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Abstract

Various differentiable models are frequently used to describe the dynamics of complex
systems (see the kinetic models, fluid models, etc.). Given the complexity of all the
physical phenomena involved in the dynamics of such systems, it is required to introduce
the dynamic variable dependencies both on the space-time coordinates and on the scale
resolutions. Therefore, in this case an adequate theoretical approach may be the use of
non-linear physical models either in the form of the Scale Relativity Theory or of the
Extended Scale Relativity Theory, i.e., the Scale Relativity Theory with an arbitrary con-
stant fractal dimension. In the framework of the Extended Scale Relativity Theory, fractal
velocity field is described both by topological solitons of kink type and by non-topological
soliton varieties of breather type. Applications for the blood flow are proposed. The
results revealed the directional flow toward the walls, which can explain the thickening
effect which is one of the source of arteriosclerosis.

Keywords: complex system, fractal, non-linear, bio-structure, non-differentiable

1. Introduction

Bio-structure is a complex non-Newtonian fluid made of: plasma and formed cells, cholesterol

vesicles and other suspended elements [1]; thus, the laws of fractal physics are completely

applicable to sanguine circulation. For conformity, the perfect Newtonian fluid is a fluid in

which viscosity is independent of the shear stress, thus having no relation to the sanguine

fluid.
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However, not only the complex structure of bio-structure justifies the using of fractality, but

also the complex structure of the arterial system, with its multiple ramifications, which gener-

ate turbulence areas and interruptions of the linear flowing that make classical physics not

applicable in this context. We can thus discuss about multi-fractality: a morphological one due

to complex structure of the arterial tree as well as a functional one due to bio-structure flow

“regimes” [2]. Also, the stress of a visco-elastic fluid, unlike the Newtonian fluid, depends not

only on the actually stress applied but on the one applied during previous deformation of the

fluid [3, 4].

Standard theoretical models usually used in complex fluid dynamics and particularly that of

flow through bio-structure vessels are ambiguous [5]. The assessment that the entities

contained by bio-structure move along continuous and differentiable courses proves to be

false, as it cannot comprise the entire variety of dynamics that are induced by the flowing of

bio-structure through the vessel system (from the separation of bio-structure components

through turbulence regimes to bio-structure-bio-structure vessel interactions).

In this context, we propose a new hypothesis according to which bio-structure structural

unit move on continuous but non-differentiable curves (and particularly on fractal curves).

We cannot predict the entirety of the bio-structure-vessel system, bio-structure-organic tis-

sues, etc., or at elementary level, bio-structure entity-bio-structure structural unit (i.e., lym-

phocyte – granulocyte, lymphocyte – platelet and others) interactions. This is why accepting

the above stated hypothesis comes up as a simple, elegant and efficient solution, the impos-

sibility of predicting all these interactions that take place being substituted by the use of

fractality [6].

We are led to the dynamics of a special type of fluid, free of interactions, in which the stream

lines are continuous and non-differentiable curves.

Multiple physical models have been developed in the attempt to explain the dynamics of

bio-structure flow and its physiological and pathological changes on the course of the entire

arterial trunk, starting from the big elastic arteries and continuing with the small arteries

and arterioles – resistance vessels -, following with the bio-structure capillaries (with arter-

ial and venous components) and, backwards, with the post capillary veins, then with the

middle and large veins – capacitance vessels – ensuring the anti-gravitational mobilization of

bio-structure.

Thus, the hypothesis of the geometric risk factor in the development of the circulatory system’s

suffering has been proposed. This initially promising theory [7] proved its drawbacks that

derive from a non-differentiable, Euclidean approach to the dynamics of bio-structure flow

and its effects on the vessels’ wall. The proposed counterbalance is represented by fractal

physics laws [4, 8] that offer a great amount of freedom due to accepting the relativity of the

complex fluids’ behavior (bio-structure belongs to this category).

