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Abstract

Optical metrology and interferometry are widely known disciplines that study and
develop techniques to measure physical quantities such as dimensions, force, tempera-
ture, stress, etc. A key part of these disciplines is the processing of interferograms, also
called fringe patterns. Owing that this kind of images contains the information of interest
in a codified form, processing them is of main relevance and has been a widely studied
topic for many years. Several mathematical tools have been used to analyze fringe pat-
terns, from the classic Fourier analysis to regularization methods. Some methods based on
wavelet theory have been proposed for this purpose in the last years and have evidenced
virtues to consider them as a good alternative for fringe pattern analysis. In this chapter,
we resume the theoretical basis of fringe pattern image formation and processing, and
some of the most relevant applications of the 2D continuous wavelet transform (CWT) in
fringe pattern analysis.

Keywords: 2-D wavelets, fringe patterns, optical measurement techniques

1. Introduction

Fringe pattern processing has been an interesting topic in optical metrology and interferome-

try; owing to its relevance nowadays, it is a widely studied discipline. Digital fringe pattern

processing is used in optical measurement techniques such as optical testing [1, 2], electronic

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



speckle pattern interferometry (ESPI), holographic interferometry, and moiré interferometry or

profilometry [3–5]. They are quite popular for non-contact measurements in engineering and

have been applied for measuring various physical quantities like displacement, strain, surface

profile, refractive index, etc. In optical methods of measurement, the phase, which is related to

the measured physical quantity, is encoded in an intensity distribution represented in an image

which is, in general, the result of the interference phenomena. This phenomenon is used in

classical interferometry, in holographic interferometry, and in electronic speckle pattern inter-

ferometry to convert the phase of a wave of interest into an intensity distribution. As the

physical quantity to be measured is codified as the phase of a fringe pattern image, the main

task of fringe pattern processing is to recover such phase.

The methods for phase recovery from fringe patterns can be classified mainly in three catego-

ries [2, 6]: (a) Phase-stepping or phase-shifting methods which require a series of fringe images

to recover the phase information. (b) Spatial domain methods which can compute the phase

from a single fringe pattern in the spatial domain. (c) Frequency domain methods which uses

some kind of transformation to the frequency domain to compute the phase. In this category,

the Fourier and Wavelet transforms are the most common mathematical tools to carry out the

task.

Apart from the phase recovery, there are other important steps in fringe pattern processing.

For example, many times the fringe patterns are corrupted by noise, such as the case of the

electronic speckle pattern interferometry. Then, fringe image enhancement by means of low-

pass filtering is usually required. Owing that most algorithms to retrieve the phase from a

fringe pattern give the phase wrapped in the interval �π;π½ Þ, other important step is the well-

known phase-unwrapping process [6, 7]. In the field of fringe image enhancement, such as

fringe image denoising or phase denoising, there has been a wide research activity in the last

years. Researchers have realized that improving the quality of fringe images and wrapped

phase fields is of main relevance for a successful phase recovery or phase unwrapping. How-

ever, enhancing fringe images or wrapped phase fields has resulted to be a task that must be

realized in a special manner, so that ordinary techniques for image enhancement are not

always adequate. Owing that frequencies of fringes and noise usually overlap and normally

cannot be properly separated, common filters for image processing have blurring effects on

fringe features, especially for patterns with high density fringes. For these cases, the use of

anisotropic filters is a better way for removing noise without the harmful blurring effects.

In the fields of fringe pattern denoising and wrapped phase map denoising, there have been

many proposals to realize these tasks. Some of the first contributions in this field were mainly

based on convolution filters using different kinds of anisotropic filtering masks [8–12]. Other

set of the main contributions in the last years is based on the variational calculus approach by

solving partial differential equations [13–18], and by means of the regularization theory [19,

20]. The use of the Fourier transform for fringe or phase map denoising has also been proposed

in [21, 22] (Localized Fourier transform filter and windowed Fourier transform, respectively).

There have been other proposals that used different methodologies such as coherence enhanc-

ing diffusion [23], image decomposition [24], and multivariate empirical mode decomposition

[25]. The great disadvantage of already reported methods for fringe and phase map denoising
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is that they require the previous estimation of the so-called fringe orientation which, as it uses

the computation of the image gradient, could be an inaccurate procedure in the presence

of noise and low modulation of fringes. This is not the case for the Fourier-based methods

[21, 22]; however, as in the case of the Windowed Fourier transform technique, several param-

eters have to be adjusted depending on the particular image and it may require a long

processing time.

