
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

24

An Open Architecture for the Integration
of UAV Civil Applications

E. Pastor, C. Barrado, P. Royo, J. Lopez and E. Santamaria
Dept. Computer Architecture, Technical University of Catalonia (UPC)

Spain

1. Introduction

The current Unmanned Aerial Vehicles (UAVs) technology offers feasible technical solutions
for airframes, flight control, communications, and base stations. In addition, the evolution of
technology is miniaturizing most sensors used in airborne applications. Hence, sensors like
weather radars, SAR, multi spectrum line-scan devices, etc. in addition to visual and
thermal cameras are being used as payload on board UAVs. As a result UAVs are slowly
becoming efficient platforms that can be applied in scientific/commercial remote sensing
applications (see Fig. 1 for the most common subsystems in an UAV).
UAVs may offer interesting benefits in terms of cost, flexibility, endurance, etc. Even remote
sensing in dangerous situations due to extreme climatic conditions (wind, cold, heat) are
now seen as possible because the human factor on board the airborne platform is no longer
present. On the other side, the complexity of developing a full UAV-system tailored for
remote sensing is limiting its practical application. Currently, only large organizations like
NASA or NOAA have enough budget and infrastructure to develop such applications, and
eventually may lease flight time to other organizations to conduct their experiments.
Even though the rapid evolution of UAV technology on airframes, autopilots,
communications and payload, the generalized development of remote sensing applications
is still limited by the absence of systems that support the development of the actual UAV
sensing mission. Remote sensing engineers face the development of specific systems to
control their desired flight-profile, sensor activation/configuration along the flight, data
storage and eventually its transmission to the ground control. All these elements may delay
and increase the risk and cost of the project. If realistic remote sensing applications should
be developed, effective system support must be created to offer flexible and adaptable
platforms for any application that is susceptible to use them.
In order to successfully accomplish this challenge, developers need to pay special attention
to three different concepts: the flight-plan, the payload and the mission itself. The actual
flight-plan of the UAV should be easy to define and flexible enough to adapt to the
necessities of the mission. The payload of the UAV should be selected and controlled
adequately. And finally, the mission should manage the different parts of the UAV
application with little human interaction but with large information feedback. Many
research projects are focused on only one particular application, with specific flight patterns

www.intechopen.com

Aerial Vehicles

512

and fixed payload. These systems present several limitations for their extension to new
missions.
This research introduces a flexible and reusable hardware/software architecture designed to
facilitate the development of UAV-based remote sensing applications. Over a set of
embedded microprocessors (both in the UAV and the ground control station) we build a
distributed embedded system connected by a local area network. Applications are
developed following a service/subscription based software architecture. Each computation
module may support multiple applications. Each application can create and subscribe to
available services. Services can be discovered and consumed in a dynamic way like web
services in the Internet domain. Applications can interchange information transparently
from network topology, application implementation and actual data payload.
This flexibility is organized into a user-parameterizable UAV Service Abstraction Layer
(USAL). The USAL defines a collection of standard services and their interrelations as a
basic starting point for further development by users. Functionalities like enhanced flight-
plans, a mission control engine, data storage, communications management, etc. are offered.
Additional services can be included according to requirements, but all existing services and
inter-service communication infrastructure can be exploited and tailored to specific needs.
This approach reduces development times and risks, but at the same time gives the user
higher levels of flexibility and permits the development of more ambitious applications.

Figure 1. Common elements in a civil UAV system

This chapter is organized as follows. Section 2 generally describes the underlying service
oriented technologies that will be applied to create the USAL. Section 3 overviews the
architecture of the USAL and describes the most relevant services that are included in the
USAL to facilitate the development of UAV applications. Section 4 details the Virtual
Autopilot System (VAS) that permits the USAL architecture to abstract from autopilot details.
Section 5 describes the Flight Plan Manager service that together with its RNAV based
dynamic flight-plans constitute the core of the navigation capabilities inside the USAL.
Finally, Section 6 concludes the chapter and outlines future research and development
directions.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

513

2. System Overview

This section describes the architecture we propose for executing UAV civil missions: a
distributed embedded system that will be on board the aircraft and that will operate as a
payload/mission controller. Over the different distributed elements of the system we will
deploy software components, called services, which will implement the required
functionalities. These services cooperate for the accomplishment of the UAV mission. They
rely on a middleware (Lopez et al. 2007) that manages and communicates the services. The
communication primitives provided by the middleware promote a publish/subscribe model
for sending and receiving data, announcing events and executing commands among
services.

2.1 Distributed Embedded Architecture

The proposed system is built as a set of embedded microprocessors, connected by a Local
Area Network (LAN), in a purely distributed and scalable architecture. This approach is a
simple scheme which offers a number of benefits in our application domain that motivates
its selection.
Development simplicity is the main advantage of this architecture. Inspired in the Internet
applications and protocols, the computational requirements can be organized as services
that are offered to all possible clients connected to the network.
Extreme flexibility is given by the high level of modularity of a LAN architecture. We are
free to select the actual type of processor to be used in each LAN module. Different
processors can be used according to functional requirements, and they can be scaled
according to computational needs of the application. We denominate node to a LAN
module with processing capabilities.
Node interconnection is an additional extra benefit in contrast with the complex
interconnection schemes needed by end-to-end parallel buses. While buses have to be
carefully allocated to fit with the space and weight limitations in a mini/micro UAV, the
addition of new nodes can be hot plugged to the LAN with little effort. The system can use
wake-on-LAN capabilities to switch on/off a node when required, at specific points of the
mission development.

2.2 Service Oriented Approach

Service Oriented Architecture (SOA) is getting common in several domains. For example, Web
Services in the Internet world (W3C, 2004), and Universal Plug and Play (UPnP, 2008) in the
home automation area. The main goal of SOA is to achieve loose coupling among
interacting components. We name the distributed components services. A service is a unit of
work, implemented and offered by a service provider, to achieve desired final results for a
service consumer. Both provider and consumer are roles played by software agents on
behalf of their owners.
The benefits of this architecture are the increment of interoperability, flexibility and
extensibility of the designed system and of their individual services. In the implementation
of a system we want to be able to reuse existing services. SOA facilitates the services reuse,
while trying to minimize their dependencies by using loosely coupled services.
Loose coupling among interacting services is achieved by employing two architectural
constraints. First, services shall define a small set of simple and ubiquitous interfaces,

www.intechopen.com

Aerial Vehicles

514

available to all other participant services, with generic semantics encoded in them. Second,
each interface shall send, on request, descriptive messages explaining its operation and its
capabilities. These messages define the structure and semantics provided by the services.
The SOA constraints are inspired significantly by object oriented programming, which
strongly suggests that you should bind data and its processing together.
In a network centric architecture like SOA, when a service needs some external
functionality, it asks the network for the required service. If the system knows of another
service which has this capability, its reference is provided to the requester. Thus the former
service can act as a client and consume that functionality using the common interface of the
provider service. The result of a service interface invocation is usually the change of state for
the consumer but it can also result on the change of state of the provider or of both services.
The interface of a SOA service must be simple and clear enough to be easy to implement in
different platforms, both hardware and software. The development of services and specially
their communication requires a running base software layer known as middleware.

2.3 Middleware

Middleware-based software systems consist of a network of cooperating components, in our
case the services, which implement the business logic of the application. The middleware is
an integrating software layer that provides an execution environment and implements
common functionalities and communication channels. On top of the middleware, services
are executing. Any service can be a publisher, subscriber, or both simultaneously. This
publish-subscribe model eliminates complex network programming for distributed
applications. The middleware offers the localization of the other services and handles their
discovery. The middleware also handles all the transfer chores: message addressing, data
marshalling and demarshalling (needed for services executing on different hardware
platforms), data delivery, flow control, message retransmissions, etc. The main
functionalities of the middleware are:

• Service management: The middleware is responsible of starting and stopping all the
services. It also monitors their correct operation and notifies the rest of system about
changes in service behaviour.

