We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

6,900

186,000

200M

Downloads

154

Our authors are among the

most cited scientists

12.2%

Contributors from top 500 universities

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Reproducing Kernel Functions

Ali Akgül and Esra Karatas Akgül

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75206

Abstract

In this chapter, we obtain some reproducing kernel spaces. We obtain reproducing kernel functions in these spaces. These reproducing kernel functions are very important for solving ordinary and partial differential equations.

Keywords: reproducing kernel functions, reproducing kernel spaces, ordinary and partial differential equations

1. Introduction

Reproducing kernel spaces are special Hilbert spaces. These spaces satisfy the reproducing property. There is an important relation between the order of the problems and the reproducing kernel spaces.

2. Reproducing kernel spaces

In this section, we define some useful reproducing kernel functions [1–23].

Definition 2.1 (reproducing kernel). Let E be a nonempty set. A function $K : E \times E \to \mathbb{C}$ is called a reproducing kernel of the Hilbert space H if and only if

- **a.** $K(\cdot,t) \in H$ for all $t \in E$,
- **b.** $\langle \varphi, K(\cdot, t) \rangle = \varphi(t)$ for all $t \in E$ and all $\varphi \in H$.

The last condition is called the reproducing property as the value of the function φ at the point t is reproduced by the inner product of φ with $K(\cdot,t)$.

Then, we need some notation that we use in the development of this chapter. Next, we define several spaces with inner product over those spaces. Thus, the space defined as

$$W_2^3[0,1] = \left\{ v | v, v', v'' : [0,1] \to \mathbb{R} \text{ are absolutely continuous, } v^{(3)} \in L^2[0,1] \right\}$$
 (1)

is a Hilbert space. The inner product and the norm in $W_2^3[0,1]$ are defined by

$$\langle v, g \rangle_{W_2^3} = \sum_{i=0}^2 v^{(i)}(0)g^{(i)}(0) + \int_0^1 v^{(3)}(x)g^{(3)}(x)dx, \quad v, g \in W_2^3[0, 1],$$

$$\|v\|_{W_2^3} = \sqrt{\langle v, v \rangle_{W_2^3}}, \quad v \in W_2^3[0, 1],$$
(2)

respectively. Thus, the space $W_2^3[0,1]$ is a reproducing kernel space, that is, for each fixed $y \in [0,1]$ and any $v \in W_2^3[0,1]$, there exists a function R_y such that

$$v(y) = \langle v(x), R_y(x) \rangle_{W_2^3}, \tag{3}$$

and similarly, we define the space

$$T_2^3[0,1] = \left\{ \begin{array}{l} v|v,v',v'': [0,1] \to \mathbb{R} \text{ are absolutely continuous,} \\ \\ v'' \in L^2[0,1], v(0) = 0, v'(0) = 0 \end{array} \right\}$$

$$(4)$$

The inner product and the norm in $T_2^3[0,1]$ are defined by

$$\langle v, g \rangle_{T_2^3} = \sum_{i=0}^2 v^{(i)}(0)g^{(i)}(0) + \int_0^1 v'''(t)g'''(t)dt, \quad v, g \in T_2^3[0, 1],$$

$$\|v\|_{T_2^3} = \sqrt{\langle v, v \rangle_{T_2^3}}, \quad v \in T_2^3[0, 1],$$
(5)

respectively. The space $T_2^3[0,1]$ is a reproducing kernel Hilbert space, and its reproducing kernel function r_s is given by [1] as

$$r_{s} = \begin{cases} \frac{1}{4}s^{2}t^{2} + \frac{1}{12}s^{2}t^{3} - \frac{1}{24}st^{4} + \frac{1}{120}t^{5}, & t \le s, \\ \frac{1}{4}s^{2}t^{2} + \frac{1}{12}s^{3}t^{2} - \frac{1}{24}ts^{4} + \frac{1}{120}s^{5}, & t > s, \end{cases}$$
 (6)

and the space

$$G_2^1[0,1] = \{v|v:[0,1] \to \mathbb{R} \text{ is absolutely continuous, } v'(x) \in L^2[0,1]\},$$
 (7)

is a Hilbert space, where the inner product and the norm in $G_2^1[0,1]$ are defined by

$$\begin{split} \langle v,g\rangle_{G_2^1} &= v^{(i)}(0)g^{(i)}(0) + \int_0^1 v'(x)g'(x)\mathrm{d}x, \quad v,g \in G_2^1[0,1], \\ & \|v\|_{G_2^1} = \sqrt{\langle v,v\rangle_{G_2^1}}, \quad v \in G_2^1[0,1], \end{split} \tag{8}$$

respectively. The space $G_2^1[0,1]$ is a reproducing kernel space, and its reproducing kernel function Q_y is given by [1] as

