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Abstract

In this chapter, we obtain some reproducing kernel spaces. We obtain reproducing kernel
functions in these spaces. These reproducing kernel functions are very important for
solving ordinary and partial differential equations.

Keywords: reproducing kernel functions, reproducing kernel spaces, ordinary and partial
differential equations

1. Introduction

Reproducing kernel spaces are special Hilbert spaces. These spaces satistfy the reproducing
property. There is an important relation between the order of the problems and the
reproducing kernel spaces.

2. Reproducing kernel spaces

In this section, we define some useful reproducing kernel functions [1-23].

Definition 2.1 (reproducing kernel). Let E be a nonempty set. A function K: EXE — C is
called a reproducing kernel of the Hilbert space H if and only if

a. K(.,t)eHforallteE,
b. (p,K(-,t)) =¢(t) forallt€E and all p € H.

The last condition is called the reproducing property as the value of the function ¢ at the point
t is reproduced by the inner product of ¢ with K(, ).
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Then, we need some notation that we use in the development of this chapter. Next, we define
several spaces with inner product over those spaces. Thus, the space defined as

Ww3[0,1] = {v]v, v',v"" : [0,1] — R areabsolutely continuous, v € L2[0, 1]} (1)
is a Hilbert space. The inner product and the norm in W3[0, 1] are defined by

2
(0.9)wy = > 07 (0)g7(0) + j 0% (1)g® (x)dx, v geW3[0,1],
i=0 0 (2)

ol = \/(v.0)ws,  vEW3[0,1],

respectively. Thus, the space W3[0,1] is a reproducing kernel space, that is, for each fixed
y€[0,1] and any v€ W3[0, 1], there exists a function R, such that

v(y) = (0(0), Ry (x)) s 3)

and similarly, we define the space
vlo, o, V" [0,1] — R areabsolutely continuous,
T300,1] = (4)
v €L?0,1],v(0) =0,7/(0) =0

The inner product and the norm in T3[0, 1] are defined by

2 1

(0.9)5 = >0 (0)g" (0) + j J"(Hg"(Hdt, v geT30,1]
i=0 0 5)

||v||T; =, /(v,v>Tg, veTg[O,l],

respectively. The space T5[0,1] is a reproducing kernel Hilbert space, and its reproducing
kernel function r; is given by [1] as

iszt2+11—2szt3—ist4+11%t5, t<s,
. ©)
iszt2+11—253t2—21—4ts4+1;—055, t>s,
and the space
G3[0,1] = {v[v : [0,1] — R isabsolutely continuous, v (x) € L*[0,1] }, @)

is a Hilbert space, where the inner product and the norm in G3[0, 1] are defined by
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1

(0.9); = 9"(0)g(0) + | v(gx)x, vg€CH0.1,
: ®)

Iollg = /(0,00 v€G,[0,1],

respectively. The space G,[0,1] is a reproducing kernel space, and its reproducing kernel
function Q, is given by [1] as

Qf:{1+L (Y ©)

1+y, x>uy.

Theorem 1.1. The space W3[0, 1] is a complete reproducing kernel space whose reproducing kernel Ry

is given by
6
> alyx!, xs<y,
i=1
Ry(x) =14 " (10)
Zdi(y)xl_l, x>,
i—1
where
2 2
_ _ _y _y _ 1 _ 1
Cl(y)_lf C2<y) _y’ C3(y)_ 4’ C4(y)_12/ 5(]/) - 24]// C6(y)_120/
y -y vy
di(y)=1+155 @) =5ty dy)="p+5 dily) =ds(y) = ds(y) = 0.
Proof. Since
2 1
(0,Ry) s = > o (0)R(0) + L v (@)RPY (x)dx, (v, R, €W30,1] (11)
i=0

through iterative integrations by parts for (11), we have

(12)
2 1
+3 (=D)FNDRED (1) + J o(x)R}® (x)dx
i=0 0
Note, the property of the reproducing kernel as
<v(x),Ry(x)>Wg =ov(y). (13)

If
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Ry(0) — R (0) =0,
@ (0) =
R’y(O) +R;7(0) =0,
Ry (0) = R, (0) =0,
. (14)
R;’(1) =0,
(1) =
R,7(1) =0,
G)(1) =
R,’(1) =0,
Then by (11), we obtain
6) (%) = _
RO (x) = o(x — y), (15)
when x # v,
R (x) =0, (16)
therefore,
6
Sanl, vy,
i=1
Ry(x)=4 " a7)
Zdi(y)x’ Lox>y,
i=1
Since
6) (x) = _
Ry (x) = 6(x —y), (18)
we have

aka (y) = akRyf (y), k=0,1,2,3.4,

(19)
PRy (y) ~ PRy (y) = 1.