Correspondingly, the theoretical models that describe the complex fluids’ dynamics are sophis-

ticated [4, 8]. However, these models can be simplified since the complexity of the interaction

process imposes various temporal resolution scales. Also, one should take into account the fact

that the pattern evolution imposes different freedom degrees [3, 28].
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One could develop new theoretical models assuming the fact that the complex fluids

displaying chaotic behavior are recognized to acquire self-similarity in association with strong

fluctuations at all possible space-time scales [4, 9]. One can replace the deterministic trajecto-

ries by collections of potential trajectories for temporal scales which are large with respect to

the inverse of the highest Lyapunov exponent (see, e.g., [10, 11]). Also, the concept of definite

positions can be replaced by that of probability density. An interesting example is represented

by that of collisions processes in complex system, where the dynamics of the particles can be

described by fractal (non-differentiable) curves.

Since fractality (non-differentiability) is a universal property of complex fluids, one should

build a fractal (non-differentiable) physics. In this context, replacing the complexity of the

interactions processes by non-differentiability, it is not necessary anymore to use the classical

“arsenal” of quantities from the differentiable physics. This was developed in the Scale Rela-

tivity Theory (SRT) [12, 13] and in the non-standard Scale Relativity Theory (NSRT), i.e., Scale

Relativity Theory with arbitrary constant fractal dimension [14]. In the framework of SRT or

NSRT let us suppose that the complex system structural unit motions take place on continuous

but non-differentiable curves (called fractal curves). In this way, all physical phenomena that

are involved in the dynamics depend on the space-time coordinates and also on the space-time

scales resolution. In this context, the physical quantities describing the complex systems

dynamics could be considered to be fractal functions [13, 14]. Additionally, the complex system

entities could be reduced to and identified with their own trajectories. In this way, the complex

system behaves as a special interaction-less “fluid” by means of its geodesics in a non-

differentiable (fractal) space.

In the present chapter, various bio-structure flow dynamics are analyzed aiming to propose

new mechanisms for the genesis and evolution of different bio-structure-related pathologies

(arterial occlusion, cholesterol deposition, etc.).

2. Material and method

Assuming that the motions of bio-structure’s structural units take place on continuous but

non-differentiable curves (fractal curves), the following consequences emerge [13, 14]:

(i) Any continuous but non-differentiable curve of bio-structure’s structural units (bio-

structure fractal curve) is scale resolution δt dependent. This means that when δt tends to

zero, its length tends to infinity.

Let us recall that a curve is non-differentiable if it satisfies the Lebesgue theorem [9]. This

means that when the scale resolution goes to zero, its length becomes infinite. In consequence,

in this limit, a curve has a zigzag form and consequently it has the property of self-similarity in

every one of its points. Since every part reflects the whole, this can be translated into a

holography property [9];

(ii) The physics of bio-structure phenomena are related to the behavior of a set of functions

during the zoom operation of the resolution scale δt. Through the substitution principle, δt
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can be identified with dt, that is, δt � dt. Consequently, it will play the role of an indepen-

dent variable. We shall use the notation dt for the usual time as in the Hamiltonian bio-

structure dynamics;

(iii) The dynamics of bio-structure’s structural units are described by means of fractal vari-

ables. Since the differential time reflection invariance of any dynamical variable is broken,

these functions depend on the space-time coordinates and also on the resolution scale. In

consequence, one can define two derivatives of the variable fieldQ t; dtð Þ at any point of the

bio-structure fractal curve:

dþQ t; dtð Þ

dt
¼ lim

Δt!0þ

Q tþ Δt;Δtð Þ �Q t;Δtð Þ

Δt

d�Q t; dtð Þ

dt
¼ lim

Δt!0�

Q t;Δtð Þ �Q t� Δt;Δtð Þ

Δt

(1)

The “+” sign corresponds to forward processes of bio-structure’s structural units, while the

“�” sign correspond to the backwards ones;

(iv) The differential of the spatial coordinate field dXi t; dtð Þ by means of which we can describe

the bio-structure dynamics, is expressed as the sum of the two differentials, one of them

being scale resolution independent (differential part d�x
i tð Þ and the other one being scale

resolution dependent (fractal part dþζ
i tð ÞÞ i.e.,

d�X
i tð Þ ¼ d�x

i tð Þ þ d�ζ
i tð Þ (2)

(v) The non-differentiable part of the spatial coordinate field, by means of which we can

describe the bio-structure dynamics, satisfies the fractal equation [14]:

d�ζ
i t; dtð Þ ¼ λi

� dtð Þ1=DF (3)

where λ
i
� are constant coefficients that help to specify the fractalization type which describes

the bio-structure dynamics. Also, DF defines the fractal dimension of the bio-structure non-

differentiable curve.