• Resource management: The middleware also centralizes the management of the shared
resources of each computational node such as memory, processors, input/output
devices, etc.

• Name management: The services are addressed by name, and the middleware discovers
the real location in the network of the named service. This feature abstracts the service
programmer from knowing where the service resides.

• Communication management: The services do not access the network directly. All their
communication is carried by the middleware. The middleware abstracts the network
access, allowing the services to be deployed in different nodes.

Fig. 2 shows the proposed UAV distributed architecture. Services, like the Video Camera or
the Storage Module, are independent components executing on a same node located on the
aircraft. Also on board, there is another node where the Mission Control service executes.
Both nodes are boards plugged to the LAN of the aircraft. The mission has also some
services executing on ground. The figure also shows two of them: the Ground Station
service and a redundant Storage Module.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

515

Each node of the UAV distributed architecture executes also a copy of the Service Container
software (see Fig. 2). The set of all Service Containers compose the middleware which
provides the four functionalities described above to the application services. This includes
acting as the communication bridge between the aircraft and the ground. The middleware
monitors the different communication links and chooses the best link to send information to
ground or to air. From the service point of view the middleware builds a global LAN
network that connects the LAN on ground and the LAN on board.

Figure 2. Overview of the architecture implementing the underlying middleware

2.4 Communication Primitives

For the specific characteristics of a UAV mission, which may have lots of services interacting
many-to-many, we propose four communication primitives based in the Data Distribution
Services paradigm. It promotes a publish/subscribe model for sending and receiving data,
events and commands among the services. Services that are producing valuable data
publish that information while other services may subscribe them. The middleware takes
care of delivering the information to all subscribers that declare an interest in that topic.
Many frameworks have been already developed using this paradigm, each one contributing
with new primitives for such open communication scenario. In our proposal we implement
only a minimalistic distributed communication system in order to keep it simple and soft
real-time compliant. Next, we describe the proposed communication primitives, which have
been named as Variables, Events, Remote Invocations and File Transmissions.
Variables are the transmission of structured, and generally short, information from a service
to one or more services of the distributed system. A Variable may be sent at regular intervals
or each time a substantial change in its value occurs. The relative expiry of the Variable
information allows to send it in a best-effort way. The system should be able to tolerate the
lost of one or more of these data transmissions. The Variable communication primitive
follows the publication subscription paradigm.
Events also follow the publication-subscription paradigm. The main difference in front of
Variables is that Events guarantee the reception of the sent information to all the subscribed
services. The utility of Events is to inform of punctual and important facts to all the services
that care about. Some examples can be error alarms or warnings, indication of arrival at
specific points of the mission, etc.
Remote Invocation is an intuitive way to model one-to-one interactions between services.
Some examples can be the activation and deactivation of actuators, or calling a service for

www.intechopen.com

Aerial Vehicles

516

some form of calculation. Thus, in addition to Variables and Events, services can expose a
set of functions that other services can invoke or call remotely.
In some cases, there also exists the need to transfer continuous media with safety. This
continuous media includes generated photography images, configuration files or services
program code to be uploaded to the middleware. The File Transmission primitive is used
basically to transfer long file-structured information from a node to another.

3. USAL: UAV Service Abstraction Layer

Providing a common infrastructure for communicating isolated avionics services is not
enough for keeping the development and maintenance costs for UAV systems low. The
existence of an open-architecture avionics package specifically designed for UAV may
alleviate the development costs by reducing them to a simple parameterization. The design
of this open-architecture avionics system starts with the definition of its requirements. These
requirements are defined by the type of UAV (mini or tactical UAV in our case) and the
mission objectives. From the study and definition of several UAV missions, one can identify
the most common requirements and functionalities that are present among them (UAVNET,
2005; RTCA, 2007; SC-203, 2007; Cox et. al., 2006).
These common requirements have been identified and organized leading to the definition of
an abstraction layer called UAV Service Abstraction Layer (USAL). The goal of the USAL is
twofold (Pastor et. al., 2007; Royo et. al., 2008):

• Reduce “time to marked” when creating a new UAV system. The USAL together with
middleware will simplify the integration of all basic subsystems (autopilot,
communications, sensors, etc) because it will already provide all required glue logic
between them.

• Simplify the development of all systems required to develop the actual mission
assigned to the UAV. In most cases reducing this complexity to specifying the desired
flight plan and sensor operation to some of the services available in the USAL and
parameterizing the specific services to be used every time.

Using the USAL allows to abstract the UAV integrator from time consuming and complex
underlying implementation details. The USAL and middleware offer a light weight service-
based architecture with a built-in inter-service communication infrastructure. A large
number of available services can be selected to create specific configurations, while new
services can be easily created by inheriting exiting ones.

3.1 USAL Service Types

Even though the USAL is composed of a large set of available services, not all of them have
to be present in every UAV or in any mission. Only those services required for a given
configuration/mission should be present and/or activated in the UAV. Available services
have been classified in four categories according to the requirements that have been
identified (see Fig. 3).
The principal element is the computing system that should orchestrate the overall mission.
This system may be extended with additional systems specific to the mission like image
processing hardware accelerators, etc. Storage and communication management should be
also included by default. This set of standard plus user-defined services that control the
mission intelligence are named Mission Services.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

517

Figure 3. Overview of the USAL service-based architecture

The next relevant system is the UAV autopilot. USAL considers the autopilot as a co-
processor; it provides the system with a specific set of primitives that control the flight in the
short term. The autopilot operation is supervised by a Flight Plan Manager that abstracts
users from autopilot peculiarities and offers flight plan specifications beyond classical way
point navigation, thus improving operational capabilities. Additional services help
improving the safety and reliability of the operation. The services in charge of the flying
capabilities of the UAV are named Flight Services.
Successful integration of UAV in non-segregated aerospace will require a number of
features to be included in the UAV architecture. Interaction with cooperative aircrafts
through transponders, TCAS or ADS systems; and detection of non-cooperative aircrafts
through visual sensors, should be implemented and the UAV must inform the pilot in
command or automatically react following the operational flight rules for UAV that are
currently being developed (EUROCONTROL, 2003; FAA, 2008). However, for certain cases,
e.g. flying in segregated airspace, such services may not be necessary. Services that manage
the interaction of the UAV with the surrounding airspace users, air traffic management or
conditions are named Awareness Services.
Payload includes all those other systems carried on board the UAV. We divide them in data
acquisition systems (or input devices) and actuators (or output devices). Input devices can
be flight sensors (GPS, IMU, Anemometers) and earth/atmosphere observation sensors
(visual, infra-red and radiometric cameras, chemical and temperature sensors, radars, etc.)
Output devices are few or even do not exist in UAV civil missions because of the weight
limitations: flares, parachutes or loom shuttles are examples of UAV actuators. Services
controlling these devices are named Payload Services.