In the field of phase recovery from fringe images, there have been a lot of researches along the

last decades. For the case of phase-shifting algorithms, outstanding summaries of them can be

found in [2, 26]. For the case of spatial and frequency domain methods from a single pattern

image, two of the most popular techniques are the well-known Fourier Transform method

reported by Takeda et al. [27] and the Synchronous detection method [28]. Other methods that

use the regularization theory were also proposed [29, 30]. However, although these methods

are efficient and easy to implement, they are limited to be used in fringe images with frequency

carrier, which just in few experimental situations these kinds of images can be obtained. In

most cases, experimental conditions in optical measurement techniques yields fringe images

without a dominant frequency (i.e., closed fringes) which becomes the phase recovery problem

difficult, therefore more complicated algorithms must be used. One of the first proposals for

phase demodulation from single closed fringe images was reported by Kreis using a Fourier

based approach [31]. In the last decade of the twentieth century, it was a boom in the research

of closed fringe images, specially using the regularization theory. The Regularized phase-

tracking technique was reported by Servín et al. [32]. Marroquín et al. reported the regularized

adaptive quadrature filters [33] and the regularization method that uses the local orientation of

fringes [34]. At the beginning of this century, Larkin et al. proposed the spiral-phase quadra-

ture transform [35] and Servín et al. reported the General n-dimensional quadrature transform

[36]. Also, we proposed the orientational vector-field-regularized estimator to demodulate

closed fringe images [37].

As will be shown, closed fringe and wrapped-phase images have certain characteristics that

make them to be treated in a special manner. First, it is common that this kind of images present

structures with high anisotropy at the same time that many frequencies are dispersed over the

entire image. For these reasons, in most situations, the use of linear-translation-spatial (LTI)

filters, which are spatially invariant and independent of image content, do not give proper

results. Furthermore, owing that the Fourier transform is a global operation, this technique is

not always suitable for accurately model the local characteristics of closed fringe images.

It is widely known that the wavelet transform is a powerful tool that provides local, sparse,

and decorrelated multiresolution analysis of signals. In the last years, 2D wavelets have been

used for image analysis as a proper alternative to the weakness of LTI filters and linear trans-

forms as the Fourier one. In particular, it has been shown that 1-D and 2D continuous wavelet

transform (CWT) using Gabor atoms is a natural choice for proper analyses of fringe images.

This kind of analysis has been used for fringe pattern denoising and fringe pattern demodula-

tion showing several advantages, for example in laser plasma interferometry [38], in shadow

moiré [39–41], in profilometry [42–44], in speckle interferometry [45], in digital holography

[46], and other optical measurement techniques [47–55].
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In this chapter, the theoretical basis of fringe pattern image formation and processing is described.

Also, in general, the theory and advantages of the 2D continuous wavelet transform (CWT) for

fringe pattern processing is described. We also explain some of the main applications in fringe

pattern processing, such as phase recovery and wrapped phase map denoising, showing some

examples of applications in different optical measurement techniques.

2. Digital fringe patterns

2.1. Elements of digital fringe image processing systems

Often, a digital fringe image processing system is represented by a sequence of devices, which

typically starts with an imaging system that observes the target, a digitizer system which

samples and quantizes the analog information acquired by the imaging system, a digital

storage device, a digital computer that process the information, and finally, a displaying

system to visualize the acquired and processed information (Figure 1).

A typical imaging system is composed by an objective lens to form images in a photosensitive

plane which is commonly a CCD (charge couple devices) array.

2.2. Fringe image formation

Fringe pattern images are present in several kinds of optical tests for the measurement of

different physical quantities. Such tests are examples for the quality measurement of optical

devices using optical interferometry, photoelasticity for stress analysis, or electronic speckle

pattern interferometry (ESPI) for the measurement of mechanical properties of materials. The

interference phenomena are usually used in many optical methods of measurement. We now

describe a classical way to form a fringe pattern image using the two-wave interference.

Two-wave interference can be generated by means of several types of interferometers, and the

interferograms or fringe patterns are produced by superimposing two wavefronts. An inter-

ferometer can accurately measure deformations of the wavefront of the order of the wave-

length. Considering two mutually coherent monochromatic waves, as depicted in Figure 2,

W x; yð Þ represents the wavefront shape under study (i.e., the wave that contains the informa-

tion of the physical quantity to be measured). The sum of their complex amplitudes can be

represented as

Figure 1. Typical sequence in a digital fringe pattern image processing system.
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E x; yð Þ ¼ A1 x; yð ÞeikW x; yð Þ þ A2 x; yð Þeikx sinθ, (1)

where A1 and A2 are the amplitudes of the wavefront under test and the reference wavefront (a

flat wavefront), respectively, and k ¼ 2π
λ , being λ the wavelength.