In this way, the bio-structure processes imply dynamics on geodesics having different fractal

dimensions. This variety of fractal dimensions of the bio-structure geodesics is a result of the

bio-structure’s structure. For DF ¼ 2, quantum type processes are generated in bio-structure

dynamics [15]. For DF < 2, correlative type processes are induced and for DF > 2 non-

correlative type processes are generated [6, 12, 13].

(vi) The differential time reflection invariance of any dynamical variable of the bio-structure is

recovered by combining the derivatives dþ=dt and d�=dt in the non-differentiable operator

bddt ¼ 1

2

dþ þ d�

dt

� �
�

i

2

dþ � d�

dt

� �
(4)

This is a natural result of the complex prolongation procedure applied to bio-structure dynam-

ics [14, 16]. Applying now the non-differentiable operator to the spatial coordinate field, by
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means of which we can describe the bio-structure dynamics, yields the complex velocity field

of the bio-structure.

bV
i ¼

bdXi

dt
¼ V i � iUi, i ¼

ffiffiffiffiffiffiffi
�1

p
(5)

with

V i ¼ 1

2

dþX
i þ d�X

i

dt
, Ui ¼ 1

2

dþX
i � d�X

i

dt
(6)

The real part V i of the bio-structure complex velocity field is differentiable and scale resolution

independent (differentiable velocity field). The imaginary part Ui is non-differentiable and

scale resolution dependent (fractal velocity field).

(vii) If we have no external constraint, one can find an infinite number of fractal curves (geo-

desics) relating any pair of points. This happens on all scales of bio-structure dynamics.

Then, in the fractal space of the bio-structure, all the structural units are substituted with the

geodesics themselves so that any external constraint can be interpreted as a selection of bio-

structure geodesics. The infinity of geodesics in the bundle, their non-differentiability and

the two values of the derivative imply a generalized statistical fluid-like description of the

bio-structure dynamics. Then, the average values of the bio-structure variables must be

considered in the previously mentioned sense, so the average of d�X
i is

d�X
i

� �
� d�x

i (7)

with

d�ζ
i

� �
¼ 0 (8)

The previous relation (8) implies that the average of the fractal fluctuations is null.

(viii) One can describe the bio-structure dynamics by means of a scale covariant derivative. Its

explicit form can be obtained as follows. We assume that the bio-structure fractal curves

are immersed in a 3-dimensional space. We also suppose that Xi is the spatial coordinate

field of a point on this fractal curve. Let us also consider a variable field Q Xi
; t

� �
and the

following Taylor expansion up to the second order

d�Q Xi
; t

� �
¼ ∂tQdtþ ∂iQd�X

i þ 1

2
∂l∂kQd�X

ld�X
k (9)

These relations are valid at any point and more for the points Xi on the bio-structure fractal

curve which we have selected in Eq. (9). From here, forward and backward average values for

bio-structure variables from Eq. (9) become

d�Qh i ¼ ∂tQdth i þ ∂iQd�X
i

� �
þ 1

2
< ∂l∂kQd�X

ld�X
k
> (10)
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We suppose that the average values of the all variable field Q and its derivatives coincide with

themselves and the differentials d�X
i and dt are independent. Therefore, the average of their

products coincides with the product of averages. Consequently, Eq. (10) becomes

d�Q ¼ ∂tQdtþ ∂iQ < d�X
i
> þ

1

2
∂l∂kQ d�X

ld�X
k

� �
(11)

Even the average value of d�ζ
i is null, for the higher order of d�ζ

i the situation can still be

different. Let us focus on the averages d�ζ
ld�ζ

k
� �

. Using Eq. (3) we can write

d�ζ
ld�ζ

k
� �

¼ �λl
�λ

k
� dtð Þ

2
DF

	 

�1
dt (12)

where the sign + corresponds to dt > 0 and the sign – corresponds to dt < 0.