3.2 Mission Services

From the end-users point of view, earth observation is the main target of a UAV flight. For
this reason the user selects a geographic area that constitutes the initial objective of the
observation. Also, the user must define the input sensors to activate and the conditions for
mission updates.

www.intechopen.com

Aerial Vehicles

518

The DO-304 RTCA (RTCA, 2007) describes 12 scenarios, selected from a list of 70 as
representative of UAV missions. Scenarios are representative of different types of airframes
and navigation conditions. Regarding their navigation procedures, we have classified them
in three types, with increasing complexity:

• Static Area Surveillance. The navigation pattern over the surveillance area is given
before take-off. This navigation is the base of the following RTCA scenarios:
Communicator Repeater (Scenario 7), Courier (Scenario 8), Border Surveillance
(Scenario 16), Coastal Border Control (Scenario 26), High Altitude Communication
Relay (Scenario 40).

• Target Discovering. The UAV System has a recognition service that can detect on-the-
fly some objects or behaviours in the static area of surveillance. This navigation is the
base of the following RTCA scenarios: Perimeter Defence (Scenario 3), OAV Police
Operation (Scenario 10), and Mass Casualty Analysis (Scenario 29). Although in some
scenarios the mission continues after target discovering, the mission intelligence is
relegated to ground operators decision and control.

• Dynamic Target Tracking. The most advanced missions are those that assume
intelligence Mission Services, with the capacity to redefine the surveillance area with no
human intervention. Hurricane Chase (Scenario 2), Coast Guard Reconnaissance and
Surveillance (Scenario 37) are scenarios where this situation is given at some level.

Figure 4. Overview of the available mission and payload service category

In general, the most complex missions include the simplest missions as part of its objective.
For example, in order to track a moving object, its previous discovering is needed, which is
based on an area surveillance mission. For the Static Area Surveillance the only condition
needed is the end-of-mission condition, but for the other two the end-users have to give the
condition for Target Recognition.
The USAL offers a number of predefined services to implement a wide range of missions,
namely the Mission Manager, the Real-Time Data Processing, the Storage, the Scheduled
Communications, the GIS/DEM Database and Mission Monitor (see Fig. 4). These services can
be adapted to requirements by means of parameters (e.g. specific flight plan, sensors to be
activated, information flows, etc), by adding specific software code to be executed or by
adding specific user defined services. Next we describe in more detail some of them.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

519

The Mission Manager (MMA) is the orchestra director of the USAL services. This service
supervises the flight services and the payload services; as well as the coordination of the
overall operation. The MMA executes a user defined automata with attached actions (i.e.
service activations) at each state or transition. Actions can be predefined built-in operations
or specific pieces of user code. In particular the MMA is capable of modifying the actual
flight plan by redefining its parameters or by defining new stages or legs.
The Real-Time Data Processing (RDP) gives the intelligence for complex missions. The RDP
offers predefined image processing operations (accelerated by FPGA hardware if available)
that should allow the MMA to take dynamic decisions according to the actual acquired
information.
The Mission Monitor (MMO) shows to end-users human friendly useful information about
the mission. For example, during a wildland fire monitoring mission, it may present the
current state of the fire front over a map. The MMO is executed on the ground and should
be highly parameterized to fit the specific requirements of each mission.

3.3 Flight Services

Many autopilot manufacturers are available in the commercial market for tactical UAVs
with a wide variety of selected sensors, sizes, control algorithms and operational
capabilities. However, selecting the right autopilot to be integrated in a given UAV is a
complex task because none of them is mutually compatible. Moving from one autopilot to
another may imply redesigning from scratch all the remaining avionics in the UAV.
Current commercial UAV autopilots also have two clearly identified drawbacks that limit
their effective integration with the mission and payload control inside the UAV:

• Exploiting the on-board autopilot telemetry by other applications is complex and
autopilot dependent. Autopilot’s telemetry is typically designed just to keep the UAV
state and position under control and not to be used by third party applications.

• The flight plan definition available in most autopilots is just a collection of waypoints
statically defined or hand-manipulated by the UAV’s operator. However, no possible
interaction exists between the flight-plan and the actual mission and payload operated
by the UAV.

Flight services are a set of USAL applications designed to properly link the selected UAV
autopilot with the rest of the UAV avionics (Santamaria et al., 2008; Santamaria et al., 2007),
namely the Virtual Autopilot Service, the Flight Plan Manager Service, the Contingency Service,
the Flight Monitor Service, etc. (see Fig. 5).
The Virtual Autopilot Service (VAS) is a system that on one side interacts with the selected
autopilot and is adapted to its peculiarities. VAS abstracts the implementation details from
actual autopilot users. From the mission/payload subsystems point of view, VAS is a
service provider that offers a number of standardized information flows independent of the
actual autopilot being used.
The Flight Plan Manager (FPM) is a service designed to implement much richer flight-plan
capabilities on top of the available autopilot capabilities. The FPM offers an almost
unlimited number of waypoints, waypoint grouping, structured flight-plan phases with
built-in emergency alternatives, mission oriented legs with a high semantic level like
repetitions, parameterized scans, etc. These legs can be modified by other services in the
USAL by changing the configuration parameters without having to redesign the actual
flight-plan; thus enabling the easy cooperation between the autopilot and the UAV mission.

www.intechopen.com

Aerial Vehicles

520

Figure 5. Overview of the available flight service category

The Contingency Management services are a set of services designed to monitor critical
parameters of the operation (like battery live, fuel, flight time, system status, etc.). In case
contingencies are detected, actions will be taken in order to preserve the safety and integrity
of the UAV: from flight termination, mission abort or system re-cycle.

3.4 Awareness Services

A UAV System is a highly instrumented aircraft and has no pilot on board. With these
conditionings the more suitable flight rules for a UAV are IFR, however for remote sensing
missions the advantages of UAV systems is precisely its capacity for flying at any altitude,
where VFR aircrafts are found.
UAVs must rely on its instrumentation equipment to properly inform the pilot in command
on the ground or substitute the pilot capacities in VFR conditions. The awareness services
are responsible for such functionalities. Flight Services are in charge of the aircraft
management in normal conditions while the Awareness Services are in charge of monitoring
surrounding situations and overtake aircraft management in critical conditions. In this case
mission services come to a second priority, until flight conditions become again normal. The
list of awareness services is seen in Fig. 6.
The Awareness Data Fusion (ADF) is a service designed to collect all available data about air
vehicles surrounding our UAV, terrain and meteorological conditions. All this information
can be obtained either by on board sensors or even through an external provider.
The Tactical/Strategic Conflict Detection services will analyze the fused information offered by
the ADF in order to detect potential collision conflicts with objects/terrain/bad climate.
Depending on the type of conflict, different types of reaction procedures will be activated.
While reaction is executed the ADF will keep monitoring that the conflict is really being
avoided.
The Tactical/Strategic Reaction services, will implement avoidance procedures according to
the severity of the conflict. Tactical reaction is designed in such a way it can overtake the
FPM in order to execute a radical avoidance manoeuvre. Once completed, the FPM will
retake the control. A strategic reaction will command the FPM to slightly modify its selected

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

521

flight plan trying to avoid the conflict but at the same time retaining the original mission
requested by the Mission Manager.

Figure 6. Overview of the available flight service category

3.5 Payload Services

Payload services are defined for sensor devices, mainly raw data acquisition sensors that
need to be processed before being used in real-time or stored for post-mission analysis. The
complete list of services is directly related to available sensors, and except for most classical
cameras they need to be created or adapted by the end user. However, USAL offers pre-
build skeletons that should be easily adapted for most common devices.

4. The Virtual Autopilot System (VAS)

The Virtual Autopilot Service is the component that will interact between the autopilot and
the rest of the components of the USAL (Royo et. al., 2008). After studying several UAV
autopilots we have seen that their functioning and capabilities are very similar, however
their implementation details greatly differ (Haiyang et al., 2007). To improve the flexibility
of a UAV it is needed to abstract the concrete autopilot used. The main objective of the VAS
is to implement this abstraction layer, to isolate the system of autopilot hardware changes.
As every UAV mission needs to control autonomously the aircraft following a list of
waypoints, the VAS clearly belongs to the minimum services required in the USAL.

