obtained 
results suggest that influence of electric field on forced convection improvement is more 
sensible for lower Re number. Temperature gradient enhances with rise of voltage supply. 
Moreover, throughout the experimental results, the convective heat transfer increases with the 
presence of nanoparticles in the base fluids [11, 12, 21, 27]. Based on the newest publications, 
the deeper understanding about thermal properties of NFs is studied. The shapes of NPs are 
proven to influence on the rate of heat transfer, and the effect of thermal radiation on CuO 
nanofluid behavior is successfully modeled via Control Volume–based Finite Element Method 
(CVFEM). Platelet shape nanoparticles reveal the highest heat transfer rate [22, 25, 28, 29].  
Nanofluid motion, as well as flow circulation and thermal energy transport, enhances by 
increasing the volume fraction of NPs [23, 24, 26]. A novel research of melting temperature of 
CuO-water NF heat transfer enhancement is simulated by CVFEM. The highlighted results 
include (1) flow velocity of NF increases due to the presence of CuO nanoparticles; (2) heat 
transfer enhancement of NF improves at higher nanoconcentrations; (3) melting temperature 
rises with the increment of nanovolume fraction [30, 31, 33]. The same observations were 
obtained from the study of Fe

3
O4-water nanofluid [32, 34]. They contribute a very good under-

standing of nanofluid behavior as cutting fluid in various cutting processes.

2.2. The effects on cutting temperature

The cutting fluid can be useless if not delivered efficiently to contact zone, and so the methods 
of supplying the coolant in machining are the critical parameter. However, the effectiveness 
of supplying cutting fluids in wet cutting can help to dissipate relatively small amount of 
the generated heat. It is well known that only very small amount of cutting fluid can pen-
etrate to contact zone although large amount is delivered. On the other hand, costs, as well 
as health and environmental issues, motivate manufacturing enterprises to drastically reduce 
consumption of cooling fluids.

Dry machining processes face the serious difficulties in heat dissipation and chip transporta-
tion though eliminating the use of cutting fluids. From Figure 2, nongeometrically defined 
machining processes, such as grinding, honing, etc., are considered cooling function the most 
important factor. When some of these processes can be replaced by geometrically defined 
hard machining methods (for instance hard turning, hard milling), successful machining with 
minimization or without fluids can be achieved [13].

Stainless steel, for instance, belongs to the difficult machining material, which is easy to stick 
tool leading to increasing the cutting temperature and intensifying the abrasion of the tool 
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nose. Dry turning of AISI 304 stainless steel (85 HRB) at v = 75÷265 m/min; f = 0.1÷0.3 mm/rev; 
ap = 0.8÷1.6 mm with two different groups of inserts: uncoated and TiN coated carbide inserts 
(rake angle γ

o
 = 15°, relief angle α

o
 = 8°, inclination angle λs = − 4°, and side cutting-edge angle 

k
r
 = 75°) [14].

From Figure 3, the cutting temperatures of two kinds of cutting tools increase with increasing 
cutting speed. The reason was that frictional heat generated from the contact zone of the bot-
tom of chip and tool rake face was too late to transfer and was accumulated at the bottom of 
chip. Therefore, the cutting temperature increased. The comparison of cutting temperature is 
made among dry, wet, and MQL turnings of AISI 4140 steel (340 HV) at v = 50.2÷141.4 m/min; 
f = 0.09÷0.22 mm/rev; and ap = 0.5÷1.5 mm with HSS tools [15]. The tool-chip interface temperature 
in which MQL fluid is supplied from both nozzles to the rake and flank faces is approximately 

Figure 2. Machining operations and their needs for cooling and lubricating functions [3].

Figure 3. Evolution of cutting temperature with cutting speed in dry turning of AISI 304 stainless steel [14].
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350°C lower than that in dry turning, and if supplied only to rake face, the tool temperature is 
about 200°C lower than that in dry turning. Additionally, the tool-chip interface temperature in 
wet turning is about 300°C lower than that in dry turning. The difference in cutting tempera-
tures under dry, wet, and MQL conditions is closely related to the difference in cutting forces. 
The greater the cutting forces, the more heat and higher cutting temperatures are generated. 
Accordingly, the application of dry cutting processes is limited. It can also be observed that MQL 
techniques effectively provide oil mist directly to cutting zone to improve lubricant character-
istics, but the main drawback of this technique is cooling character. It has a significant meaning 
for machining hard materials with the hardness range of 45 ÷ 70 HRC. Therefore, the application 
of nanofluids in MQL machining, an up to date research topic, brings out a novel substitution 
for dry and wet cutting, as well as the development of semi-dry machining (MQL technique).

The thermal conductivity of nanofluids has been found to be higher than that of the base fluid 
by using KD2 Pro Thermal analyzer to measure at room temperature (25°C) to note down the 
increased conductivity value (seen in Figure 4) [16]. It is also observed that the thermal con-
ductivity of nanofluids enhances when increasing the nanoparticle concentration.

The comparison of six types of nanoparticles, namely molybdenum disulfide (MoS
2
), zir-

conium dioxide (ZrO
2
), carbon nanotube (CNT), polycrystalline diamond, aluminum oxide 

(Al
2
O

3
), and silica dioxide (SiO

2
), mixed with palm oil to formulate nanofluids is made and 

used for MQL grinding of Ni-based alloys [17]. The grinding temperatures of six nanofluids 
are shown in Figure 5.