From (14) and (19), the unknown coefficients c;(y) and d;(y) (i =1,2,...,6) can be obtained.
Thus, R, is given by

— i - - <
1+yx+-yx t oy yxXt+ e X, XSy

1 1 1 1
1 122 L 32 L 4
+yx+4yx +12yx 24xy +

L 5
1207 x> .
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Now, we note that the space given in [1] as

4

v(x, t)|%,is completely continuousin Q = [0,1] x [0, 1],
W(Q) = (21)
% 0v(x,0)
——eL*(Q = =
S0P © (Q), v(x,0) =0, 5 0

is a binary reproducing kernel Hilbert space. The inner product and the norm in W(Q) are
defined by

2 63 o 63 ai
(v(x,1),g ZJ [aﬁal t)ﬁag(o,t)]dt
+i iv(x 0) i (x,0)
:0 at] Y 7at] g 9 ,
J W (22)

63 63 3 63
i Jo Jo [@@v(x’ f) @@9(9@ t)] dxdt,
”v”w - <U, U>W’ UEW(Q),

respectively.

Theorem 1.2. The W(Q) is a reproducing kernel space, and its reproducing kernel function is

K(y,s) = Ryrs (23)

such that for any ve W(Q),

o(y,s) = (v(x,£), Kiye) (2, £))

(24)
K(y,s) (x, t) = K(x,t) (y, s).

Similarly, the space

v

W(Q) = {v(x, H)|v(x, t) is completely continuousin € = [0,1] x [0,1],a 5

el*(Q) } (25)

is a binary reproducing kernel Hilbert space. The inner product and the norm in W(Q) are defined by
[1] as
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1ra 0
<U(x7t)’g(x7 t)>/v\\/ :J &U(Ov t)&g(ovt)] dt—" <U(x70)7g(x70)>W%

111y d . N
+ L Jo [&av(x, t)&ag(x, t)} dxdt,

ol = /00l vEW(Q),

respectively. W(Q)isa reproducing kernel space, and its reproducing kernel function G, ;) is
Gys) = QyQs- 27)

Definition 1.3.

u(x)|u(x), u'(x), u” (x), areabsolutely continuousin [0, 1]
W3[0,1] =
u®(x)eL?0,1], x€(0,1], u(0) = 0, u(1) = 0.
The inner product and the norm in W3[0, 1] are defined, respectively, by
1

(u(x), g(x))ws = 22: u(0)g"(0) + J u® (x)g® (x)dx, u(x), g(x) e W30,1]
i=0 0

and

g = /4t )z, 0 € W0, 1],

The space W3[0,1] is a reproducing kernel space, that is, for each fixed y€[0,1] and any
u(x) € W3[0, 1], there exists a function Ry (x) such that

Definition 1.4.

u(x)|u(x), is absolutely continuousin [0, 1]
W3(0,1) =
u'(x)€L?[0,1],x€(0,1],

The inner product and the norm in W3[0, 1] are defined, respectively, by



Reproducing Kernel Functions
http://dx.doi.org/10.5772/intechopen.75206

((x), g(x))yr = u(0)g(0) + j ' () (x)d, u(x), glx) W3[0, 1, (28)

and

lullws = \/(u)ys,  w€W5[0,1]. (29)

The space W3[0, 1] is a reproducing kernel space, and its reproducing kernel function T, (y) is
given by

14+x, x<y,
T = 30
() {1+y, x>y. (30)

Theorem 1.5. The space W3[0, 1] is a complete reproducing kernel space, and its reproducing kernel
function R,/(x) can be denoted by