4.1 VAS Functional Overview

The VAS is specially suited to work in conjunction with the Flight Plan Manager service
(FPM). The latter service stores the flight plan of the mission which is composed of a
complex hierarchy of waypoints that the UAV must fly. The VAS will command the
hardware autopilot to guide the UAV flight and it will ask the FPM for new waypoints as
the autopilot is consuming them.
VAS operates similarly as drivers work on operating systems, abstracting away the
implementation details from actual autopilot users. This service may also offer all required
flow of data to any other application on board the UAV.
The flight planning capabilities of all autopilots are dissimilar, but generally limited to
simple waypoint navigation and in some cases they include automatic take-off and landing

www.intechopen.com

Aerial Vehicles

522

modes. From the point of view of the current missions or applications being developed by
the UAV using a simple waypoint-based flight plan may be too restrictive. In addition to the
VAS the Flight Plan Manager service (FPM) is designed to implement much richer flight-
plan capabilities than offered by the actual autopilot. The FPM offers structured flight plan
phases with built-in emergency alternatives, leg based path description, mission oriented
legs with a high semantic level like repetitions, parameterized scans, etc. Fig. 5 provides a
schematic view of the relation between VAS and FPM inside the USAL.

Figure 7. Information flow inside the Virtual Autopilot System

Given that the real autopilot capabilities will be much simpler than those available in the
FPM, additional waypoints will be generated according to requirements. Internal waypoints
will be dynamically fed into the autopilot through the VAS during the mission time,
therefore transforming the FPM in a virtual machine capable of executing flight plans. As a
result, combining both the abstraction mechanism provided by the VAS and the increased
flight plan capabilities of the FPM, we obtain a highly capable platform that can be easily
integrated to perform much more efficiently a number of valuable missions.

4.2 VAS Architecture

VAS is a service that provides a standardized interface to the particular autopilot on board.
Since it directly interacts with the selected autopilot it needs to be adapted to its
peculiarities. For other services in the UAV, the VAS is a service provider that offers a
number of information flows to be exploited. Given that not all autopilots are equal, VAS
follows a contract between it, as a service provider, and its potential clients. This means that
all the information provided by this service is standardized independently of the autopilot
being used. VAS belongs to the set of services defined in the USAL and will provide flight
monitoring and control capabilities to other services.
The inclusion of the VAS greatly improves the flexibility of the system. The autopilot unit
can be replaced by a new version or a different product, but this change will have no impact
on the system except for the VAS. Another important motivation is to provide an increased

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

523

level of functionality. VAS should permit operation with a virtually infinite number of
waypoints, thus overcoming a limitation present in all studied UAV autopilots. It will also
be able to check the plausibility of these waypoints. This increased level of functionality
includes the capability to take control of the flight and generate new waypoints in response
to contingencies when services in charge of navigation control fail.
UAV autopilots available today are similar in their operation and capabilities, though their
implementation details greatly differ. The key to carry out a correct abstraction is to offer in
the VAS interface the common functionality and data that can be found in any autopilot.
This information will be organized in the following four groups. The first group relates to
the need of the autopilot to acquire and process attitude and position data. The second one
is needed to determine the path that the aircraft will follow. The third, gives information
about its current status and possible alarms. Finally, the last one is added to the VAS design
to provide the aforementioned increased level of functionality. This last group will change
the autopilot states when necessary. Fig. 7 shows the different parts of the VAS service. As
displayed in the figure, monitoring and status/alarms information are outgoing flows,
while navigation and state management have input/output direction. These four groups of
interfaces are described more in detail in the following subsections.

4.3 Flight Monitoring Services

There are several ways to expose the information generated by the sensors of the autopilot.
Usually, the autopilot manufacturer groups all this information in large packets of data,
which are sent via a radio modem at a certain frequency. In our service-based architecture,
the VAS service will offer this information over a LAN to all the services that need this
information. The information will be semantically grouped in a way that this information
relates to parameters, situations or attitudes of the aircraft, independently of the real
autopilot hardware and sensors. The remainder of the section shows all the Flight
Management Information which the VAS will publish the rest of the services on the
network.

• UAV Angles: Indicates the instantaneous angular position of the system. Roll, pitch and
yaw are offered in radians.

• UAV Acceleration: Indicates the instantaneous acceleration vector of the system. (X, Y,
Z) vector is offered in meters per square second.

• UAV Rate of Turn: Indicates the instantaneous rate of turn of the system. (X, Y, Z) turn
vector is offered in radians per second.

• UAV Position: Indicates the instantaneous position of the system. Latitude, longitude,
altitude (MSL) and barometric pressure altitude are offered in radians and meters
respectively.

• UAV Speed: Indicates the instantaneous speed vector of the system. North, east and
down speed vector is offered in meters per second.

• UAV Air Speed: Indicates the instantaneous speed vector of the system relative to the
air. North, east and down speed vector is offered in meters per second.

• Wind Estimate: Indicates wind direction estimation around the system. North, east and
downwind vector is offered in meters per second.

• Mission Time: Indicates the current mission time in seconds since the VAS start-up or
the last mission time reset.

www.intechopen.com

Aerial Vehicles

524

In general, UAV autopilots provide lots of information from all its sensors; however only a
little part of them is really useful to implement a system to develop missions. Flight
Monitoring Information has been chosen thinking in what information could be useful for
the mission development.

4.4 Navigation Services

In the USAL architecture, the Flight Plan Manager service is in charge of generating the
navigation commands to the VAS. In most cases these commands will take the form of
waypoints or requests for changing the autopilot state. The VAS feeds the autopilot with its
internal waypoints as it consumes system waypoints and commands.
The next group of information is the Output Service Navigation group. This information
basically states where to the UAV is going at any moment, in which direction is moving and
which waypoint is flying:

• Current Waypoint: Indicates the current waypoint where the system is flying to. This
information is offered as an event every time the autopilot switches from one waypoint
to the next. Also offered as a function. Waypoints are indicated using the USAL
waypoint specification format.

• Previous Waypoint: Indicates the previous waypoint where the system was flying to.
This information only offered as a function and it is intended to compute the previous
leg that the autopilot was flying. Waypoints are indicated using the USAL waypoint
specification format.

• Runway Situation: Indicates the position of the selected runway for normal operations.
Runways are defined as runway entry points, runway direction and runway lengths.
This information only offered as a function and it is intended to confirm the data stored
in the VAS.

• Alternative Runway Situation: Indicates the position of the selected runway for
alternative operations. This runway is intended to be used in case of emergency if the
UAV cannot reach the preferred runway (not enough fuel, battery, structural damage,
etc.).

• UAV Direction: Indicates selected direction of the UAV flight. This direction will
depend on the selected autopilot mode: waypoint navigation, directed mode, hold
mode, etc. It identifies its target bearing, airspeed and altitude.

• VAS State: Indicates the actual state of the VAS system. The supported states and a brief
description are included latter in the section. State is reported each time the VAS
switches from one state to another; and each time a state change is requested but cannot
be fulfilled.