It can be clearly observed from Figure 5 that the grinding temperatures sharply increase at the 
initiation of grinding process but decrease gradually to reach a stable temperature when six 
different nanofluids are supplied to contact zone.

Figure 4. Thermal conductivity variation for silver and zinc oxide nanofluids with different volume fractions [16].
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From Figure 6, it can be clearly seen that six different nanofluids help to effectively reduce 
MQL grinding temperature compared to the base fluid due to the presence of nanoparticles 
with hard property, as well as good heat transfer. The use of nanoparticles has a significant 
meaning in improving cooling and lubricating characteristics. CNT nanofluid shows the best 
cooling performance, presumably it has good heat transfer properties. On the other hand, 
the viscosity of cutting fluids is an important influencing factor of lubrication performance. 
Figure 7 shows the relationship between six different nanofluids’ viscosity and temperature.

The viscosity of all nanofluids decreases with the rise of temperature, especially before 70°C. SiO
2
, 

Al
2
O

3
, and CNT nanofluids have higher viscosity than other ones. High viscosity allows the cut-

ting fluids to stay in the cutting area for a longer time. This phenomenon improves the cooling 

Figure 5. Grinding temperature of six nanofluids with respect to a dimensionless grinding distance x/l [17].

Figure 6. Grinding temperatures of six different nanofluids [17].
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lubrication of the contact area. In addition, the use of vegetable oils as the base nanofluids not 
only improves their cooling, lubricating, and viscous characteristics but also is the step toward 
sustainable manufacturing.

2.3. The effects on cutting forces

The tribological characteristic of cutting fluids has a significant meaning for investigating cut-
ting forces. The nanofluids’ tribological characteristics are improved by using Al

2
O

3
 and TiO

2
 

nanomaterials. The kinematic viscosity of Al
2
O

3
 and TiO

2
 nanolubricants decreased slightly 

due to the presence of nanoparticles between the lubricant layers leading to an ease of relative 
movement with the nanoparticles acting as “rollers.” On the other hand, the viscosity index 
increased with the use of nanolubricants [9]. Accordingly, nanoparticles in MQL fluid play an 
important role in converting sliding into rolling contact. That is the reason why the friction 
coefficient in cutting zone is much reduced, and the cutting temperature, cutting forces, and 
tool wear decrease. MQL hard milling of 60Si

2
Mn steel (50÷52HRC) was done by using Al

2
O

3
 

nanofluid (0.5 wt%) with carbide inserts at v = 110 m/min; f = 0.12 mm/tooth; ap = 0.2 mm [19]. 
The cutting forces were directly measured during cutting process by Kistler quartz, three-
component dynamometer (9257BA). Figures 8–10 show the cutting force components Fx, Fy, 
and Fz of MQL hard milling process with/without Al

2
O

3
 nanoparticles. It is clearly observed 

that, compared to the case of MQL fluids without nanoparticles, all the cutting force compo-
nents are much reduced when cutting with nanofluids. Interestingly, it is revealed that during 
the first 20 min, all the cutting forces Fx, Fy, and Fz in both cases are low; therefore, in this time, 
the performance of Al

2
O

3
 nanoparticles in MQL hard milling is not really clear. After the first 

period, the rapid tool wear occurs, and wear land reaches some extent, which allows nanopar-
ticles to penetrate to cutting zone. The formulation of oil film with nanoparticles in contact 
zone plays an important role in creating “roller effect.” Rolling friction instead of sliding one 
occurs between flank face and machined surface, rake face and chip surface, and so forth. 
Hence, the cutting forces significantly reduce and the tool life extends much.

Figure 7. Relationship between nanofluids’ viscosity and temperature [18].
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The use of soybean oil–based nanofluids in MQL hard milling was less effective than that 
of emulsion. However, both of them allow the normal APMT 1604 PDTR LT30 carbide 
inserts to use effectively for hard milling, and the economic and technological characteris-
tics of cutting performance are achieved. Another promising research investigated lubrica-
tion properties of the wheel/workpiece interface in MQL nanofluids grinding compared 
with flood and MQL grinding without nanoparticles. The experiments were conducted at 
wheel speed v

s
 = 30 m/s, feed speed v

w
 = 3000 mm/min, and cutting depth a

p
 = 10 μm for 

machining the high-temperature nickel base alloy GH4169 [18]. Figures 11 and 12 show 
the grinding forces obtained.

Figure 8. Cutting force component Fx under MQL conditions with/without nanofluids [19].

Figure 9. Cutting force component Fy under MQL conditions with/without nanofluids [19].
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Both normal and tangential grinding forces increased with an increased number of passes. 
The flood grinding process shows the largest sliding grinding force. MQL grinding with 
pure palm oil achieves smaller sliding force because it effectively increases the lubrica-
tion effect of the grinding area due to oil-mist formation. Nanofluids are superior to pure 
palm oil in lubrication improvement. When making the comparison among six different 
nanofluids, the sliding grinding forces under MQL nanofluid (Al

2
O

3
, MoS

2
, SiO

2
, and ND) 

are lowest due to hard characteristic and small sliding friction coefficient. The effective-
ness of nanofluids on reduction of cutting forces becomes a novel observation and has an 
important influence on tool wear and tool life, which directly affect the surface quality and 
manufacturing cost.