Then, Eq. (11) takes the form:

d�Q ¼ ∂tQdtþ ∂iQ < d�X
i
> þ

1

2
∂l∂kQd�x

ld�x
k �

1

2
∂l∂kQ λl

�λ
k
� dtð Þ

2
DF

	 

�1
dt

" #

(13)

If we divide by dt and neglect the terms that contain differential factors (for details, see the

method from [13, 14]) we obtain:

d�Q

dt
¼ ∂tQþ νi�∂iQ�

1

2
λl
�λ

k
� dtð Þ

2
DF

	 

�1
∂l∂kQ (14)

where νiþ ¼ dþx
i

dt
, νi� ¼ d�x

i

dt
.

These relations also allow us to define the operators

d�

dt
¼ ∂t þ νi�∂i �

1

2
λl
�λ

k
� dtð Þ

2
DF

	 

�1
∂l∂k (15)

Using Eqs. (4), (5), and (15), let us calculate the differentiable operator

bdQ
dt

¼ ∂tQþ bV
i
∂iQþ

1

4
dtð Þ

2
DF

	 

�1
Dlk

∂l∂kQ (16)

where

Dlk ¼ dlk � id
lk

dlk ¼ λl
þλ

k
þ � λl

�λ
k
�, d

lk
¼ λl

þλ
k
þ þ λl

�λ
k
�

(17)

Eq. (16) also allows us to define the covariant derivative in the bio-structure dynamics
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bd
dt

¼ ∂t þ bV
i

∂i þ
1

4
dtð Þ

2
DF

	 

�1
D

lk
∂l∂k (18)

Let us now consider the principle of scale covariance (the physics laws – bio-structure dynam-

ics specific – are invariant with respect to scale transformations) and postulate that the passage

from the classical (differentiable) physics to the fractal (non-differentiable) physics can

be implemented by replacing the standard time derivative d=dt by the non-differentiable

operator bd=dt. In this way, this operator has the role of a scale covariant derivative. More

precisely, it is used to write the bio-structure dynamics fundamental equations in the same

form as in the classic (differentiable) case. In these conditions, applying the operator (18) to the

complex velocity field (5), with no external constraint, the bio-structure geodesics take the

form:

bdbV
i

dt
¼ ∂t

bV
i

þ bV
l

∂l
bV
i

þ
1

4
dtð Þ

2
DF

	 

�1
D

lk
∂l∂k

bV
i

¼ 0 (19)

This means that the local acceleration ∂t
bV
i

, the convection bV
l

∂l
bV

i

and the dissipation D
lk
∂l∂k

bV
i

,

make their balance at any point of the bio-structure fractal curve. Moreover, the presence of the

complex coefficient of viscosity-type 4�1
dtð Þ

2
DF

	 

�1
D

lk in the bio-structures dynamics specifies

that it is a rheological medium. So, it has memory, as a datum, by its own structure.

If the fractalization is achieved by Markov type stochastic processes, which involve Lévy type

movements [9, 13, 17] of the bio-structure structural units, then:

λ
i

þλ
l

þ ¼ λ
i

�λ
l

� ¼ 2λδil (20)

where δil is the Kronecker’s pseudo-tensor.

Under these conditions, the equation of bio-structure geodesics takes the simple form

bdbV
i

dt
¼ ∂t

bV
i

þ bV
l

∂l
bV
i

� iλ dtð Þ
2
DF

	 

�1
D

lk
∂l∂k

bV
i

¼ 0 (21)

or more, by separating the motions on differential and fractal scale resolutions,

bdV i

D

dt
¼ ∂tV

i

D
þ V

l

D
∂lV

i

D
� V

l

F
þ λ dtð Þ

2
DF

	 

�1
∂
l

" #

∂lV
i

F
¼ 0

bdV i

F

dt
¼ ∂tV

i

F
þ V

l

D
∂lV

i

F
þ V

l

F
þ λ dtð Þ

2
DF

	 

�1
∂
l

" #

∂lV
i

D
¼ 0

(22)

Using the standard procedure from [18], the bio-structure dynamics at fractal scale resolution

can be described by means of the following equations:
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∂tV
i
F þ V l

F∂lV
i
F ¼ λ dtð Þ

2
DF

	 


�1
∂
l
∂lV

i
F (23)

∂iV
i
F ¼ 0 (24)

Eq. (23) corresponds to the specific impulse conservation law at fractal scale resolution, while

Eq. (24) corresponds to the states density conservation law at fractal scale resolution (we

consider that the density of the bio-structure at fractal scale resolution is constant – incom-

pressible bio-structure).