$$Q_y = \begin{cases} 1+x, & x \leq y \\ 1+y, & x > y. \end{cases} \tag{9}$$

Theorem 1.1. The space $W_2^3[0,1]$ is a complete reproducing kernel space whose reproducing kernel R_y is given by

$$R_{y}(x) = \begin{cases} \sum_{i=1}^{6} c_{i}(y)x^{i-1}, & x \leq y, \\ \sum_{i=1}^{6} d_{i}(y)x^{i-1}, & x > y, \end{cases}$$
 (10)

where

$$c_1(y) = 1$$
, $c_2(y) = y$, $c_3(y) = \frac{y^2}{4}$, $c_4(y) = \frac{y^2}{12}$, $c_5(y) = -\frac{1}{24y}$, $c_6(y) = \frac{1}{120}$, $d_1(y) = 1 + \frac{y^5}{120}$, $d_2(y) = \frac{-y^4}{24} + y$, $d_3(y) = \frac{y^2}{4} + \frac{y^3}{12}$, $d_4(y) = d_5(y) = d_6(y) = 0$.

Proof. Since

$$\langle v, R_y \rangle_{W_2^3} = \sum_{i=0}^2 v^{(i)}(0) R_y^{(i)}(0) + \int_0^1 v^{(3)}(x) R_y^{(3)}(x) dx, \quad (v, R_y \in W_2^3[0, 1])$$
 (11)

through iterative integrations by parts for (11), we have

$$\langle v(x), R_{y}(x) \rangle_{W_{2}^{4}} = \sum_{i=0}^{2} v^{(i)}(0) \left[R_{y}^{(i)}(0) - (-1)^{(2-i)} R_{y}^{(5-i)}(0) \right]$$

$$+ \sum_{i=0}^{2} (-1)^{(2-i)} v^{(i)}(1) R_{y}^{(5-i)}(1) + \int_{0}^{1} v(x) R_{y}^{(6)}(x) dx.$$

$$(12)$$

Note, the property of the reproducing kernel as

$$\langle v(x), R_y(x) \rangle_{W_2^3} = v(y). \tag{13}$$

$$R_{y}(0) - R_{y}^{(5)}(0) = 0,$$

$$R'_{y}(0) + R_{y}^{(4)}(0) = 0,$$

$$R''_{y}(0) - R_{y}^{"'}(0) = 0,$$

$$R_{y}^{(3)}(1) = 0,$$

$$R_{y}^{(4)}(1) = 0,$$

$$R_{y}^{(5)}(1) = 0,$$

$$R_{y}^{(5)}(1) = 0,$$

$$R_{y}^{(5)}(1) = 0,$$

$$R_{y}^{(5)}(1) = 0,$$

Then by (11), we obtain

$$R_y^{(6)}(x) = \delta(x - y),$$
 (15)

when $x \neq y$,

$$R_y^{(6)}(x) = 0, (16)$$

therefore,

$$R_{y}(x) = \begin{cases} \sum_{i=1}^{6} c_{i}(y)x^{i-1}, & x \leq y, \\ \sum_{i=1}^{6} d_{i}(y)x^{i-1}, & x > y, \end{cases}$$
 (17)

Since

$$R_y^{(6)}(x) = \delta(x - y),$$
 (18)

we have

$$\partial^{k} R_{y^{+}}(y) = \partial^{k} R_{y^{-}}(y), \quad k = 0, 1, 2, 3, 4,$$

$$\partial^{5} R_{y^{+}}(y) - \partial^{5} R_{y^{-}}(y) = -1.$$
(19)

From (14) and (19), the unknown coefficients $c_i(y)$ and $d_i(y)$ (i = 1, 2, ..., 6) can be obtained. Thus, R_v is given by

$$R_{y} = \begin{cases} 1 + yx + \frac{1}{4}y^{2}x^{2} + \frac{1}{12}y^{2}x^{3} - \frac{1}{24}yx^{4} + \frac{1}{120}x^{5}, & x \le y \\ 1 + yx + \frac{1}{4}y^{2}x^{2} + \frac{1}{12}y^{3}x^{2} - \frac{1}{24}xy^{4} + \frac{1}{120}y^{5}, & x > y. \end{cases}$$
 (20)