All of this service information will be mainly used for the FPM in order to interact
dynamically with VAS and the mission services. In case the FPM or some other service
related to the UAV flight fails, the VAS can take control of the UAV. This emergency state
implies a change in the flight state management to Safe mode until the flight plan is
recovered or the UAV lands safely. To support the Safe mode the VAS incorporates extra
functionalities. One of them is the ability to change the main runway to a closer one.
Therefore, the VAS stores alternative runways just in case a contingency situation happens
and an emergency landing is needed.
The next group of information is the Input Navigation Service group. This information
basically tells the VAS configuration parameters for the autopilot operation, as well as

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

525

parameters to configure the operative parameters of the states in which the VAS may
operate:

• QNH Ground Pressure: Sets the QNH pressure value at the main runway for the
pressure altimeter.

• Ground Level Altitude: Set the ground level altitude to the autopilot. The VAS does not
have a digital elevation model, so this is the only way for the system to know the
ground level.

• Max Mission Time: Once the VAS system starts up a Mission Time timer starts. The
Max Mission Time sets up the limit operation time. If this limit is surpassed an alarm
will be raised.

• New Waypoint: The system uses this packet to feed up the autopilot with the mission
waypoints. With this packet we will compose the flight plan of the mission, that is, the
points over which the UAV will fly.

• UAV Speed: Set target indicated airspeed. This packet only has effect once in directed
state. However, each waypoint defines the speed which the UAV will have to arrive
over that waypoint.

• UAV Altitude: Set target altitude. As UAV speed, this packet only have effect once in
directed state and each waypoint defines the altitude which the UAV will have to fly
over that waypoint.

• New Main Runway: Set coordinates of runway. The main runway is where the UAV
will land. In principle the main runway is where the UAV will take off. However, the
UAV will sometimes need a closer runway for landing, especially if it has happened
any contingency and the UAV needs to land in order to solve the problem.

• New Alternative Runway: Set coordinates of alternative runway. In the alternative
runway, the UAV will save alternative places where the UAV can land. The purpose of
this packet is to store a runway closer to where the UAV is flying each moment.

• Change VAS Mode: Sets the current VAS state. With this packet some services as FPM,
ground station service or awareness service can switch the VAS states.

• Clear Waypoints: This packet is used to clear all the flight plan waypoints. Sometimes,
we may want to change the mission flight plan for another one. First of all, we have to
cancel the actual flight plan with this packet and then we can upload a new one.

• Skip Leg: Legs specify the path that the plane must follow in order to reach a
destination waypoint from the previous one. In some cases we may need to skip a
whole leg instead of all the waypoints. This packet permits skip one leg and pass to
another.

• Discard Leg Waypoint: The FPM controls the entire mission flight plan. In some cases,
the FPM may be interested in discard a range of waypoints of the flight plan. These
waypoints can take several legs or can be part of a leg.

4.5 VAS and Autopilot Status/Alarms

The VAS is the interface between the autopilot and the rest of the system. So it is in charge of
informing the status of the autopilot and its own status. An autopilot is a complex hardware
that needs to be monitoring every time. With this group of packets we can monitor the
autopilot and the VAS status; when any part of these devices has a failure the VAS will send
an alarm to the network. All of these alarms are sent as events for two reasons. First, because
the alarms are very important for the system and it is needed that these notifications safely

www.intechopen.com

Aerial Vehicles

526

arrive to all the services that process them. Second, we will only need to know the status when
something is wrong. They are not periodical information like the telemetry flows.
The most important alarms are the ones that monitor the status of the link between the UAV
and the ground control station (Ground Communication Loss Alarm) and the links between
the GPS receiver and the satellites (GPS Autopilot Alarm). Another important situation that
should be controlled is the voltage of the different hardware components of the UAV. Low
voltages clearly indicate problems in power system (batteries, generators or the signal
conditioning system) and usually will end in a global malfunctioning of the system.
The VAS also provides detailed alarms for notifying problems in the different sensors inside
the autopilot (Accelerometer, Gyroscope, Magnetometer, Anemometer and Pressure
altimeter). UAV operation can usually continue however on a degraded mode. In this case,
the UAV will usually try to return to base for maintenance.
Finally, some alarms manage the specific operation of the VAS service. The Waypoint Range
alarm will be raised when the FPM (or the service on charge of providing the waypoint list
to the autopilot) tries to feed a waypoint that it is not coherent with the rest of the flight plan
(too far away from the previous waypoint). This usually indicates a problem with the flight
plan service or the flight plan itself.
Another specific situation that is notified by the UAV, it is the case when a main runway has
not been programmed. This runway is needed for some calculations and it is also the place
where the UAV will try to carry an emergency landing. Finally, in case of an internal error
the VAS will raise the Process Error alarm, indicating that it has detected some abnormal
behaviour in its internal calculations.

4.6 VAS Operational States

During its operation an autopilot has different forms of guidance: take-off, waypoint
navigation, directed flight, landing, etc. Depending on the implementation and the capabilities
of the selected autopilot, these behaviours or states will differ. Some sort of standardization
and adaptation is needed if the VAS has to make interoperable different autopilots.
In this section we are going to describe a general overview of the VAS operational states.
Commercial autopilots are much focused on flight states, however a mission can be
composed of many different states, for example, and we can have different behaviours for
the contingencies, which need different types of response. Many autopilots solve this sort of
problems just coming back to base station. However, we want the UAV to be able to enter in
safe states where it can try to recover the situation.
Obviously, not all the commercial autopilots will implement the full range of states
provided by the VAS and it is responsibility of each VAS implementation to fulfil the whole
functionalities needed. For example, in case that a concrete autopilot does not have take-off
mode, its companion VAS will have to implement a take-off algorithm.
Fig. 8 shows all the VAS states. This is a graph diagram in which each node corresponds to
one state. In each state, the UAV develops several tasks in order to achieve the goals of the
mission. All the related states are grouped together. The initial state inside each group is
showed with an arrow on the top right box state corner. The rest of the arrows show the
transitions between the different states. The diagram is descendant from the beginning of
the mission to the end, although, in some case, there are horizontal transitions.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

527

Figure 8. VAS Operational States and Transitions

Start-Up States. The initialization of the system is arranged in the Start-Up set of states. The
initial state when the system is switched on is the Stop state. In this state, the UAV is stopped
with all the devices of the system on. The next state is the Configure & Check state. During this
state the UAV begins to configure itself; this means that all the services needed to accomplish
the mission are deployed and configured over the hardware in the UAV. Finally, services and
their associated hardware are checked for correct functioning. All of these operations will be
done with the UAV on ground still inside the hangar.
When all services are properly configured, the UAV can change to the following state:
Parking & Check. It is well known that the behaviour of some subsystems can change when
the engine is on, and in the parking state a new check is done after the engine is started.
Some sensors, servo mechanisms and communication modules will be checked again when
the engine is working. Also during this state we will monitor the engine parameters in order
to start the mission in optimal engine conditions. If along this state we detect any anomaly
in any service, the UAV comes back to the Stop state. If the UAV pass all check procedures,
the UAV can move to taxi states.
Taxi States. At this moment, the UAV is ready and may proceed to the runway to start the
flight. The VAS can execute this operation in two ways, as auto taxi or as manual taxi. With
the auto taxi the UAV look up an adequate runway and goes to it by itself. This is a complex