Figure 11. Specific tangential sliding grinding forces in the cases of flood, pure MQL, and nanofluids.

Figure 10. Cutting force component Fz under MQL conditions with/without nanofluids [19].
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2.4. The effects on tool wear and tool life

With the presence of nanoparticles between rake face and fresh chip, as well as flank face 
and machined surface, the mechanism of the tribological effect takes many forms, such as 
“roller effect,” third body effect, chemical mechanical protective film effect, mending effect, 
and polishing effect [2, 3]. For instance, during gear hobbing process of AISI 4118 steel (spin-
dle speed = 200 rev/min, depth of cut =4.375 mm, feed rate = 1.27 mm/rev), using nanofluid 
(Al

2
O

3
 with the size 80 nm suspended in ISO VG46 lubricant oil with volume fraction of 0.1÷ 

0.2%) shows many promising results. Nanoparticles in the base oil effectively improve the 
heat transfer capability and reduce the friction by “roller effect” in cutting zone, leading to 
the reduction of tool wear, the much extension of tool life, and the enhancement of gear pro-
file accuracy and gear surface roughness [20]. Figures 13 and 14 show the flank wear of hob 
tools at different time of machining the 50th, 300th gears. It is clearly seen that during the 
period of machining first 50 gears, gear hobbing under nanolubrication exhibits the reduc-
tion of tool wear, but at the period of machining the 300th gear, the significant reduction of 
hob wear is observed. Moreover, the wear land at the time of machining the 300th gear with 
nanolubrication (39.93 μm) is nearly equivalent to that of the tool at the period of machining 
the 50th gear under flood lubrication (36.29 μm). Accordingly, it is clarified that there is a 
significant increment in tool life when machining under nanolubrication.

On the other hand, the tool wear is much reduced under nanolubrication, which leads to 
achieve higher gear profile accuracy (shown in Figure 15). It could be said that nanolubri-
cation is the main factor contributed to preserve the tool profile accuracy. In addition, the 
spherical morphology of Al

2
O

3
 nanoparticles takes part in the decrease of friction force and 

cutting temperature.

Hard milling process of 60Si
2
Mn steel (50÷52HRC) was done by using Al

2
O

3
 nanofluid (0.5 wt %)  

with carbide inserts at v = 110 m/min; ft = 0.12 mm/tooth; and ap = 0.2 mm. Figures 16 and 17 
illustrate the difference of tool wear between MQL hard milling with nanofluids and pure 
MQL. In Figure 16, the wear on cutting edge including rake and flank faces is dominant. 

Figure 12. Specific normal sliding grinding forces in the cases of flood, pure MQL, and nanofluids.
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In Figure 17, the friction between rake face and chip reduces due to “roller effect” of Al
2
O

3
 

nanoparticles. Wear abrasion is not concentrated in cutting edge, and the abrasive area is 
formed on rake face (marked area shown in Figure 17a). On flank face, the formation of small 
wear land helps to form oil mist and contains nanoparticles to create “roller effect”. The pres-
sure on cutting edge decreases due to the reduction of friction. Therefore, the uniform wear 
occurs on cutting edge, which is different from the case without nanoparticles (Figure 17b). 
Moreover, the tool wear is reduced (about 26.4–33%) with the use of Al

2
O

3
 nanofluids.

From Figure 18, in case of soybean oil with Al
2
O

3
 nanoparticles, tool life is about 80 minutes 

(increase almost 177% compared to pure soybean oil). In case of emulsion 5% coolant with 
Al

2
O

3
 nanoparticles, tool life is about 115 minutes (increase almost 230% compared to pure 

emulsion 5% coolant). The promising results are supported to prove the explanation of “roller 
effect” of nanofluids.

Figure 13. Flank wear after machining the 50th gear using: (a) flood lubrication; (b) nanolubrication [20].
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The nanoparticles suspended in cutting fluids bring out the new trend in machining indus-
tries, which not only suggests many alternative solutions for conventional problems in metal 
cutting but also suits with green manufacturing industries, especially used as the base fluids 
of MQL techniques. Many publications have shown that the vegetable oils as the base fluids 
with MQL method, inherently nontoxic as well as biodegradable, can be effectively applied 
for machining processes, but their cooling characteristics is the main problem when cutting 
hard materials. During hard machining, the enormous amount of heat generated from cutting 
zone and strong adhesive wear between the tool and the work material will cause the reduc-
tion of hardness of cutting tool, increase the wear rate, and decrease the tool life. The occur-
rence of nanomaterials in MQL fluids has a strong meaning to overcome this problem. The 
difficulty of heat dissipation from cutting zone has been solved by the reduction of friction 
coefficient caused by “roller effect” of nanoparticles. Besides, MQL nanofluids also broaden 
the applicability of carbide tools in hard cutting with economic characteristic.