Now, we note that the space given in [1] as

$$W(\Omega) = \begin{cases} v(x,t) | \frac{\partial^4 v}{\partial x^2 \partial t^2}, \text{ is completely continuous in } \Omega = [0,1] \times [0,1], \\ \frac{\partial^6 v}{\partial x^3 \partial t^3} \in L^2(\Omega), v(x,0) = 0, \frac{\partial v(x,0)}{\partial t} = 0 \end{cases}$$
(21)

is a binary reproducing kernel Hilbert space. The inner product and the norm in $W(\Omega)$ are defined by

$$\langle v(x,t), g(x,t) \rangle_{W} = \sum_{i=0}^{2} \int_{0}^{1} \left[\frac{\partial^{3}}{\partial t^{3}} \frac{\partial^{i}}{\partial x^{i}} v(0,t) \frac{\partial^{3}}{\partial t^{3}} \frac{\partial^{i}}{\partial x^{i}} g(0,t) \right] dt$$

$$+ \sum_{j=0}^{2} \left\langle \frac{\partial^{j}}{\partial t^{j}} v(x,0), \frac{\partial^{j}}{\partial t^{j}} g(x,0) \right\rangle_{W_{2}^{3}}$$

$$+ \int_{0}^{1} \int_{0}^{1} \left[\frac{\partial^{3}}{\partial x^{3}} \frac{\partial^{3}}{\partial t^{3}} v(x,t) \frac{\partial^{3}}{\partial x^{3}} \frac{\partial^{3}}{\partial t^{3}} g(x,t) \right] dx dt,$$

$$\|v\|_{w} = \sqrt{\langle v, v \rangle_{W}}, \quad v \in W(\Omega),$$

$$(22)$$

respectively.

Theorem 1.2. The $W(\Omega)$ is a reproducing kernel space, and its reproducing kernel function is

$$K_{(y,s)} = R_y r_s \tag{23}$$

such that for any $v \in W(\Omega)$,

$$v(y,s) = \langle v(x,t), K_{(y,s)}(x,t) \rangle_{W'}$$

$$K_{(y,s)}(x,t) = K_{(x,t)}(y,s).$$
(24)

Similarly, the space

$$\widehat{W}(\Omega) = \left\{ v(x,t) | v(x,t) \text{ is completely continuous in } \Omega = [0,1] \times [0,1], \frac{\partial^2 v}{\partial x \partial t} \in L^2(\Omega) \right\}$$
 (25)

is a binary reproducing kernel Hilbert space. The inner product and the norm in $\widehat{W}(\Omega)$ are defined by [1] as

$$\langle v(x,t), g(x,t) \rangle_{\widehat{W}} = \int_{0}^{1} \left[\frac{\partial}{\partial t} v(0,t) \frac{\partial}{\partial t} g(0,t) \right] dt + \langle v(x,0), g(x,0) \rangle_{W_{2}^{1}}$$

$$+ \int_{0}^{1} \int_{0}^{1} \left[\frac{\partial}{\partial x} \frac{\partial}{\partial t} v(x,t) \frac{\partial}{\partial x} \frac{\partial}{\partial t} g(x,t) \right] dx dt, \tag{26}$$

$$\|v\|_{\widehat{W}} = \sqrt{\langle v, v \rangle_{\widehat{W}}}, \quad v \in \widehat{W}(\Omega),$$

respectively. $\widehat{W}(\Omega)$ is a reproducing kernel space, and its reproducing kernel function $G_{(y,s)}$ is

$$G_{(y,s)} = Q_y Q_s. \tag{27}$$

Definition 1.3.

$$W_2^3[0,1] = \left\{ \begin{array}{l} u(x)|u(x),u'(x),u''(x), \text{ are absolutely continuous in } [0,1] \\ \\ u^{(3)}(x) \in L^2[0,1], x \in [0,1], u(0) = 0, u(1) = 0. \end{array} \right\}$$

The inner product and the norm in $W_2^3[0,1]$ are defined, respectively, by

$$\langle u(x), g(x) \rangle_{W_2^3} = \sum_{i=0}^2 u^{(i)}(0)g^{(i)}(0) + \int_0^1 u^{(3)}(x)g^{(3)}(x)dx, u(x), g(x) \in W_2^3[0, 1]$$

and

$$||u||_{W_2^3} = \sqrt{\langle u, u \rangle_{W_2^3}}, \quad u \in W_2^3[0, 1].$$

The space $W_2^3[0,1]$ is a reproducing kernel space, that is, for each fixed $y \in [0,1]$ and any $u(x) \in W_2^3[0,1]$, there exists a function $R_y(x)$ such that

$$u(y) = \langle u(x), R_y(x) \rangle_{W_2^3}.$$

Definition 1.4.

$$W_2^1[0,1] = \left\{ \begin{array}{l} u(x)|u(x), \text{ is absolutely continuous in } [0,1] \\ \\ u'(x) \in L^2[0,1], x \in [0,1], \end{array} \right\}$$