www.intechopen.com

Aerial Vehicles

528

operation as it means that it automatically takes into account air traffic controller interaction,
wind estimation, etc. In other cases, the operator has to drive the UAV to the correct
runway, in this situation the VAS is working in manual taxi mode.
While the UAV is on ground the UAV speed will be limited. Also, if the UAV is in auto taxi
and anything is wrong the VAS can give the control to the operator changing to manual taxi.
When the UAV is in the runway heading the VAS can pass to the take-off states. For
airborne operation a flight plan it is needed into the VAS. If the VAS does not detect a
loaded flight plan, it only permits manual manipulation.
Take-off States. After the taxi states the UAV is prepared to start the mission. The mission
starts with the take off state; this operation is one of the most dangerous because the aircraft
begins to fly and the UAV usually does not have enough altitude to respond to any
contingency.
This operation can also be developed manually or automatically. If the UAV takes off
automatically and any contingency happens the operator can take the UAV control, to solve
the problem. However, if we have decided to take-off manually we will remain in manual
state, until the VAS can change to Waypoint Navigation state.
Navigation States. At this point of the diagram, the UAV is flying to a secure altitude. When
the UAV has arrived to this altitude, it will change automatically to Waypoint Navigation
which is the first state of the navigation group. The navigation states are composed by
waypoint navigation state, directed state, hold at state and manual state.
In waypoint navigation the UAV follows the waypoints that have been uploaded previously
in the VAS. While the UAV is in directed state it will maintain a specific altitude, airspeed
and bearing. When the UAV is in Hold At state, it executes a hold pattern around the
indicated waypoint. Finally, in manual state the operator has direct control over the
airframe's control surfaces. The operator can switch from one Navigation state to each other
as he commands from the ground station.
Landing States. When the mission has been successfully finished, the UAV has to go back
home and prepare for landing. In order to carry out this task the UAV switches to landing
states. This group is composed of Land Pattern state, Land Abort state, Auto Land and
Manual Land states. During the the Land Pattern state, the UAV will fly an approximation
pattern in order to prepare for the landing. After this state we can choose between auto
landing and manual landing.
In both cases, if some problem occurs during the landing, the UAV can switch to the Land
Abort state. In this state the UAV climbs up to a secure altitude and goes back to the land
pattern state to try to land again. If the landing has been achieved normally, the UAV will be
braking on the runway. When the UAV speed is low enough, the UAV will switch to the
Taxi state again and will continue to the hangar to finish the mission.
Safe States. If any failure occurs during the navigation states, the VAS can switch to the safe
states. These states are composed by Safe Hold state, Safe Return state and Safe Land state.
When we have a failure in the system, the UAV will change the state to the Safe Hold. In
this state the UAV will remain trying to recover from the failure.
After a timeout the UAV will switch to Safe Return state. In this state the UAV will return to
the closest emergency runway in order to start the landing pattern. After the landing pattern
the UAV will change to the Safe Land state. In this state a landing flight plan is generated.
This flight plan is generated according to the runway situation. These three states compose
the safe states; however the system has another safe state: Safe Reaction.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

529

Safe Reaction State. The Safe Reaction is on charge of analyzing the environment around
the aircraft and generating reactions in case of a quick evasive response is needed. When the
Awareness services detect a dangerous situation, they generate an alarm and the VAS
switches to Safe Reaction. In this state the UAV will be commanded by the Tactical Reaction
service to solve the problem.

5. Mission Aware Flight Planning

Previous sections have introduced the proposed UAV architecture. In this section we detail the
specification mechanism that will be used to describe the UAV flight plans. Most current UAV
autopilot systems rely on lists of waypoints as the mechanism for flight plan specification and
execution. This approach has several important limitations: (1) It is difficult to specify complex
trajectories and it does not support constructs such as forks or iterations. (2) It is not flexible
because small changes may imply having to deal with a considerable amount of waypoints
and (3) it is unable to adapt to mission circumstances. Besides (4) it lacks constructs for
grouping and reusing flight plan fragments. In short, current autopilots specialize in low level
flight control and navigation is limited to very basic go to waypoint commands.
We believe that it is necessary to improve current UAV operation with higher level constructs,
with richer semantics, and which enable flight progress to be aware of mission variables must
be introduced. For that reason a new flight plan specification mechanism is introduced.

5.1 Flight Plan Overview

This section describes the major characteristics of the specification mechanism that will be
used to program the FPM service. Some ideas are based on current practices in commercial
aviation industry for the specification of RNAV procedures (EUROCONTROL, 2003; FAA,
2008) which is briefly described in the next paragraphs.
Radio Area Navigation (RNAV) is a method of navigation that takes advantage of the
increasing amount of navigation aids (including satellite navigation) and permits aircraft
operation on any desired flight path. RNAV procedures are composed of a series of smaller
parts called legs. To translate RNAV procedures into a code suitable for navigation systems
the industry has developed the “Path and Termination” concept. Path Terminator codes
should be used to define each leg of an RNAV procedure. Leg types are identified by a two
letter code that describes the path (e.g., heading, course, track, etc.) and the termination
point (e.g., the path terminates at an altitude, distance, fix, etc.).
Our specification mechanism makes use of the Path Terminator concept to describe basic legs. A
subset of RNAV legs applicable to GPS navigation is also of interest. These elements are brought
to the UAV field and extended with additional constructs. New control constructs such as
iterative legs and intersection legs are added. Reverse traversal of legs belonging to an iterative
construct is supported. And adaptivity is increased by means of parametric legs. Further details
are given in the next subsections, which describe the flight plan structure and its elements.
The flight plan represents the instructions that will be given to the FPM. A flight plan
follows a hierarchical structure and is composed of stages, legs and waypoints (see Fig. 9).
Stages are the largest building blocks within a flight plan. They organize legs into different
phases that will be performed in sequence. Legs specify the path that the plane must follow
in order to reach a destination waypoint from the previous one. Several primitives for leg
specification are available.

www.intechopen.com

Aerial Vehicles

530

A waypoint is a geographical position defined in terms of latitude/longitude coordinates.
Waypoints can be named or unnamed depending on whether they are associated to a fix. A
fix corresponds to a geographical position of interest with a name and description. Another
distinction is made between fly-by and fly-over waypoints. Fly-by waypoints will be used
when the aircraft should start turning before reaching the waypoint. Fly-over waypoints
require the aircraft to fly over them before initiating a turn. A waypoint may also be
accompanied by altitude and speed change indications.
Optionally, a partial flight plan to be carried out if an emergency occurs can be associated to
a flight plan. This emergency plan will be superseded by emergency plans specified at stage
or leg level. In this way the user will be able to choose the appropriate level of granularity
for alternate plans specification. A partial flight plan follows the same structure as a normal
flight plan but contains only those stages necessary to fly from the current position to the
landing runway of choice.

Figure 9. Overview of the Flight Plan Hierarchy

Stages constitute high-level building blocks for flight plan specification and are used to
group together legs that seek a common purpose. They correspond to flight phases that will
be sequentially executed. Fig. 10 shows a complete flight plan with all stages in the context
of a fire fighting mission. The flight plan starts with a Take-Off. Once the aircraft is airborne
it will perform a Departure Procedure that will connect with an En Route leading to the
forest fire site. Upon arrival the Mission stage will start. When this stage concludes the UAV
will enter another En Route stage leading to the landing area. There an Arrival Procedure
will be executed to connect with the final Approach and Land stages. Each one of these
stages will be composed of a set of legs as described in the following paragraphs.

5.2 Detailed Leg description

A leg specifies the flight path to get to a given waypoint. In general, legs contain a destination
waypoint and a reference to their next. Most times legs will be flown in a single direction, but
within iterative legs reverse traversal is also supported. There are four different kinds of legs:

• Basic legs: Specify leg primitives such as “Direct to a Fix”, “Track to a Fix”, etc.

• Iterative legs: Allow for specifying repetitive sequences.

• Intersection legs: Provide a junction point for legs which end at the same waypoint, or a
forking point where a decision on what leg to fly next can be made.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

531

• Parametric legs: Specify legs whose trajectory can be computed given the parameters of a
generating algorithm, e.g. a scan pattern.