Since this equation system is non-linear, one could find relatively difficult finding the solutions

for these equations [19, 20]. However, in the particular case of a stationary flow in a plane

symmetry x; yð Þ, there is an analytical solution of this system. Then, for VF ¼ Vx;Vy; 0
� �

,

Eqs. (23) and (24) take the form:

Vx
∂Vx

∂x
þ Vy

∂Vx

∂x
¼ λ dtð Þ

2
DF

	 


�1 ∂
2Vx

∂y2
(25)

∂Vx

∂x
þ

∂Vy

∂y
¼ 0 (26)

The boundary conditions of the flow are:

lim
y!0

Vy x; yð Þ ¼ 0, lim
y!0

∂Vx

∂y
¼ 0, lim

y!∞
Vx x; yð Þ ¼ 0 (27)

and the flux momentum per length unit is constant

Θ ¼ r

ð

þ∞

�∞

V2
xdy ¼ const: (28)

Using the method from [18–20] for solving Eqs. (25) and (26), with the conditions (27) and (28),

the following solutions result:

Vx ¼

1:5 Θ

6ϱ

	 
2
3

� �

λ dtð Þ
2
DF

	 


�1
x

" #1=3
� sech2 �

0:5y
� �

Θ

6ϱ

	 
1
3

� �

λ dtð Þ
2
DF

	 


�1
x

" #2=3
(29)

Vy ¼

4:5 Θ

6ϱ

	 
2
3

� �

3λ dtð Þ
2
DF

	 


�1
x

" #1=3
�

y Θ

6ϱ

	 
1
3

� �

λ dtð Þ
2
DF

	 


�1
x

" #

2
3

sech2 �

0:5y
� �

Θ

6ϱ

	 
1
3

� �

λ dtð Þ
2
DF

	 


�1
x

" #

2
3

� tanh

0:5y
� �

Θ

6ϱ

	 
1
3

� �

λ dtð Þ
2
DF

	 


�1
x

" #

2
3

2

6

6

6

6

6

6

4

(30)
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Relations (29) and (30) suggest that the bio-structure velocity field is highly non-linear through

topological solitons of kink type (tanh), various non-topological solitons of breather type

(sech2), and through topological – non-topological soliton mixtures of kink-breather type

(sech2-tanh). Given the structural complexity of the bio-structure (which is given by its various

structural units, that retains their own velocity field) an accurate way of writing relations (29)

and (30) will be the one in which we assign indexes for each component.

For y ¼ 0, we obtain in relation (29) the flow critical velocity of the bio-structure in the form

Vx x; y ¼ 0ð Þ ¼ Vc ¼

1:5 Θ

6ϱ

	 
2
3

� �

λ dtð Þ
2
DF

	 


�1
x

" #1=3
(31)

while taking into account (31), relation (28) becomes

Θ ¼ r

ð

þ∞

þ∞

V2
x x; yð Þdy ¼

ð

þdc

�dc

V2
c x; 0ð Þdy, (32)

so that the critical cross section of the strains lines tube of the bio-structure is given by:

dc x; y ¼ 0ð Þ ¼
Θ

2rV2
c

¼ 2:42 λ dtð Þ
2
DF

	 


�1
x

" #

2
3

r

Θ

	 
1=3
(33)

Relations (29) and (30) can be strongly simplified if we introduce the normalized quantities

ζ ¼
x

x0
, η ¼

y

y0
, u ¼

Vx

w0
, v ¼

Vy

w0
,Ω ¼

Θ

6ϱ

	 
2
3

w0 λ dtð Þ
2
DF

	 


�1
x0

" #1=3
,ω ¼

Θ

6ϱ

	 
2
3

y0

λ dtð Þ
2
DF

	 


�1
x0

" #2=3
(34)

where x0, y0, w0 are specific lengths and the specific velocity, respectively, of the laminar flow of

the bio-structure. It results that

u ζ; ηð Þ ¼
1:5Ω

ζ
1
3

sech2 0:5Ωωη

ζ
2
3

 !