The inner product and the norm in $W_2^1[0,1]$ are defined, respectively, by

$$\langle u(x), g(x) \rangle_{W_2^1} = u(0)g(0) + \int_0^1 u'(x)g'(x)dx, u(x), g(x) \in W_2^1[0, 1],$$
 (28)

and

$$\|u\|_{W_2^1} = \sqrt{\langle u, u \rangle_{W_2^1}}, \quad u \in W_2^1[0, 1].$$
 (29)

The space $W_2^1[0,1]$ is a reproducing kernel space, and its reproducing kernel function $T_x(y)$ is given by

$$T_x(y) = \begin{cases} 1+x, & x \le y, \\ 1+y, & x > y. \end{cases}$$
 (30)

Theorem 1.5. The space $W_2^3[0,1]$ is a complete reproducing kernel space, and its reproducing kernel function $R_y(x)$ can be denoted by

$$R_{y}(x) = \begin{cases} \sum_{i=1}^{6} c_{i}(y)x^{i-1}, & x \leq y, \\ \sum_{i=1}^{6} d_{i}(y)x^{i-1}, & x > y, \end{cases}$$

where

$$c_{1}(y) = 0,$$

$$c_{2}(y) = \frac{5}{516}y^{4} - \frac{1}{156}y^{5} - \frac{5}{26}y^{2} - \frac{5}{78}y^{3} + \frac{3}{13}y,$$

$$c_{3}(y) = \frac{5}{624}y^{4} - \frac{1}{624}y^{5} + \frac{21}{104}y^{2} - \frac{5}{312}y^{3} - \frac{5}{26}y,$$

$$c_{4}(y) = \frac{5}{1872}y^{4} - \frac{1}{1872}y^{5} + \frac{7}{104}y^{2} - \frac{5}{936}y^{3} - \frac{5}{78}y,$$

$$c_{5}(y) = -\frac{5}{3744}y^{4} + \frac{1}{3744}y^{5} + \frac{5}{624}y^{2} + \frac{5}{1872}y^{3} - \frac{1}{104}y,$$

$$c_{6}(y) = \frac{1}{120} + \frac{1}{3744}y^{4} - \frac{1}{18720}y^{5} - \frac{1}{624}y^{2} - \frac{1}{1872}y^{3} - \frac{1}{156}y,$$

$$d_{1}(y) = \frac{1}{120}y^{5},$$

$$d_{2}(y) = -\frac{1}{104}y^{4} - \frac{1}{156}y^{5} - \frac{5}{26}y^{2} - \frac{5}{78}y^{3} + \frac{3}{13}y,$$

$$d_{3}(y) = \frac{5}{624}y^{4} - \frac{1}{624}y^{5} + \frac{21}{104}y^{2} + \frac{7}{104}y^{3} - \frac{5}{26}y,$$

$$d_{4}(y) = \frac{5}{1872}y^{4} - \frac{1}{1872}y^{5} - \frac{5}{312}y^{2} - \frac{5}{936}y^{3} - \frac{5}{78}y,$$

$$d_{5}(y) = -\frac{5}{3744}y^{4} + \frac{1}{3744}y^{5} + \frac{5}{624}y^{2} + \frac{5}{1872}y^{3} + \frac{5}{156}y,$$

$$d_{6}(y) = -\frac{1}{156}y + \frac{1}{3744}y^{4} - \frac{1}{18720}y^{5} - \frac{1}{624}y^{2} - \frac{1}{1872}y^{3}.$$

Proof. We have

$$\langle u(x), R_{y}(x) \rangle_{W_{2}^{3}} = \sum_{i=0}^{2} u^{(i)}(0) R_{y}^{(i)}(0) + \int_{0}^{1} u^{(3)}(x) R_{y}^{(3)}(x) dx.$$
(31)

Through several integrations by parts for (31), we have

$$\langle u(x), R_{y}(x) \rangle_{W_{2}^{6}} = \sum_{i=0}^{2} u^{(i)}(0) \left[R_{y}^{(i)}(0) - (-1)^{(2-i)} R_{y}^{(5-i)}(0) \right] + \sum_{i=0}^{2} (-1)^{(2-i)} u^{(i)}(1) R_{y}^{(5-i)}(1) - \int_{0}^{1} u(x) R_{y}^{(6)}(x) dx.$$

$$(32)$$

Note that property of the reproducing kernel

$$\langle u(x), R_y(x) \rangle_{W_2^3} = u(y),$$

If

$$\begin{cases}
R''_{y}(0) - R_{y}^{(3)}(0) = 0, \\
R'_{y}(0) + R_{y}^{(4)}(0) = 0, \\
R_{y}^{(3)}(1) = 0, \\
R_{y}^{(4)}(1) = 0,
\end{cases}$$
(33)

then by (31), we have the following equation:

$$-R_y^{(6)}(x) = \delta(x - y),$$
when $x \neq y,$
 $R_y^{(6)}(x) = 0,$

therefore,

$$R_{y}(x) = \begin{cases} \sum_{i=1}^{6} c_{i}(y)x^{i-1}, & x \leq y, \\ \\ \sum_{i=1}^{6} d_{i}(y)x^{i-1}, & x > y, \end{cases}$$