The irradiance at a given plane perpendicular to z-axis is then represented as

I x; yð Þ ¼ E x; yð ÞE∗ x; yð Þ

¼ A2
1 x; yð Þ þ A2

2 x; yð Þ þ 2A1 x; yð ÞA2 x; yð Þ cos kx sinθþ kW x; yð Þ½ �:
(2)

For simplicity, Eq. (2) is usually written in a general form as:

I x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos u0xþ ϕ x; yð Þ
� �

, (3)

where a x; yð Þ and b x; yð Þ are commonly called the background illumination and the amplitude

modulation, respectively. The term u0 ¼ k sinθ is the fringe carrier frequency and ϕ x; yð Þ ¼

kW x; yð Þ is the phase to be recovered from the fringe pattern image. It must be noted that if the

reference wavefront is perpendicular to z-axis (i.e., θ ¼ 0), the fringe carrier frequency is

removed and Eq. (3) is simplified:

I x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos ϕ x; yð Þ
� �

: (4)

Figure 2. Interference of two wavefronts. Solid line represents the wavefront under test and dashed line represents the

reference wavefront.
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Equations (3) and (4) represent the mathematical expressions of fringe pattern images with and

without fringe carrier frequency, respectively. Examples of these kinds of fringe images are

shown in Figure 3.

3. Fringe pattern processing

3.1. Phase-shifting methods for phase recovery

One of the most popular methods for phase recovery is the well-known phase-shifting. This

method requires a set of phase-shifted fringe patterns which are experimentally obtained in

different ways depending on the optical measurement technique. For example, in interferometry

Figure 3. Examples of simulated fringe pattern images with (a) and without (b) fringe carrier frequency. The phase of

modulation ϕ x; yð Þ (c) is the same for both fringe images (phase shown wrapped and codified in gray levels).

Wavelet Theory and Its Applications178



the phase shifting is realized by moving some mirrors in the optical interferometer. The set of N

phase-shifted fringe patterns is defined as

In x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos ϕ x; yð Þ þ αn

� �

n ¼ 1, 2,…, N: (5)

The pointwise solution for ϕ x; yð Þ from the non-linear system of equations is obtained by using

the last-squares approach (see [2] for details):

W ϕ x; yð Þ
� �

¼ tan �1 �

PN
n¼1 In sin αnð Þ

PN
n¼1 In cos αnð Þ

 !

∈ �π;π½ Þ, (6)

where W is the wrapping operator such that W ϕ x; yð Þ
� �

∈ �π;π½ Þ. Several algorithms can be

used that require three, four, up to eight images.

3.2. Phase recovery from single fringe patterns with carrier

As previously mentioned, processing fringe patterns with fringe carrier frequencymay be simple

to carry out. The key point in the demodulation of fringe patterns with carrier is that the total

phase function u0xþ ϕ x; yð Þ represents the addition of an inclined phase plane u0x plus the

target phase ϕ x; yð Þ. In this case, a monotonically increasing (or decreasing) phase function has

to be recovered. If we analyze the Fourier spectrum of Eq. (3), for a proper separation between

spectral lobes in the Fourier space, the following inequality must be complied:

max k∇ϕk
� �

< ku0k: (7)

The analytic signal g x; yð Þ to recover the phase ϕ x; yð Þ can be computed with the Fourier

transform method [27], which can expressed as

g x; yð Þ ¼ F
�1 H u; vð ÞF I x; yð Þf gf g ¼ ei2π u0xþϕ x; yð Þ½ �, (8)

where H u; vð Þ is a filter in the Fourier domain centered at the frequency u0, u the frequency

variable along x direction, and v the frequency variable along y direction. Finally, the wrapped

phase is computed with

W ϕ x; yð Þ
� �

¼ tan �1 Real g x; yð Þe�i2πu0
� �

Imag g x; yð Þe�i2πu0f g

� �

∈ �π;π½ Þ: (9)