Basic Legs. A number of basic legs are available to the flight plan designer. They are
referred to as basic legs to differentiate them from control structures like iterative or
intersection legs and parametric legs. All of them are based on already existing ones in
RNAV. Its original name is preserved.

• Initial Fix (IFLeg): Determines an initial point. It is used in conjunction with another leg
type (e.g. TF) to define a desired track.

• Track to a Fix (TFLeg): Corresponds to a straight trajectory from waypoint to waypoint.
Initial waypoint is the destination waypoint of the previous leg.

• Direct to a Fix (DFLeg): Is a path described by an aircraft's track from an initial area
direct to the next waypoint, i.e. fly directly to the destination waypoint whatever the
current position is.

• Radius to a Fix (RFLeg): Is defined as a constant radius circular path around a defined turn
center that terminates at a waypoint. It is characterized by its turn center and turn direction.

• Holding Pattern: Specifies a holding pattern path. There are three kinds of holding
patterns: Hold to an Altitude (HALeg), Hold to a Fix (HFLeg) and Hold to a Condition
(HCLeg). In all cases the initial waypoint, the course (azimuth) of the holding pattern
and the turn direction must be specified. The distance between both turn centers and
the diameter of the turn segments is also needed.

The three available holding types differ in how they are terminated. Hold to an Altitude
terminates when a given altitude is reached, therefore the target altitude and the climb rate
must be indicated. A Hold to a Fix is used to define a holding pattern path, which
terminates at the first crossing of the hold waypoint after the holding entry procedure has
been performed. The final possible type is the Hold to a Condition. In this case the holding
pattern will be terminated after a given number of iterations or when a given condition no
longer holds (regardless of the number of iterations).
Iterative Legs. A complex trajectory may involve iteration, thus the inclusion of iterative
legs. An iterative leg has a single entry (i.e. its body can be entered from a single leg), a
single exit and includes a list with the legs that form its body. Every time the final leg is
executed an iteration counter will be incremented. When a given count is reached or a
specified condition no longer holds the leg will be abandoned proceeding to the next one.
Intersection Legs. Intersection legs indicate points where two or more different paths meet
and where decisions on what to do next can be made. All joins and forks will end and start
at an intersection leg.
Parametric Legs. In many occasions the dynamic characteristics of the mission environment
will make previous leg types insufficient. Parametric legs provide an increased level of
adaption to changes that occur during mission time. With parametric legs the flight path is
dynamically generated according to input values. Eventually a library of different
parametric legs will be available, complete enough so that a wide range of missions can be
performed. With the use of parametric legs two goals are achieved. First, complex
trajectories can be generated with no need to specify a possibly quite long list of legs.
Second, the UAV path can dynamically adapt according to the input values.
Conditions. There are several points in the flight plan where conditions can be found,
namely in holding patterns, iterative and intersection legs. For intersection legs, they are
necessary in order to determine what path to follow next. For the rest of legs they will let the

www.intechopen.com

Aerial Vehicles

532

FPM know when to leave the current leg and proceed to the next one. Conditions will not be
directly specified in the flight plan. Instead, each leg that depends on a condition will
contain a reference which will be used to identify the condition. Conditions will be stored
and processed separately. When the outcome of a condition is set the FPM will be notified
so that this change is taken into account for waypoint generation.
Conditions can be based on elapsed flight time, whether some task has been completed, on
counters and on operator input. Operator input will always override any automatically
generated outcome. In case of conflict or if the condition cannot be resolved we will resort to
the default value or await user input.

Figure 10. Flight Plan Application Example

5.3 Flight Plan Manager

This section presents the USAL service responsible for processing and executing the
proposed flight plans: the Flight Plan Manager service (FPM). The FPM forms part of a
wider collection of services that provide the UAV with all its capabilities. The FPM belongs
to the flight services category, it will collaborate with other on-board and remote services in
order to execute the given flight plan.
The FPM is responsible for executing flight plans, but it doesn't operate in a stand-alone
fashion. To achieve its goals it collaborates with other services. The main service the FPM
collaborates with is the Virtual Autopilot Service (VAS), which is the only service with
direct access to the installed autopilot. Apart from the VAS, the most relevant services the
FPM interacts with are the Ground Control Station (GCS) and the Mission Management
service (MMA). The GCS provides monitoring and control capabilities to a human operator.
The Mission Management Service is in charge of evaluating conditions and updating
parametric legs.
In order to execute the flight plan the FPM will send navigation commands to the VAS.
These commands mainly consist in waypoints the aircraft has to fly to. Since the flight plan
is specified in terms of legs some translation process is needed for converting them into the
waypoint sequences expected by the VAS.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

533

Computing waypoint sequences that approximate the legs specified in the flight plan is the
main task of the FPM execution engine. This flow of waypoint commands is the main form
of interaction between the FPM and the VAS. Sometimes, these waypoints will be
accompanied by additional fields indicating speed and altitude change requests.
Other commands related to waypoint management include clearing all sent but pending
waypoints. This will be necessary, for instance, when an emergency which forces to execute
an alternative plan occurs. The FPM will also issue partial cancellation commands as would
be the case when ignoring a number of waypoints in order to directly jump to a given leg.
Another type of command will allow the FPMS to change the VAS operation mode to
request special operations such as taking-off or landing.
The Ground Control Station is the interface to the system that human operators will interact
with. As such it must be able to manage and control several aspects of the flight plan and its
execution. To this end, the FPM provides the following operations:

• Load flight plan: Load the flight plan. Before starting any mission a flight plan must be
submitted to the UAV.

• Set initial leg: Since each stage of the flight plan can store multiple paths, when there is
more than one possibility for the first flight plan stage, the GCS operator will indicate
which one to start with.

• Start: Initiate aircraft flight. An automatic or manual take-off, depending on UAV
capabilities and configuration will be performed.

• Pause: The aircraft will fly a holding pattern until commanded to resume flight plan
execution.

• Manual: Inform the FPM that we are going into manual mode.
• Resume: Switch from paused or manual mode to normal automatic operation.
• Stop: Stops FPM operation.
• Goto leg: Fly directly to the given leg skipping intermediate ones without abandoning

automatic mode of operation.
• Update flight plan: Update command provided for modifying the flight plan. A

waypoint can be moved, the values of a parametric leg can be updated and other leg
parameters such as speed and altitude can be changed.

• Set condition result: Set the result of any of the conditions the flight plan depends on.
• Trigger emergency return: The FPM will switch to the emergency flight plan defined for

the current leg, stage or flight plan.
Apart from the listed operations, the FPM also provides a number of information flows that
enable monitoring. This data consists in the position of the aircraft in flight plan terms, i.e.
what are the current stage, leg and other leg-related information such as current iteration of an
iterative leg, etc. It also provides information about the current operating state of the service.
One of the main features of our flight plan specification mechanism is that it enables the
UAV to adapt to mission circumstances. This can be done in two manners: first, with the
possibility of using conditions in different leg types. Second, by using parametric legs,
whose final form depends on the values of the input parameters.
Conditions mark a point where a decision can be made about what path to follow next. The
decision-making process is not directly done by the FPM. The flight plan contains references
to condition identifiers. The outcome of these conditions will be set by the Mission
Management Service. The MMA will also decide what the actual parameter values for
parametric legs are. These functions are currently done from the GCS but the inclusion of
the MMA will provide the UAV with a high degree of automation.

www.intechopen.com

Aerial Vehicles

534

The main task of the FPM consists in generating the sequence of waypoints that will direct
the UAV flight. At the same time the FPM has to respond to commands sent from the GCS
and be aware of situations where VAS control is taken over by other services. This results in
the FPM operating in a number of states as seen in Fig. 11. A description of each one of these
states follows:

• On Command: The FPM can be either on command or on standby. If on command it has
control over the VAS and determines the path followed by the aircraft. When a
contingency occurs the main flight plan is replaced by the corresponding emergency
plan and waypoint generation starts over. If the flight plan is updated all non-flown
waypoints affected by the change will be cancelled and replaced by new ones. On
Command is a super-state that encompasses two sub states, namely Auto and Paused.