Since

$$-R_y^{(6)}(x) = \delta(x - y),$$

we have

and
$$\partial^k R_{y^+}(y) = \partial^k R_{y^-}(y), \quad k = 0, 1, 2, 3, 4,$$

$$\partial^5 R_{y^+}(y) - \partial^5 R_{y^-}(y) = -1.$$
 (35)

Since $R_y(x) \in W_2^3[0,1]$, it follows that

$$R_y(0) = 0, R_y(1) = 0,$$
 (36)

From (33)–(36), the unknown coefficients $c_i(y)$ and $d_i(y)$ (i = 1, 2, ..., 6) can be obtained. Thus $R_y(x)$ is given by

$$R_{y}(x) = \begin{cases} \frac{5}{516}xy^{4} - \frac{1}{156}xy^{5} - \frac{5}{26}xy^{2} - \frac{5}{78}xy^{3} + \frac{3}{13}xy + \frac{5}{624}x^{2}y^{4} - \frac{1}{624}x^{2}y^{5} + \frac{21}{104}x^{2}y^{2} \\ -\frac{5}{312}x^{2}y^{3} - \frac{5}{26}x^{2}y + \frac{5}{1872}x^{3}y^{4} - \frac{1}{1872}x^{3}y^{5} + \frac{7}{104}x^{3}y^{2} - \frac{5}{936}x^{3}y^{3} - \frac{5}{78}x^{3}y \\ -\frac{5}{3744}x^{4}y^{4} + \frac{1}{3744}x^{4}y^{5} + \frac{5}{624}x^{4}y^{2} + \frac{5}{1872}x^{4}y^{3} - \frac{1}{104}x^{4}y - \frac{1}{156}x^{5}y + \frac{1}{3744}x^{5}y^{4} \\ -\frac{1}{18720}x^{5}y^{5} - \frac{1}{624}x^{5}y^{2} - \frac{1}{1872}x^{5}y^{3}, \quad x \le y \\ \frac{5}{516}yx^{4} - \frac{1}{156}yx^{5} - \frac{5}{26}yx^{2} - \frac{5}{78}yx^{3} + \frac{3}{13}xy + \frac{5}{624}y^{2}x^{4} - \frac{1}{624}y^{2}x^{5} + \frac{21}{104}x^{2}y^{2} \\ -\frac{5}{312}y^{2}x^{3} - \frac{5}{26}y^{2}x + \frac{5}{1872}y^{3}x^{4} - \frac{1}{1872}y^{3}x^{5} + \frac{7}{104}y^{3}x^{2} - \frac{5}{936}x^{3}y^{3} - \frac{5}{78}y^{3}x \\ -\frac{5}{3744}x^{4}y^{4} + \frac{1}{3744}y^{4}x^{5} + \frac{5}{624}y^{4}x^{2} + \frac{5}{1872}y^{4}x^{3} - \frac{1}{104}y^{4}x - \frac{1}{156}y^{5}x + \frac{1}{3744}y^{5}x^{4} \\ -\frac{1}{18720}x^{5}y^{5} - \frac{1}{624}y^{5}x^{2} - \frac{1}{1872}y^{5}x^{3}, \quad x > y \end{cases}$$

$$W_{2}^{4}[0, 1] = \begin{cases} v(x)|v(x), v'(x), v''(x), v'''(x) \\ \text{are absolutely continuous in } [0, 1], \end{cases}$$

$$v^{(4)}(x) \in L^{2}[0, 1], x \in [0, 1] \end{cases}$$

The inner product and the norm in $W_2^4[0,1]$ are defined, respectively, by

$$\langle v(x), g(x) \rangle_{W_2^4} = \sum_{i=0}^3 v^{(i)}(0)g^{(i)}(0) + \int_0^1 v^{(4)}(x)g^{(4)}(x)dx, \quad v(x), g(x) \in W_2^4[0, 1],$$

$$\|v\|_{W_2^4} = \sqrt{\langle v, v \rangle_{W_2^4}}, \quad v \in W_2^4[0, 1].$$
(38)

The space $W_2^4[0,1]$ is a reproducing kernel space, that is, for each fixed.