, (35)

v ζ; ηð Þ ¼
4:52=3

3
1
3

�
Ω

ζ
1
3

ωη

ζ
2
3

sech2 0:5Ωωη

ζ
2
3

 !

� tanh
0:5Ωωη

ζ
2
3

 !" #

(36)

We present in Figures 1a, b and 2a, b the dependence of the normalized velocity field u on the

normalized spatial coordinates ξ, η for various nonlinearity degrees (ω = 0.3; 6). The results
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Figure 1. The dependence of the normalized velocity field u on the normalized spatial coordinates ξ, η for the non-

linearity degree ω = 0.3: (a) 3D representation; contour plot (b).

Figure 2. The dependence of the normalized velocity field u on the normalized spatial coordinates ξ, η for the non-

linearity degree ω = 6: (a) 3D representation; contour plot (b).
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showcase that the velocity field on the bio-structure flow direction (ξ) is affected in a weak

manner by the nonlinearity degree (the velocity always decreases on the flow axes regardless

of the nonlinearity degree). Also, the bio-structure flow direction (η) is strongly affected. Bio-

structure flow starts from constant values on the η axes and with the increase of ω, preferential

bio-structure flow direction can be identified.

In Figures 3a, b and 4a, b the dependences of the normalized velocity field v on the normalized

spatial coordinates ξ, η for various non-linearity degrees (ω = 0.3; 6) are represented. For small

non-linearity degrees, the variations (increase/decrease) of the velocity field have similar

behaviors on both directions (ξ, η), while for higher values of the non-linearity degree these

variations are only focused on a single direction (ξ).

Taking the above into account, the force that the bio-structure will exercise to the walls of the

flow vessels is of great importance for the understanding of arterial occlusion and other

circulatory system diseases.

Figure 3. The 3D representation (a) and the contour plot (b) of the normalized velocity field v on the normalized spatial

coordinates ξ, η for the nonlinearity degree ω = 0.3.
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In our case the normalized force is given by the relation:

f ζ; ηð Þ ¼ ∂ηu� ∂ζv

¼ �1:5

Ωsech 2 0:5ωη

ζ
2
3

 !

tanh
0:5ωη

ζ
2
3

 !

ω

ζ
�

1

ζ
1
3

� 0:9Ω �
2

3

ωηsech2 0:5ωη

ζ
2
3

 !

ζ
5
3

þ

0:66ω2η2sech2 0:5ωη

ζ
2
3

 !

tanh
0:5ωη

ζ
2
3

 !

ω

ζ
7
3

0

B

B

B

B

@

0

B

B

B

B

@

þ

0:33 1� tanh2 0:5ωη

ζ
2
3

 ! !

ωη

" #

ζ
5
3

1

C

C

C

C

A

þ

0:3Ω

ωηsech2 0:5ωη

ζ
2
3

 !

ζ
2
3

� tanh
0:5ωη

ζ
2
3

 !

0

B

B

B

B

@

1

C

C

C

C

A

33=2

ζ
4
3

(37)

Figure 4. The 3D representation (a) and the contour plot (b) of the normalized velocity field v on the normalized spatial

coordinates ξ, η for the non-linearity degree ω = 6.
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Figure 5. The dependence of the normalized force field F of a bio-structure flow on the vessels, on the normalized spatial

coordinates ξ, η for two resolution scales: 3D representation (a); contour plot (b) for the non-linearity degree ω = 0.3.

Figure 6. The dependence of the normalized force field F of a bio-structure flow on the vessels, on the normalized spatial

coordinates ξ, η for two resolution scales: 3D representation (a) and contour plot (b), for the non-linearity degree ω = 6.
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In Figures 5a, b and 6a, b the normalized force field evolution on the two-flow direction (ξ, η)

for various non-linear degrees is represented. It results that with the increase of the non-

linearity of the bio-structure the force toward the walls increases.