Figure 14. Flank wear after machining the 300th gear using: (a) flood lubrication; (b) nanolubrication [20].
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2.5. The effects on surface integrity

The surface integrity has become unquestionably a crucial parameter of any product in the 
past, present, and future. Quality characteristics must be tested during and after the man-
ufacturing processes. With regard to components, the distinction is often made between 
macrogeometrical parameters and the surface quality. Macro-geometrical parameters refer 
to deviations of dimension, form and position. The surface quality is defined by roughness 
parameters. Figures 19 and 20 show the surface roughness values of hard milling of 60Si

2
Mn 

steel (50÷52HRC) under different MQL conditions. The values of surface roughness obtained 
from MQL nanofluids are better than those of MQL pure fluids. Furthermore, the good sur-
face quality of hard milling under MQL nanofluid condition achieves and remains stable 
during longer cutting time. The best performance of nanoparticles is obtained when the flank 
wear land reaches to some extent called “appropriate wear land.” This can be explained that 
the profile of machined surface of hardened steel reflects that of flank face of cutting tool with 

Figure 15. Measuring the gear profile error of the 300th machined gear by OSAKA SEIKI KIKAI gear measuring machine: 
(a) flood lubrication; (b) nanolubrication [20].
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reasonable accuracy. As long as the flank wear profile is remained smooth, the flank wear to 
some extent not only deteriorates the surface finish but also somehow keeps or increases the 
surface quality [19]. This feature makes MQL hard machining utilizing nanofluids very differ-
ent from other types of machining processes.

The surface roughness of grinding the high-temperature nickel base alloy GH4169 is shown 
in Figure 21. The comparison of different lubricating conditions reveals that the amount of 
surface quality improvement in the nanofluid MQL grinding is much higher. It is attributed 
to the more effective lubrication of nanofluids. The Al

2
O

3
 nanofluid MQL grinding achieved 

the best surface roughness.

Figure 16. Tool wear under pure MQL cutting fluid with soybean oil (cutting time at 45 minutes): (a) rake face wear; (b) 
flank face wear [19].

Figure 17. Tool wear under MQL nanofluid with soybean oil (cutting time at 80 minutes): (a) rake face wear; (b) flank 
face wear [19].
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The nanofluid MQL grinding leads to a smoother surface and is better than either pure palm 
oil MQL or flood lubrication (seen in Figure 22). Interestingly, MQL grinding with Al

2
O

3
 

nanofluid offers significant reduction in the sliding friction coefficient, specific sliding grind-
ing energy, and best surface quality [18]. In addition, the SiO

2
 and diamond nanofluids show 

relatively good lubrication effect.

The application of nanolubrication led to the formation of a tribo-film (seen in Figure 23) as 
a solid lubricant [9]. This observation can be made in machining field due to extremely high 
contact pressure and temperature in cutting zone, and so many nanoparticles are deformed 
and remained in the machined surface. The occurrence of tribo-film on the machined surface 
may lead to many new research topics needed to study. The deposition of a tribo-film on the 
surfaces could help to improve the operating function of the machined part. The very thin 

Figure 18. Tool life under MQL conditions with or without nanofluids [19].

Figure 19. Surface roughness R
a
 under MQL conditions with or without nanofluids [19].
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layer formed by nanoparticles has the same characteristics as nanopowder, and so through 
cutting processes by nanofluids, we can make further improvement for tribological effect on 
part surfaces by using proper nanofluids and cutting condition. These topics will be discussed 
and confirmed in many further researches.

2.6. Conclusion

An inclusive review on the application of nanofluids in various machining processes has 
been made. The nanofluid has achieved significant attention due to its capability to enhance 
the heat transfer and lubrication performance in cutting zone. The effects of nanofluids were 
proven to reduce the coefficient of friction and wear effect to enhance the cutting performance, 

Figure 20. Surface roughness Rz under MQL conditions with or without nanofluids [19].

Figure 21. Surface roughness of grinding process at different lubrication conditions [18].
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Figure 22. SEM micrographs of workpiece surface of nickel base alloy GH4169 at different lubricating conditions [18].
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tool life, and surface quality. Moreover, MQL technique with NFs makes a big improvement 
for some hard machining processes like hard turning, hard milling in term of surface quality, 
which is equivalent to that of finish grinding. Together with MQL using nontoxic fluids like 
water and vegetable oils, nanofluids have opened the new trend in machining and exhibited a 
wide range of application in different cutting processes. The promising results obtained defi-
nitely ensure the success of MQL machining with nanofluids. However, the performance and 
behavior of nanofluids may be affected by many parameters, such as the base fluid, nanopar-
ticle type, nanoparticle size, nanoconcentration, and so on. Further research is necessarily 
made to optimize these parameters.

3. The effects of parameters of nanofluids

Each type of nanoparticles has with different structures, shapes, and sizes, which will vary in 
physical and morphological features, demonstrating diverse tribological performances [35]. 

Figure 23. Formation Al
2
O

3
 tribo-boundary film on worn surface of the piston ring surface. (a) FE-SEM imaging on the 

cross-section, (b) EDS element mapping on tribo-boundary film, (c) EDS spectrum on tribo-boundary film [9].
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From Table 1, it can be seen that the technical properties of each type of nanoparticles are dif-
ferent, and so the effectiveness of various nanofluids on MQL cutting performance will be an 
important investigated factor.

In this section, the authors will present the effects of six different types of nanoparticles on 
nanofluids mainly used in MQL machining in term of MQL base fluid, types of nanoparticles, 
size and morphology of nanoparticles, and nanoparticle concentration.