• Auto: When in this state the FPM is generating and forwarding waypoints to the VAS.

• Paused: The FPM has received a pause command. This directly translates to issuing a change
of state command to the VAS requiring it to perform a holding pattern. When the resume
command is received it will notify the VAS that waypoint navigation can continue.

• On Standby: This state is entered when the FPM is notified that some other service has
taken control over the VAS. It can be entered because another service is trying to avoid
a collision or because the VAS is now under manual control. It differs from the Paused
state in that the FPM is not going to send any message to the VAS. It just waits and tries
to recover and continue flight execution once it regains control.

Figure 11. Flight Plan Execution Automata

Once the submitted flight plan has been loaded into the FPM, an internal representation is
generated and the service is ready to start waypoint generation. The flight plan is
represented by a tree whose root node corresponds to the whole flight plan (see Fig. 9).
Stages are located at the next level of the tree, legs follow. At this point some degree of
recursion can be found due to iterative legs, whose children legs form the body of the
iterative structure. Finally each leg has an associated waypoint.
When the start command is received a traversal of the tree begins. The execution engine
goes through each one of the flight plan stages, processing the legs they contain and
generating waypoints as appropriate. Legs which present curved paths are approximated by
sequences of waypoints.

www.intechopen.com

An Open Architecture for the Integration of UAV Civil Applications

535

Figure 12. Overview of the Flight Plan execution procedure by the FPM

Waypoint generation works in a decoupled manner from the FPM operation depicted in Fig.
12. The FPM is implemented following a producer-consumer model. There is one worker
thread in charge of waypoint generation. Each new waypoint is stored in a queue. The
consumer will pass the waypoints from the queue on to the VAS. The head of the queue
contains the waypoint the VAS is heading to. The queue is also used to keep track of unsent
waypoints. Using this scheme, only the consumer needs to be aware of petitions or changes
happening in the system (a waypoint has been reached, the flight plan updated, manual
mode entered, etc.) and command the generation engine to take appropriate action if
necessary (e.g. restart at a given leg). When a condition is encountered the producer will
block and no waypoints will be generated until the condition outcome is available.
At this point the consumer will monitor the state of the queue and ensure that a decision is
made in time, otherwise a default path, if present, will be taken. If the queue becomes empty
(all waypoints have been flown), the VAS will be commanded to perform a holding pattern.

6. Conclusions

The class of mini/micro UAVs will become available to many research institutions,
universities, and private companies to develop their research or commercial applications.
However, current technology offers solutions for most components in the UAV system
except systems to support and automate the actual sensing mission.
This chapter has introduced USAL, a service-oriented architecture designed to support the
development of remote sensing applications. USAL offers a number of pre-defined services
that can be easily parameterized to the specific needs of the application. Additional services
can be introduced to incorporate new functionalities and at the same time reusing available
services. A middleware designed to support the type of inter-service communications
required by the USAL is also introduced.
A novel flight plan specification to be employed within the USAL has been also introduced.
The proposed specification mechanism improves on the common list of waypoints approach
by providing RNAV-like legs as the main unit for flight plan construction. Besides the leg
concept is extended to include higher level control structures for specifying iterative

www.intechopen.com

Aerial Vehicles

536

behaviour and branching. The decision making for this control structures can be based on
mission variables, therefore enabling the UAV to respond depending on mission time
information. The adaptability of the system to mission time circumstances is also greatly
improved by the inclusion of parametric legs. With parametric legs, the flight path of the
aircraft is dynamically generated depending on its input parameters.

7. Acknowledgments

This work has been partially funded by Ministry of Science and Education of Spain under
contract CICYT TIN 2007-63927; and by the Innovative Studies Programme of the
EUROCONTROL Experimental Centre, EUROCONTROL Innovative Studies:
www.eurocontrol.int/eec/public/standard page/WP Innovative Studies.html.

8. References

W3C Working Group (2004), W3C Note 11: Web Services Architecture,
http://www.w3c.org/TR/ws-arch, February 2004

UPnP Forum (2008), UPnP Device Architecture 1.0, http://www.upnp.org/specs/arch, April 2008
UAVNET Thematic Network (2005), European Civil Unmanned Air Vehicle Roadmap

http://www.uavnet.com, March 2005
RTCA (2007), DO-304: Guidance Material and Considerations for Unmanned Aircraft

Systems, March 2007
Santamaria, E.; Royo, P.; Lopez, J.; Barrado, C.; Pastor, E. & Prats, X. (2007). Increasing UAV

capabilities through autopilot and flight plan abstraction, Proceedings of the 26th
Digital Avionics Systems Conference, Dallas (TX), October 2007, AIAA/IEEE

Santamaria, E; Royo, P.; Barrado, C.; Pastor, E.; Lopez, J. & Prats, X. (2008). Mission Aware
Flight Planning for Unmanned Aerial Systems, Proceedings of AIAA Guidance,
Navigation, and Control Conference and Exhibit, Honolulu (HI), August 2008, AIAA

Pastor, E.; Lopez, J. & Royo, P. (2007). UAV Payload and Mission Control Hardware/Software
Architecture. Aerospace and Electronic Systems Magazine, Vol.22, No.6, June 2007 3-8

Lopez, J.; Royo, P.; Pastor, E.; Barrado, C. & Santamaria, E. (2007). A Middleware
Architecture for Unmanned Aircraft Avionics, Proceedings of 8th Int. Middleware
Conference, NewPort (CA), November 2007, ACM/IFIP/USEUNIX

Royo, P.; Lopez, J.; Pastor, E.; & Barrado, C. (2008). Service Abstraction Layer for UAV
Flexible Application Development, 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, January 2008, AIAA

Cox, T.H.; Somers, I. & Fratello D.J. (2006). Earth Observations and the Role of UAVs: A
Capabilities Assessment, 2006, NASA

Haiyang, C.; Yongcan, C. & YangQuan, C. (2007). Autopilots for Small Fixed-Wing
Unmanned Air Vehicles: A Survey, Proceedings of International Conference on
Mechatronics and Automation (ICMA), Harbin, China, 2007, IEEE

FAA (2008). Aeronautical Information Manual, Official Guide to Basic Flight Information
and ATC Procedures, U.S. Federal Aviation Administration, 2007.

EUROCONTROL (2003). Guidance Material for the Design of Terminal Procedures for Area
Navigation, European Organisation for the Safety of Air Navigation

Schmidt, D.C. (2002). Middleware for Real-Time and Embedded Systems, Communications of
the ACM, June 2002

www.intechopen.com

Aerial Vehicles

Edited by Thanh Mung Lam

ISBN 978-953-7619-41-1

Hard cover, 320 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more

intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for

further improvement of the design and application of aeral vehicles. The advanced techniques and research

described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and

space.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

E. Pastor, C. Barrado, P. Royo, J. Lopez and E. Santamaria (2009). An Open Architecture for the Integration of

UAV Civil Applications, Aerial Vehicles, Thanh Mung Lam (Ed.), ISBN: 978-953-7619-41-1, InTech, Available

from:

http://www.intechopen.com/books/aerial_vehicles/an_open_architecture_for_the_integration_of_uav_civil_appl

ications

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