Ry(x): 6
Zdl-(y)xl’l, x>y,
=1
where
ca(y) =0,
5 1 . 5, 5, 3
W) =51gY ~15g¥ ~26¥ ~78¥ T3V
i) = D L, 2 5 5
W) =522 ~ea? T10aY 3127 " 26
) S LT a5 a5
W) = 15729 ~ 1572 T i0aY " oaeY ~78Y
os(y) = — SRRV S VR SR . B
s\Y) = 3744_1/ 37443/ 624y 18727 " 104Y
VEZ NN 1 1 5 1

W) =10t 742~ 18720Y " eaa¥ " 182Y 156V

1
dl(y):my,

vy 1 s 5, 55 3
hY)=—102Y “156Y “26Y ~7Y t13¥

54 1502 7 .
W) =52V ~ga¥ T1aY T10aY " Y
5, 1 5 5 , 5
L) =157 18727 "312Y " 3e? ~7aY
ds(y) =~y + =" + TR
sW) = ~57m¥ T3m¥ T 1872y 1567
1 1 1

- - A - 5 - - .3
() = ~15Y * 573" ~Tm0? " eaa? 1Y
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Proof. We have

2
(u(x), Ry (x) )yys = ;u(i) (0)R}(0)

+ f3 u®(x)RP (x)dx.

(31)

Through several integrations by parts for (31), we have
2

(u(x), Ry(x)>wg \ Zu(i) (0) [Ry) (0) — (—1)(2—i)R§5—i) (O)]

i=0
2

+_ (D) MRE(1)
i=0

- fol u(x)R§6) (x)dx.

(32)

Note that property of the reproducing kernel
(u(x), Ry (1)) = u(y),

If

(33)

then by (31), we have the following equation:

—RY (x) = 6(x —y),

y
when x # y,
R®(x) =0,
therefore,
(6
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Since
R (x) = 8(x — y),
we have
IRy (y) =R, (y), k=0,1,2,3,4,
and

ORy+ (y) = ORy-(y) = —1.

Since R, (x) € W3[0,1], it follows that

R,(0) = 0, R,(1) =0,

(34)

(35)

(36)

From (33)—(36), the unknown coefficients ¢;(y) and d;(y) (i = 1,2, ...,6) can be obtained. Thus

R (x) is given by

5 4 1 5

567 156 26 Y Y etV “em Y tiat Y
5 05 5o, 5 54 1 557 5, 5 55 5 4
“325Y ~ 265V g7 <y 18727 Y 104 936 <y 78° Y

5 4.4 1 4.5 542 5 4.3 1

1 1 5 2 5.3
_— _ <
R, (x) = ~ 18720 Y 6247 18727 ¥ A=Y
' 5 a4 1.5 5 5 5 5.8 5 54 1 55 21,
5167 156y 26 78y 13%Y Teoa¥ Y T ea¥ T10atY
5 5 2, 5 3,5 7 2 3
BN +1872y ~ 157V tigaV * ~ozeX ¥ ~7gh*
> Ayt —— e+ y“+—y 1yx— — P+ =X’
T 3744 s7aa? * T 1872Y T 104 156 3744
L — L x X >
\ ~ 18720 Xy 624y 1872y Y
([ v(0)|o(x), V' (x), 0" (x), 0" (x) )
W3[0,1] = { areabsolutely continuousin [0, 1],

\ o™ (x)eL?0,1],x€[0,1] )

The inner product and the norm in W3[0, 1] are defined, respectively, by

Ta7a Y TtV et Y gt Y T 10" Y- 156 Yt * Y

(37)
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[Wllws = /(0,00 ©EW;[0,1].

The space W30, 1] is a reproducing kernel space, that is, for each fixed.

y€[0,1] and any v(x) € W5[0,1], there exists a function R, (x) such that

o(y) = (0(x), Ry(3)) s (39)
Similarly, we define the space
' o(Ble(t), (1) \
) are absolutely continuousin [0, T,
W3[0, T] = (40)

v (t) e L?[0, T], t€ 0, T}, v(0) =0

\

The inner product and the norm in W30, T] are defined, respectively, by

(1), gO)wz = Y 0"(0)g""(0) +J o' (tg" (tdt,  o(t), g(t) W30, T],
= 0 (41)

Iollw, = 1/(v,0)wz, ©€W3[0,T].