3.1. The base fluid of nanofluid

Nanofluids are formulated by suspending nanoparticles in various types of fluid, which can be 
the water, vegetable oil, industrial oil and so on. The properties of the medium are considered an 
important parameter, which directly influences on the activity of nanoparticles. Along with the 
trend of sustainable machining all over the world, the cutting fluids used in nanofluids should 
not be contained different toxic ingredients, and therefore water and vegetable oils are motivated 
to use as the alternative solution. There are some types of vegetable oils, which are commonly 
utilized in MQL machining: soybean, peanut (groundnut), maize, rapeseed, palm, castor, and 
sunflower oils. The ingredients, molecular structure, viscosity, and friction coefficient of the base 
fluids are the key parameters for vegetable oils [37]. Figure 24 shows the relationship between 
vegetable oils and their coefficient of friction, which strongly influences in the contact area during 
machining. Vegetable oil is mainly composed of fatty acid and triglyceride -COOH in the fatty 
acid molecules and -COOR in triglyceride both belong to polar groups, which gives them excel-
lent lubrication property [38]. Figure 25 illustrates the typical polar molecule of vegetable oil.

Table 2 lists the basic ingredients of fatty acids of seven vegetable oils. The lubrication prop-
erties of saturated fatty acids are better than those of unsaturated fatty acids [41]. Saturated 
fatty acids have a strong effect on decreasing friction and wear, especially stearic acid, which 

Types of 
nanoparticles 
technical properties

Al
2
O

3
SiO

2
MoS

2
ZrO

2
CNT ND

Morphology Nearly 
spherical

Porous 
& nearly 
spherical

Ellipsoidal Mainly 
spherical

Coaxial 
circular 
tubes

Spherical & 
flaky

Purity (%) > 99 ~99.5 > 99 99.9 > 95 93-95

Color White White Black White Black Gray

True density (g/cm3) 3.97 2.4 4.8 5.89 ~2.1 3.05–3.30

Thermal 
conductivity 
(W/m.K)

40 7.6 138 < 2 3000 2000

Friction coefficient — — 0.03 ~0.05 — — —

Melting temperature 
(°C)

2200 1600 1185 2715 3127 3727

Table 1. Technical properties of different types of nanoparticles.
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Figure 24. Friction coefficient of different vegetable oils [36].

Figure 25. Polar molecule of the typical vegetable oil [36].

Oil types Ingredient

Palmic acid Stearic acid Oleic acid Linoleic acid Linolenic acid

Peanut oil 6–9 3–6 55–71 13–25 0.5

Soybean oil 7–10 3–5 22–31 49–55 6–11

Maize 9–19 1–3 26–40 44–55 < 1

Castor oil — — 3–9 3–5 Trace

Palm 35–48 4–6 38–41 8–12 Trace

Rapeseed oil 2–4 1–2 40–60 19–20 7–8

Sunflower oil 4–19 3–6 14–35 50–75 0.1

Table 2. Ingredient of various vegetable oil (%) [36].
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provides a more stable oil film in contact zone. Besides, they tightly contaminate to the molec-
ular film and remain on metal surfaces, such as tiny magnets, to form lubricating film for 
anti-friction and anti-wear [39]. Hence, this characteristic gives vegetable oils good lubrication 
property and shows the excellent lubrication effects in the application of MQL fluids. The 
double bonds in unsaturated fatty acids are relatively unstable and easily generate chemical 
reactions, such as oxidization. Moreover, they can also weaken the acting force between mol-
ecules, which leads to poor lubrication properties [36]. Lubrication property of unsaturated 
fatty acids with a higher carbon atom number is stronger than those with a lower carbon atom 
number, and so the friction coefficient decreases as the chain length increases [42].

On the other hand, the selection of proper vegetable oil depends on the climate and soil tex-
ture of each country, but it contributes very little to total manufacturing cost because of very 
small amount of fluids used in MQL techniques. The small quantity lubrication (SQL) grind-
ing process of Inconel 718 using silver and zinc oxide NPs mixed with DI water at cutting 
velocity (V) =18 m/s, table speed (Vw) = 6 m/min, depth of cut (ap) = 10 mm. The flow rates of 
MQL nanofluids are 50, 100, 150, 200, 250 ml/h [40]. Minimum tangential forces have been 
obtained in the case of SQL grinding with nanofluids (seen in Figure 26), which is essentially 
due to better cooling, and lubrication that helps in preserving the cutting ability of the grits 
over a longer period. Additionally, hard NPs under grinding pressure might convert sliding 
to rolling friction.

Vegetable oil evidently has better lubrication property than water-soluble fluid, but the lubri-
cation properties of seven typical vegetable oils also differ. Among these vegetable nanoflu-
ids, castor oil has the best lubrication property, followed by palm oil. In addition, peanut, 
sunflower, soybean, and rapeseed oils also exhibit excellent lubrication properties.

The viscosity of vegetable oils also has a strong influence on the machining performance and 
strongly affects its cooling and lubricating properties. They have a high natural viscosity as 
the machining temperature increases and drops more slowly than that of mineral oils [36]. 
These statements have significant meanings in machining difficult-to-cut materials such as 
hardened steel, tool steel, and so on. The formulation of oil film containing nanoparticles in 
cutting zone plays a key role in reducing the friction, which leads to decrease cutting tempera-
ture and tool wear. This film forms and loses continually, and so the higher the viscosity of 
cutting fluids, the more stable the film on contact faces.