 $y \in [0,1]$ and any $v(x) \in W_2^4[0,1]$, there exists a function $R_y(x)$ such that

$$v(y) = \langle v(x), R_y(x) \rangle_{W_2^4}$$
(39)

Similarly, we define the space

$$W_2^2[0,T] = \begin{cases} v(t)|v(t),v'(t)| \\ \text{are absolutely continuous in } [0,T], \\ v''(t) \in L^2[0,T], t \in [0,T], v(0) = 0 \end{cases}$$

$$(40)$$

The inner product and the norm in $W_2^2[0,T]$ are defined, respectively, by

$$\langle v(t), g(t) \rangle_{W_2^2} = \sum_{i=0}^1 v^{(i)}(0)g^{(i)}(0) + \int_0^T v''(t)g''(t)dt, \quad v(t), g(t) \in W_2^2[0, T],$$

$$||v||_{W_1} = \sqrt{\langle v, v \rangle_{W_2^2}}, \quad v \in W_2^2[0, T].$$

$$(41)$$

Thus, the space $W_2^2[0, T]$ is also a reproducing kernel space, and its reproducing kernel function $r_s(t)$ can be given by

$$r_s(t) = \begin{cases} st + \frac{s}{2}t^2 - \frac{1}{6}t^3, & t \le s, \\ st + \frac{t}{2}s^2 - \frac{1}{6}s^3, & t > s, \end{cases}$$
 (42)

and the space

$$W_2^2[0,1] = \begin{cases} v(x)|v(x), v'(x) \\ \text{are absolutely continuous in } [0,1], \\ v''(x) \in L^2[0,1], x \in [0,1] \end{cases}$$

$$(43)$$

where the inner product and the norm in $W_2^2[0,1]$ are defined, respectively, by

$$\langle v(t), g(t) \rangle_{W_2^2} = \sum_{i=0}^{1} v^{(i)}(0) g^{(i)}(0) + \int_0^T v''(t) g''(t) dt, \quad v(t), g(t) \in W_2^2[0, 1],$$

$$\|v\|_{W_2} = \sqrt{\langle v, v \rangle_{W_2^2}}, \quad v \in W_2^2[0, 1].$$
(44)

The space $W_2^2[0,1]$ is a reproducing kernel space, and its reproducing kernel function $Q_y(x)$ is given by

$$Q_{y}(x) = \begin{cases} 1 + xy + \frac{y}{2}x^{2} - \frac{1}{6}x^{3}, & x \leq y, \\ 1 + xy + \frac{x}{2}y^{2} - \frac{1}{6}y^{3}, & x > y. \end{cases}$$

$$(45)$$

Similarly, the space $W_2^1[0, T]$ is defined by

$$W_2^1[0,T] = \left\{ \begin{array}{l} v(t)|v(t) \text{ is absolutely continuous in } [0,T], \\ \\ v(t) \in L^2[0,T], \, t \in [0,T] \end{array} \right\} \tag{46}$$

The inner product and the norm in $W_2^1[0,T]$ are defined, respectively, by

$$\langle v(t), g(t) \rangle_{W_2^1} = v(0)g(0) + \int_0^T v'(t)g'(t)dt, \quad v(t), g(t) \in W_2^1[0, T],$$

$$||v||_{W_2^1} = \sqrt{\langle v, v \rangle_{W_2^1}}, \quad v \in W_2^1[0, T].$$

$$(47)$$

The space $W_2^1[0,T]$ is a reproducing kernel space, and its reproducing kernel function $q_s(t)$ is given by

$$q_s(t) = \begin{cases} 1+t, & t \le s, \\ 1+s, & t > s. \end{cases}$$
 (48)

Further, we define the space $W(\Omega)$ as

$$W(\Omega) = \begin{cases} v(x,t) | \frac{\partial^4 v}{\partial x^3 \partial t}, & \text{is completely continuous,} \\ in\Omega = [0,1] \times [0,T], \\ \frac{\partial^6 v}{\partial x^4 \partial t^2} \in L^2(\Omega), v(x,0) = 0 \end{cases}$$

$$(49)$$

and the inner product and the norm in $W(\Omega)$ are defined, respectively, by

$$\langle v(x,t), g(x,t) \rangle_{W} = \sum_{i=0}^{3} \int_{0}^{T} \left[\frac{\partial^{2}}{\partial t^{2}} \frac{\partial^{i}}{\partial x^{i}} v(0,t) \frac{\partial^{2}}{\partial t^{2}} \frac{\partial^{i}}{\partial x^{i}} g(0,t) \right] dt$$

$$+ \sum_{j=0}^{1} \left\langle \frac{\partial^{j}}{\partial t^{j}} v(x,0), \frac{\partial^{j}}{\partial t^{j}} g(x,0) \right\rangle_{W_{2}^{4}}$$

$$+ \int_{0}^{T} \int_{0}^{1} \left[\frac{\partial^{4}}{\partial x^{4}} \frac{\partial^{2}}{\partial t^{2}} v(x,t) \frac{\partial^{4}}{\partial x^{4}} \frac{\partial^{2}}{\partial t^{2}} g(x,t) \right] dx dt,$$

$$\|v\|_{W} = \sqrt{\langle v, v \rangle_{W}}, \quad v \in W(\Omega).$$

$$(50)$$

Now, we have the following theorem:

Theorem 1.6. The space $W_2^4[0,1]$ is a complete reproducing kernel space, and its reproducing kernel function $R_y(x)$ can be denoted by

$$R_{y}(x) = \begin{cases} \sum_{i=1}^{8} c_{i}(y)x^{i-1}, & x \leq y, \\ \sum_{i=1}^{8} d_{i}(y)x^{i-1}, & x > y, \end{cases}$$
 (51)

where

$$c_{1}(y) = 1, c_{2}(y) = y, c_{3}(y) = \frac{1}{4}y^{2},$$

$$c_{4}(y) = \frac{1}{36}y^{3}, c_{5}(y) = \frac{1}{144}y^{3}, c_{6}(y) = -\frac{1}{240}y^{2},$$

$$c_{7}(y) = \frac{1}{720}y, c_{8}(y) = -\frac{1}{5040}, c_{8}(y) = -\frac{1}{5040}y^{6},$$

$$d_{1}(y) = 1 - \frac{1}{5040}y^{7}, d_{2}(y) = y + \frac{1}{720}y^{6},$$

$$d_{3}(y) = \frac{1}{4}y^{2} - \frac{1}{240}y^{5}, d_{4}(y) = \frac{1}{36}y^{3} + \frac{1}{144}y^{4},$$

$$d_{5}(y) = 0, d_{6}(y) = 0, d_{7}(y) = 0, d_{8}(y) = 0.$$

$$(52)$$

Proof. Since

$$\langle v(x), R_{y}(x) \rangle_{W_{2}^{4}} = \sum_{i=0}^{3} v^{(i)}(0) R_{y}^{(i)}(0) + \int_{0}^{1} v^{(4)}(x) R_{y}^{(4)}(x) dx,$$

$$(v(x), R_{y}(x) \in W_{2}^{4}[0, 1])$$
(53)

through iterative integrations by parts for (53), we have

$$\langle v(x), R_{y}(x) \rangle_{W_{2}^{4}} = \sum_{i=0}^{3} v^{(i)}(0) \left[R_{y}^{(i)}(0) - (-1)^{(3-i)} R_{y}^{(7-i)}(0) \right]$$

$$+ \sum_{i=0}^{3} (-1)^{(3-i)} v^{(i)}(1) R_{y}^{(7-i)}(1)$$

$$+ \int_{0}^{1} v(x) R_{y}^{(8)}(x) dx.$$

$$(54)$$

Note that property of the reproducing kernel

$$\left\langle v(x), R_y(x) \right\rangle_{W_2^4} = v(y). \tag{55}$$

If

$$R_{y}(0) + R_{y}^{(7)}(0) = 0,$$

$$R'_{y}(0) - R_{y}^{(6)}(0) = 0,$$

$$R''_{y}(0) + R_{y}^{(5)}(0) = 0,$$

$$R_{y}^{"}(0) - R_{y}^{(4)}(0) = 0,$$

$$R_{y}^{(4)}(1) = 0,$$

$$R_{y}^{(5)}(1) = 0,$$

$$R_{y}^{(6)}(1) = 0,$$

$$R_{y}^{(7)}(1) = 0,$$

then by (54), we obtain the following equation:

$$R_y^{(8)}(x) = \delta(x - y),$$
 (57)

when $x \neq y$,

$$R_y^{(8)}(x) = 0; (58)$$

therefore,

$$R_{y}(x) = \begin{cases} \sum_{i=1}^{8} c_{i}(y)x^{i-1}, & x \leq y, \\ \sum_{i=1}^{8} d_{i}(y)x^{i-1}, & x > y. \end{cases}$$
 (59)

Since

$$R_y^{(8)}(x) = \delta(x - y),$$
 (60)

we have

$$\partial^k R_{\nu^+}(y) = \partial^k R_{\nu^-}(y), \quad k = 0, 1, 2, 3, 4, 5, 6,$$
 (61)

$$\partial^7 R_{y^+}(y) - \partial^7 R_{y^-}(y) = 1. (62)$$

From (56)–(62), the unknown coefficients $c_i(y)$ ve $d_i(y)(i = 1, 2, ..., 8)$ can be obtained. Thus, $R_y(x)$ is given by