Thus, the space W3[0, T] is also a reproducing kernel space, and its reproducing kernel function
t5(f) can be given by

S 1
st+—-£ -2 t<s,

ry=9  F 0 (42)
o2 13
st + 25 65 , t>s,
and the space
v(x)lo(x), V' (x) )

are absolutely continuousin [0, 1],

W3[0,1] = (43)

v"(x) €L?[0,1],x€[0,1]
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where the inner product and the norm in W30, 1] are defined, respectively, by

1 T
(0(£), 9(B) w2 =Zv<f><o>g<"><o>+j o' (Hg" (Hdt, (b, g(t) e W3[0,1],
= 0 (44)
Ivllw, = /(v 0)wz, vEW3[0,1].

The space W3[0, 1] is a reproducing kernel space, and its reproducing kernel function Q,(x) is

given by

1
1 +xy+%x2 —-x3, x<y,

Qy(x) = : f (45)
T4+xy+=1v>—=y°, x>y.

Similarly, the space W, 0, T is defined by

v(f)|o(t) isabsolutely continuousin [0, T},
W3[0, T] = (46)
o(t) €0, T), t€[0, T]

The inner product and the norm in W3[0, T] are defined, respectively, by

(0(1), 9(£)wy = 0(0)g(0) + Jy ©'(Hg ()AL, o(t), g(t) e W3[0, T,

ol = /(@ 0)w1,  0€W;[0,T].

The space W3[0, T] is a reproducing kernel space, and its reproducing kernel function g, (t) is

(47)

given by

1+t <5
t) = 48
9 (1) {1+s, t>s. (48)

Further, we define the space W(Q) as

( t)lﬁ is completely contin |
v(x, t)|5 35, is completely continuous,
W(Q) = inQ) = [0,1] x [0, T}, (49)
v 2
W eL (Q), U(x, 0) =0

and the inner product and the norm in W(Q) are defined, respectively, by
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o o
= —_— d
<?J(x, t)vg(xut»w JO latz axl (Ovt) Btz axlg(oat)] t

<% (x.0), & gl o>> 4
4%

2

T 1 64 62 64 62
S 0 ) 55 g(x, £) | dxdt,
+Jo Jo [bx‘latzv(x’ )6x4atzg(x’ )] x

M- -

+
I

j

lollw = 1/ {v,0)y, ©vEW(Q).

Now, we have the following theorem:

(50)

Theorem 1.6. The space W5[0,1] is a complete reproducing kernel space, and its reproducing kernel

function R,/(x) can be denoted by

Ry(x) = g
S, x>y,
=1
where
1 2
ay) =1 ) =y, c3(y) = 4v%
1, 1 1
cs(y) Y 5(Y) Taa? 6(y) 24Oy p
1 1
7Y) = 750Y: () = ~ 5500
1 1
1, 1 1 1
ds(y) =0, ds(y) =0, d7(y) =0, dg(y) =0
Proof. Since
3 ) 1
(00): Ry () s = D0 OR(0) + | (R (1),
=0

through iterative integrations by parts for (53), we have

(51)

(52)

(53)
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(54)

Note that property of the reproducing kernel

(0(2), Ry (1)) s = 0(). (55)

If

~

~

~

(56)

~

~

Il
©C O 0O o0 o0 o0 o o

~

~

R® (x) = 6(x — y), (57)

when x # y,

R®)(x) = 0; (58)

therefore,

Ry(x) = (59)

Since
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R (x) = 6(x —y), (60)

we have
IR, (y) =R, (y), k=0,1,2,3,4,5,6, (61)
Ry (y) =Ry (y) = 1. (62)

From (56)—(62), the unknown coefficients c;(y) ve d;(y)(i =1,2,...,8) can be obtained. Thus,
R, (x) is given by

1 1 1
1 L1292 L33 1 34
+yx+4yx +—yx +144yx

36
——y2x5+—yx6—ix7 x<y
240 720 5040 7 7
Ry(x) = . . . (63)
1 L1292 1 33 1 34
+xy+4xy +36xy +144xy

240 720 50407 7 '
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