3.2. The types and morphology of nanoparticles

Recently, nanomaterials have attained much attention because of their unique properties and 
tremendous application potentials in a wide range of industries. Currently, more and more 
researchers have been devoted to enhance the lubricant properties by using nanoparticles as 
lubricant additives (also called as nanolubrication or nanofluids). There are numerous types 
of nanoparticles in markets, and they are used in a wide range of industries. For machining 
processes, some types of nanoparticles are mainly used as Al

2
O

3
, MoS

2
, ZrO

2
, SiO

2
, CNT, and 

ND. From Table 1, it is clearly seen that the morphology of six different NPs is different, and 
so it causes the various effects on cutting performance. Owing to the high cost of nanopar-
ticles, the appropriate selection of nanoparticle type to suspend in MQL fluid is so important.
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Al
2
O

3
 nanoparticles, one of hexagonal close-packed crystal materials, exhibit the good lubri-

cation performance, which is related to its structures and characteristics. Al
2
O

3
 nanoparticles 

are spherical (shown in Figure 27) with characteristics of high strength, hardness, and heat 
resistance. The Al

2
O

3
 NPs are hard phase (HR = 2700-3000), showing good abrasive resistance 

during the friction process, and can carry some support to friction surface load between the 
area [43]. When Al

2
O

3
 nanoparticles are added into cutting fluid, they can easily move into the 

worn area under the compressive stress of nanocutting fluid, and then a self-laminating film 
can be formed, which results in micropolish and can self-mend the friction surface [44, 45]. 
Furthermore, the Al

2
O

3
 nanoparticles demonstrate good resistance to high temperature. The 

melting point of oil film can reach 2200°C. The morphology of Al
2
O

3
 nanoparticles are mostly 

Figure 26. Grinding forces under different SQL nanofluids [36].

Micro/Nanofluids in Sustainable Machining
http://dx.doi.org/10.5772/intechopen.75091

183



spherical; therefore, they can play the role of ball bearings that prevent the direct contact of 
friction pairs, and the sliding friction is changed to rolling friction in contact zone, which 
improves the cutting performance and the carrying capacity of lubricant [46].

The SiO
2
 nanoparticles are spherical (shown in Figure 28), and the surface molecules exhibit 

a 3D network structure. Given the abundant unsaturated vacant bonds on the surface, SiO
2
 

nanoparticles exert high surface energy and activity, making them easy to sediment onto the 
workpiece friction surface [47]. For such machining processes having the intensive friction as 
grinding, hard turning, hard milling, and so on, the melting point of SiO

2
 nanoparticles in con-

tact faces decreases under local extremely high temperature and pressure. Therefore, they may 
be melted, semi-melted, or sintered to form the lubrication film. Furthermore, a ceramic-like 

Figure 27. The SEM image of Al
2
O

3
 nanoparticles (30 nm) [57].

Figure 28. The SEM image of SiO
2
 nanoparticles (8 nm) (www.us-nano.com).
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nanofilm can be formed by diffusing and penetrating into machined surface or sub-surface of 
the elements in some SiO

2
 NPs [48]. This phenomenon prevents direct contact between cutting 

tools and the workpiece, thus reducing the friction and achieving better surface quality.

Molybdenum disulfide or MoS
2
 has been utilized in machining processes as solid lubricant 

for many years. MoS
2
 has been considered to be the best solid lubricant material, because 

it can provide low coefficient of friction up to 0.03–0.05 or even lower. The MoS
2
 nanopar-

ticles are ellipsoidal (shown in Figure 29). The layer structure of MoS
2
 is a hexagonal crystal 

system combining Mo and S through a covalent bond, and the bond between them is short, 
but the spacing between sulfur atoms is large. Accordingly, the bond between two adjacent 
sulfur atom layers is weak. That is the best explanation why a plane, so called “an easy-to-
slide plane,” will be generated from weak binding of sulfur atoms between molecular layers 
by shearing force caused by cutting processes. The numerous easy-to-slide planes make the 
contact faces sliding relatively to each other and they do not contact directly [43]. This unique 
characteristic makes MoS

2
 good friction-reducing effect. Moreover, exposure sulfur atoms of 

the crystal surface on the metal surface have a very strong adhesion to form a very solid film, 
therefore lubrication is superior to other general-lubricating materials. When MoS

2
 particle 

size becomes smaller, it is attached to the surface of the friction material and the coverage has 
increased significantly, and anti-wear friction properties have been significantly improved.