$$R_{y}(x) = \begin{pmatrix} 1 + yx + \frac{1}{4}y^{2}x^{2} + \frac{1}{36}y^{3}x^{3} + \frac{1}{144}y^{3}x^{4} \\ -\frac{1}{240}y^{2}x^{5} + \frac{1}{720}yx^{6} - \frac{1}{5040}x^{7}, & x \le y, \\ 1 + xy + \frac{1}{4}x^{2}y^{2} + \frac{1}{36}x^{3}y^{3} + \frac{1}{144}x^{3}y^{4} \\ -\frac{1}{240}x^{2}y^{5} + \frac{1}{720}xy^{6} - \frac{1}{5040}y^{7}, & x > y. \end{pmatrix}$$

$$(63)$$

Author details

Ali Akgül* and Esra Karatas Akgül

*Address all correspondence to: aliakgul00727@gmail.com

Department of Mathematics, Art and Science Faculty, Siirt University, Siirt, Turkey

References

- [1] Cui M, Lin Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space. New York, NY, USA: Nova Science Publishers; 2009
- [2] Geng F, Cui M. Solving a nonlinear system of second order boundary value problems. Journal of Mathematical Analysis and Applications. 2007;327(2):1167-1181
- [3] Yao H, Cui M. A new algorithm for a class of singular boundary value problems. Applied Mathematics and Computation. 2007;**186**(2):1183-1191
- [4] Wang W, Cui M, Han B. A new method for solving a class of singular two-point boundary value problems. Applied Mathematics and Computation. 2008;**206**(2):721-727
- [5] Zhou Y, Lin Y, Cui M. An efficient computational method for second order boundary value problems of nonlinear dierential equations. Applied Mathematics and Computation. 2007;194(2):354-365

- [6] L X, Cui M, Analytic solutions to a class of nonlinear innite-delay-dierential equations. Journal of Mathematical Analysis and Applications, 2008;343(2):724-732
- [7] Wangand Y-L, Chao L. Using reproducing kernel for solving a class of partial dierential equation with variable-coecients. Applied Mathematics and Mechanics. 2008;29(1):129-137
- [8] Li F, Cui M. A best approximation for the solution of one-dimensional variable-coecient burgers equation, Numerical Methods for Partial Dierential Equations. 2009;25(6):1353-1365
- [9] Zhou S, Cui M. Approximate solution for a variable-coecient semilinear heat equation with nonlocal boundary conditions. International Journal of Computer Mathematics. 2009;86(12):2248-2258
- [10] Geng F, Cui M. New method based on the HPM and RKHSM for solving forced dung equations with integral boundary conditions. Journal of Computational and Applied Mathematics. 2009;233(2):165-172
- [11] Du J, Cui M. Solving the forced dung equation with integral boundary conditions in the reproducing kernel space. International Journal of Computer Mathematics. 2010;87(9): 2088-2100
- [12] Lv X, Cui M. An efficient computational method for linear fth-order two-point boundary value problems. Journal of Computational and Applied Mathematics. 2010;234(5):1551-1558
- [13] Jiang W, Cui M. Constructive proof for existence of nonlinear two-point boundary value problems. Applied Mathematics and Computation. 2009;215(5):1937-1948
- [14] Du J, Cui M. Constructive proof of existence for a class of fourth-order nonlinear BVPs. Computers Mathematics with Applications. 2010;59(2):903-911
- [15] Cui M, Du H. Representation of exact solution for the nonlinear Volterra-Fredholm integral equations. Applied Mathematics and Computation. 2006;182(2):1795-1802
- [16] Wu B, Li X. Iterative reproducing kernel method for nonlinear oscillator with discontinuity. Applied Mathematics Letters. 2010;23(10):1301-1304
- [17] Jiang W, Lin Y. Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Communications in Nonlinear Science and Numerical Simulation. 2011;16(9):3639-3645
- [18] Geng F, Cui M. A reproducing kernel method for solving nonlocal fractional boundary value problems. Applied Mathematics Letters. 2012;25(5):818-823
- [19] Lin Y, Cui M. A numerical solution to nonlinear multi-point boundary value problems in the reproducing kernel space. Mathematical Methods in the Applied Sciences. 2011;34(1): 44-47
- [20] Geng FZ. A numerical algorithm for nonlinear multi-point boundary value problems. Journal of Computational and Applied Mathematics. 2012;236(7):1789-1794

- [21] Mohammadi M, Mokhtari R. Solving the generalized regularized long wave equation on the basis of a reproducing kernel space. Journal of Computational and Applied Mathematics. 2011;235(14):4003-4014
- [22] Wu BY, Li XY, A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method. Applied Mathematics Letters. 2011;24(2):156-159
- [23] Surhone LM, Tennoe MT, Henssonow SF. Reproducing Kernel Hilbert Space. Berlin, Germany: Betascript Publishing; 2010