3. Discussions

The theory proposed in this chapter explains from a fractal viewpoint the atherogenesis

process [21], basically “molding” to the classical anatomical and histopathological descriptions

and completely respecting the process they postulate. In consequence, the fractal physics

model sustains already accumulated morpho-pathological information and research. There

are plenty of electronic and optical microscopy images that describe the spatial-temporal

hologram of the phenomenon; we can thus discuss about the non-fractal – fractal and micro-

scopic – macroscopic translation through holographically reproducible auto-similarity [21]. In

this way, we affirm that fractality is the mathematical and semantic quintessence for defining

atherogenesis, a process that can be physically characterized by fractal physics. This physics

becomes in this situation more of a component rather than an explanation for the complex

biological system represented by the atheroma plaque [22, 23].

In what concerns the recovery of such biological diseases, there are a huge number of techniques.

We recall that external electrical stimulation can cause changes in the bio-structure vessels.

Although atherosclerosis cause vasodilatation in the affected area and bio-structure flow remains

unchanged for an extended period of time, the vascular wall stiffness will increase the pulse

pressure. The purpose of the study developed in [24, 25] was to measure the effects of electrical

stimulation (ES) on bio-structure flow and bio-structure pressure. All subjects received electrical

stimulation at intensity sufficient to produce torque equal to 15% of the predetermined maximal

voluntary contraction of their right quadriceps femor is muscle. The conclusions were that the

increase in bio-structure flow occurred within 5 min after the onset of ES and dropped to resting

levels within 1 min after a 10-min period of ES [25]. Kinesiotherapy or Kinesitherapy or

kinesiatrics, is the therapeutic treatment of disease by passive and active muscular movements

(as by massage) and of exercise [26]. From the physiotherapeutic viewpoint, an efficient treat-

ment is directed toward improving bio-structure flow and also decreasing the disparity between

the demand for bio-structure and its supply [22]. An effective vascular rehabilitation training

program for improving walking efficiency and vascular remodeling in patients with diabetic

atherosclerosis suffering from intermittent claudication could be a supervised treadmill walking

exercise combined with Allen-Burger exercises [23].

4. Conclusions

The present chapter proposes a fractal model for the dynamics analysis of bio-structure

flows. The fractal hydrodynamic equations were obtained and applied for the laminar flow

of bio-structure.
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A second application was proposed for bio-structure flow, and of cholesterol deposition on the

vessel walls. The results revealed the directional flow toward the walls. This could explain in

our opinion the thickening effect which is one of the sources of arteriosclerosis. Moreover, our

model imposes redefinition of “good” and “bad” cholesterol (which are traditionally associ-

ated with HDL and LDL respectively); instead they should be replaced by the following

notions: specific cholesterol entities, associated with a certain non-differentiable curve, that

have a major endothelial impact and specific cholesterol entities which have no or low endo-

thelial impact.

There is currently a great number of works describing matter organization and behavior in all

of its variations, from which we mention [27]. We consider that our bio-structure flow model

could also be used to further development in the study of other complex systems dynamics

(such as pulmonary and metabolic diseases or environmental systems). Moreover, possible

therapeutic treatments can be developed, e.g., new drug release mechanisms.

Conflict of interest

The authors declare no conflict of interest.

Author details

Emil Anton1, Anna Gavrilut2*, Maricel Agop3 and Daniel Timofte4

*Address all correspondence to: gavrilut@uaic.ro

1 Department Obstetrics Gynecology, Gr. T. Popa University of Medicine and Pharmacy, Iasi,

Romania

2 Faculty of Mathematics, Alexandru Ioan Cuza University from Iasi, Romania

3 Department of Physics, Gheorghe Asachi Technical University of Iasi, Romania

4 Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, Iasi, Romania

References

[1] Popescu DM. Hematologie Clinică (in Romanian). Bucharest: Medical Publishing House;

1999

[2] Tesloianu ND. PAD and COPD in Smokers. Iași: Ars Longa; 2014

[3] Badii R, Politi A. Complexity: Hierarchical Structure and Scaling in Physics. Cambridge:

Cambridge University Press; 1997

Non-Linear Behaviours in the Dynamics of Some Biostructures
http://dx.doi.org/10.5772/intechopen.74435

61



[4] Michel OD, Thomas BG. Mathematical Modelling for Complex Fluids and Flows.