Carbon nanotubes or CNTs are coaxial circular tubes (shown in Figure 30) composed by layers 
and dozens of layers of carbon atoms in hexagonal arrangement. CNTs present a high modu-
lus and strength because carbon atoms in CNTs adopt the sp2 hybridization, which follows 
a higher proportion of S pathways than sp3 hybridization [49]. During machining processes, 
CNTs will not be ground into hard film under high loads and pressure because of its high 
strength and hardness. As such, CNTs can reduce the friction force of the cutting area and 
improve the lubrication effect of nanofluids. Tool-workpiece interface thus provides efficient 
lubrication. Two types of CNTs include the single-walled carbon nanotubes (SWCNT) and 
multi-walled carbon nanotubes (MWCNT). The performance between CNTs found by them 
revealed better performances of MWCNT over the SWCNT in terms of cutting temperature 

Figure 29. The SEM image of MoS
2
 nanoparticles (135 nm) (www.us-nano.com).
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and cutting force due to higher wettability although MWCNT had lower thermal conduc-
tivity than SWCNT [50]. However, they cannot produce effective rolling like other spherical 
nanoparticles due to their cylinder structures. Therefore, CNTs can only produce limited anti-
friction effect [43]. Furthermore, CNTs possess the highest coefficient of thermal conductivity 
among nanoparticles (Table 1), and so their application can be broadened by additionally 
dispersing other appropriate types of nanoparticles to form hybrid nanofluids [51, 52].

The ZrO
2
 nanoparticles are mainly spherical (shown in Figure 31). They appear oblique crys-

tal at low temperature and show tetragonal crystal formation at high temperature. ZrO
2
 is 

soluble in sulfuric acid and hydrofluoric acid and has good thermal-chemical stability due 
to very high melting temperature. When at high temperature, they have good strength and 
toughness. ZrO

2
 nanoparticles have the lowest coefficient of thermal conductivity among 

nanoparticles (Table 1), but their high surface energy and surface activity tend to be adsorbed 
onto the machined surface establishing a layer of self-healing lubrication film on the friction 
pair surface and achieving good lubrication effect [43].

The nanodiamond or ND exhibits cubic structure, and the morphology of nanoparticles is 
spherical or flaky (shown in Figure 32). ND presents very high hardness (HV = 98 GPa) which 
is superior to that of workpiece materials. Moreover, the ND exhibits extremely large elasticity 
modulus (980 GPa) with a compressive strength of about 13 GPa. With a size less than 1 μm, 
ND has attracted remarkable scientific attention due to their excellent mechanical and optical 
properties, high surface areas, and tunable surface structures. Due to unique properties, the 
excellent performances will certainly influence the lubrication performance in term of reducing 

Figure 30. The SEM image of single-walled carbon nanotube (outside diameter: 1-2 nm; inside diameter: 0.8-1.6 nm) 
(www.us-nano.com).
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friction coefficient, cutting forces, cutting temperature [53–56]. Interestingly, NDs can serve as 
abrasive grains and take part in cutting processes under high pressure like grinding process 
[43]; therefore, if the size of NDs becomes larger, they may deteriorate the surface quality.

3.3. The size of nanoparticles

The size of nanoparticles should not be avoided because it not only influences on the perfor-
mance of nanofluids and cutting processes but also contributes significant amount of nano-
fluid cost. In markets, the smaller the grain size of nanoparticles, the higher their cost will be. 
Figure 33 shows the relationship between the NP size and its cost, and it can be seen that the 

Figure 31. The SEM image of ZrO
2
 nanoparticles (40 nm) (www.us-nano.com).

Figure 32. The SEM image of ND nanoparticles (50 nm) (ndp.diamonds).

Micro/Nanofluids in Sustainable Machining
http://dx.doi.org/10.5772/intechopen.75091

187



grain size of nanoparticles strongly influences the cost of NPs. Hence, the NP size is definitely 
needed to optimize while remaining the good performance of nanofluids and the reasonable 
manufacturing cost [58, 59]. The experimental study on nanolubricant of nanographite (0.1 
vol%) was carried out with diffrent particle sizes 5 μm, 450 nm, and 55 nm [60].

From Figure 34, the friction coefficient of nanolubricant of the disc specimen as a function of 
the applied normal force exhibits the much lower values compared to microlubricant and raw 
mineral lubricant. In this test, the fluid with the smallest NP size 55 nm shows the lowest fric-
tion coefficient and reaches stable state when increasing the applied normal force. Moreover, 
the microfluid of the microparticle size 5 μm shows the highest friction coefficient, which is 
also higher than that of pure mineral lubricant.

Figure 34. Friction coefficients of the disc specimen as a function of the applied normal force at different particle sizes [60].

Figure 33. The relationship between 500 g of MoS
2
 nanoparticle size and its cost.
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The MQL grinding process of hardened AISI 52100 steel with Al
2
O

3
 nanofluids was done to 

investigate the effect of size of nanoparticles at grinding wheel speed =0.05 m/s and the grind-
ing depth = 10 μm [61]. The grinding temperature was reduced with the nanofluid of smaller 
NP size (Figure 35). When comparing the surface roughness of Al

2
O

3
 nanofluids with NP size 

of 40 nm and 80 nm, it is clearly seen that the better surface roughness can be achieved by 
using NFs with NP size of 40 nm, even in different nanoconcentration (shown in Figure 36).

Another MQL grinding process with Al
2
O

3
 nanofluids and nanodiamond was done to inves-

tigate the effect of size of nanoparticles [62]. From Figures 37 and 38, MQL grinding process 
with nanofluids exhibits better surface roughness and reduces grinding forces when com-

pared to those of dry and pure MQL grinding. Considered the NP size among nanofluids, the 
ND with smaller size 30 nm gives the best grinding performance in term of surface roughness 
and grinding forces.

Overall, the nano/microparticle sizes have the strong effects on cutting performance. 
Nanofluids exhibit better machining performance than microfluids. The smaller the NP size 
is, the better surface quality will be. However, the cost of NPs rises with smaller size, and so 
the appropriate nanoconcentration in fluid will be the key parameter affecting the application 
of nanofluids in machining practice.

3.4. The nanoparticle concentration

The nanoparticle concentration has attained a significant attention of many researchers 
because it influences on the performance of nanofluids and directly contributes a large frac-
tion of the NF cost. The experimental study on nanolubricant of nanographite with different 
concentration 0.1% and 0.5% reveals that the lower friction coefficients and average tempera-
ture of lubricated surfaces of the specimens can be achieved in case of nanolubricant with 
larger volume of fraction 0.5% (shown in Figures 39 and 40) [60]. The similar observation can 
be made from Figure 36 by the comparison of Al

2
O

3
 nanofluids with three concentrations 1, 

3, and 5%. The value of surface roughness decreases as the nanoconcentration rises from 1 to 

Figure 35. MQL grinding temperature of hardened AISI 52100 steel with Al
2
O

3
 nanofluids (grinding wheel speed =0.05 m/s;  

the grinding depth 10 μm) [61].
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Figure 38. Measured grinding forces; (a) normal direction and (b) tangential direction in the cases of dry, pure MQL and 
MQL nanofluid with nanodiamond [62].

Figure 36. Surface roughness of MQL grinding: (a) across the grinding direction; (b) along the grinding direction [61].

Figure 37. Surface roughness of MQL grinding with different nanofluids [62].
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5%. In contrast, when rising the volume fraction of nanodiamond in MQL grinding, the little 
effectiveness on cutting performance can be achieved. From Figure 37a, the value of surface 
roughness increases along with the rise of the concentration of ND.

In summary, the nanoconcentration is necessarily investigated by further research to optimize this key 
parameter, by which the application of nanofluids together with MQL technique cannot be limited 

Figure 39. Friction coefficients of the disc specimen as a function of the applied normal force at different nanoconcentration [60].

Figure 40. Temperature of lubricated surfaces of the specimens as a function of normal force with different nano-
concentration [60].
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by the cost of nanoparticles. Although the volume fraction of nanoparticles in MQL fluid is relatively 
small in each experimental research, it will be large when applied to production line in practice.

3.5. Conclusion

The cost-effective and sustainable manufacturing techniques are being given considerable 
importance these days to ensure economic, societal, and environmental sustainability glob-
ally. The basic parameters of nanofluids are discussed in detail, and they give strong effects 
on their tribological and lubricating characteristics, as well as the cost of NFs. The selection of 
appropriate nanofluids with suitable parameters is the crucial factor for machining processes. 
Especially for hard machining materials using geometrically defined cutting edges (hard 
turning, hard milling, hard drilling, and so on), the effectiveness of nanofluids is evaluated 
in terms of reducing the friction coefficient, enhancing the cutting performance, ensuring the 
tool life, and achieving good surface quality. However, very few records can be seen in the lit-
erature indicating that more experimental research is needed to find the optimal parameters 
in order to ensure maximum performance of using nanofluids in machining.

4. The development trend of nanofluids

The successful application of nanofluids in MQL technique using vegetable oils becomes a big 
step toward sustainable manufacturing. This new trend is well suited to encounter the issue 
of environmental change. MQL machining under nanofluid condition significantly develops 
the cutting processes, which generate large amount of heat such as hard turning, hard milling, 
grinding, and so on. The machining capability and achieved surface integrity of hard cutting 
operations are much improved and equivalent to those of grinding, but the productivity is 
higher. They can replace or supplement to some of grinding processes. The progression of 
hard machining will reach further achievements.

Like the idea coming from composite materials, the use of hybrid nanofluids (two or more different 
types of nanoparticles suspended in fluids) recently gains much attention due to better performance 
when compared to nanofluids [63–65], but the ratio of mixing and the types of nanoparticles will 
be continually studied and proven. On the one hand, the MQCL technique, the novel development 
of the MQL technique will be the future of modern machining processes. MQCL technique has 
overcome the cooling effect, the main drawback of MQL method [66, 67]. MQCL technique with 
nanofluids or hybrid nanofluids definitely brings out novel solutions and develops hard machin-
ing and grinding to the new level in the near future. On the other hand, the development of ice jet 
machining is one of the greatest achievements in the field of modern/advanced machining. It is a 
nondestructive, nonabrasive, residue-free, and environmentally friendly way of machining [68].

Symbols and Abbreviations

ap depth of cut (mm)

v cutting speed (m/min)
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vw table speed (m/min)

f feed rate (mm/rev)

ft feed rate (mm/tooth)

γ
o
 rake angle (°)

α
o
 relief angle (°)

λs inclination angle (°)

k
r
 side cutting-edge angle (°)

Fx, Fy, Fz cutting forces (N)

CNT carbon nanotube

CNTs carbon nanotubes

SWCNT single-walled carbon nanotube

MWCNT multi-walled carbon nanotube

MQL minimum quantity lubrication

MQCL minimum quantity cooling lubrication

SQL small quantity lubrication

ND nanodiamond

NF nanofluid

NFs nanofluids

NP nanoparticle

NPs nanoparticles
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