NewYork: Springer; 2012

[5] Schwartz SM, Murry CE. Proliferation and the monoclonal origins of atherosclerotic

lesions. Annual Review of Medicine. 1998;49:437-460

[6] Nottale L. Fractals and the quantum theory of space time. International Journal of Mod-

ern Physics A. 1989;4:5047-5117

[7] Friedman MH, Deters OJ, Mark FF, et al. Arterial geometry affects hemodinamics. A

potential risk factor for atherosclerosis. Atherosclerosis. 1983;46:225-231

[8] Thomas YH. Multi-Scale Phenomena in Complex Fluids: Modelling, Analysis and

Numerical Simulations. Singapore: World Scientific Publishing Company; 2009

[9] Mandelbrot BB. The Fractal Geometry of Nature (Updated and Augm. Ed.). New York:

W.H. Freeman; 1983

[10] Cristescu CP. Non-linear Dynamics and Chaos. Theoretical Fundaments and Applica-

tions (in Romanian). Bucharest: Romanian Academy Publishing House; 2008

[11] Federer J, Aharoner A. Fractals in Physics. Amsterdam: North Holland; 1990

[12] Nottale L. Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity.

Singapore: World Scientific; 1995

[13] Nottale L. Fractal Space-Time. A New Approach to Unifying Relativity and Quantum

Mechanics. London: Imperial College Press; 2011

[14] Merches I, Agop M. Differentiability and Fractality in Dynamics of Physical Systems.

Singapore: World Scientific; 2016

[15] El Naschie MS, Rossler OE, Prigogine I. Quantum Mechanics, Diffusion and Chaotic

Fractals. Oxford: Elsevier; 1995

[16] Cresson J. Non-differentiable deformations of ℝ
n. International Journal of Geometric

Methods in Modern Physics. 2006;3:13-95

[17] Gouyet JF. Physique et Structures Fractales. Paris: Masson; 1992

[18] Solovastru L-G, Ghizdovat V, Nedeff V, Lazar G, Eva L, Ochiuz L, Agop M, Popa RF.

Non-linear effects at differentiable-non-differentiable scale transition in complex fluids.

Journal of Computational and Theoretical Nanoscience. 2016;13:1-6

[19] Batchelor GK. An Introduction to Fluid Dynamics. Cambridge: Cambridge University

Press; 2000

[20] Landau LD, Lifshitz EM. Fluid Mechanics. 2nd ed. Oxford: Butterworth Heinemann; 1987

[21] Tesloianu ND, Ghizdovat V, Agop M. Flow Dynamics Via Non-differentiability and

Cardiovascular Diseases. Saarbrücken: Scholar’s Press; 2015

Nonlinear Systems - Modeling, Estimation, and Stability62



[22] Adelaide EC. Atherosclerosis Obliterans. The Australian Journal of Physiotherapy. 1958;

4:19-22

[23] Haas TL, Lloyd PG, Yang H-T, Terjung RL. Exercise training and peripheral arterial

disease. Comprehensive Physiology. 2012;2:2933-3017

[24] Singh RB, Mengi SA, Xu Y-J, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: A

multifactorial process. Experimental and Clinical Cardiology. 2002;7:40-53

[25] Tracy JE, Currier DP, Threlkeld AJ. Comparison of selected pulse frequencies from two

different electrical stimulators on bio-structure flow in healthy subjects. Physical Therapy.

1988;68:1526-1532

[26] Vasileva D, Lubenova D, Mihova M, Dimitrova A, Grigorova-Petrova K. Influence of

Kinesitherapy on Gaitin patients with ischemic stroke in the chronic period. Open Access

Macedonian Journal of Medical Sciences. 2015;3:619-623

[27] Constantin B, Postolache P, Croitoru A, Nemes RM. Occupational bronchial asthma-

clinical and epidemiological aspects. Journal of Environmental Protection and Ecology.

2015;16:517-520

[28] Mitchel M. Complexity: A Guided Tour. Oxford: Oxford University Press; 2009

Non-Linear Behaviours in the Dynamics of Some Biostructures
http://dx.doi.org/10.5772/intechopen.74435

63