Other technique to compute the phase from a carrier frequency fringe pattern is the synchro-

nous detection technique [28], which is realized in the spatial domain. Using the complex

notation, in this case, the analytic function g x; yð Þ can be computed with

g x; yð Þ ¼ h x; yð Þ∗ I x; yð Þei2πu0
� �

¼ ei2πϕ x; yð Þ, (10)

where ∗ represents the convolution operator and h x; yð Þ a low-pass convolution filter in the

spatial domain. The wrapped phase can be computed with
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W ϕ x; yð Þ
� �

¼ tan �1 Real g x; yð Þf g
Imag g x; yð Þf g

� �

∈ �π;π½ Þ: (11)

3.3. Phase recovery from single fringe patterns without carrier

As described in [34–37], for the case in which u0 ¼ 0, the previous computation of the fringe

direction is necessary to compute the analytic function g x; yð Þ, for example, using the quadra-

ture transform [36]:

Imag g x; yð Þf g ¼ sin ϕ x; yð Þ
� �

¼ nϕ x; yð Þ � ∇In x; yð Þ
k∇ϕ x; yð Þk , (12)

where In x; yð Þ ¼ cos ϕ x; yð Þ
� �

¼ Real g x; yð Þf g is a normalized version of I x; yð Þ, and nϕ is the

unit vector normal to the corresponding isophase contour, which points to the direction of

∇ϕ x; yð Þ. It is well known that the computation of nϕ is by far the most difficult problem to

compute the phase using this method.

Also, the modulo-2π fringe orientation angle α x; yð Þ can be used to compute the quadrature

fringe pattern by means of the spiral-phase signum function S u; vð Þ in the Fourier domain

[35]:

Imag g x; yð Þf g ¼ sin ϕ x; yð Þ
� �

¼ �ie�iα x;yð Þ
F

�1 S u; vð ÞF In x; yð Þf gf g, (13)

where

S u; vð Þ ¼ uþ iv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p , (14)

and i ¼
ffiffiffiffiffiffiffi

�1
p

. However, the most difficult problem in this method is the computation of α x; yð Þ.
It can be deduced that Eqs. (12) and (13) are closely related because

α x; yð Þ ¼ angle nϕ x; yð Þ
� �

∈ 0; 2πð �: (15)

3.4. Wrapped phase maps denoising

The unwrapping process can be, in many cases, a difficult task due to phase inconsistencies or

noise. In order to understand the phase unwrapping problem of noisy phase maps, we define

the wrapped and the unwrapped phase as ψ x; yð Þ and ϕ x; yð Þ respectively. As it is known that

ψ x; yð Þ∈ �π;π½ Þ, the following relation can be established:

ψ x; yð Þ ¼ ϕ x; yð Þ þ 2πk x; yð Þ, (16)

where k x; yð Þ is a field of integers such that ψ x; yð Þ∈ �π;π½ Þ. The wrapped phase-

difference vector field Δψ x; yð Þ which can be computed from the wrapped phase map, is

defined as
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Δψ x; yð Þ ¼ ψ x; yð Þ � ψ x� 1; yð Þ;ψ x; yð Þ � ψ x; y� 1ð Þ½ �, (17)

where x� 1; yð Þ and x; y� 1ð Þ are contiguous horizontal and vertical sites, respectively. In a

similar manner, we can also define the unwrapped phase-difference field:

Δϕ x; yð Þ ¼ ϕ x; yð Þ � ϕ x� 1; yð Þ;ϕ x; yð Þ � ϕ x; y� 1ð Þ
� �

: (18)

It can be deduced that the problem of the recovery of ϕ from ψ can be properly solved if the

sampling theorem is reached, that is, if the distance between two fringes is more than two

pixels (the phase difference between two fringes is 2π). In phase terms, the sampling theorem

is reached if the phase difference between two pixels is less than π or, in general

kΔϕk < π, ∀ x; yð Þ: (19)

If this condition is satisfied, the following relation can be established:

Δϕ ¼ W Δψf g ¼ ψx;ψy

h i

, (20)

where

ψx ¼ W ψ x; yð Þ � ψ x� 1; yð Þf g and ψx ¼ W ψ x; yð Þ � ψ x; y� 1ð Þf g: (21)

Note that W Δψf g (the wrapped phase differences) can be obtained from the observed

wrapped phase field ψ. Then, the unwrapped phase ϕ can be achieved by two-dimensional

integration of the vector field W Δψf g.

A simple way to compute the unwrapped phase ϕ from the wrapped one ψ is by means of

minimizing the cost function

U ϕ
	 


¼
X

x; yð Þ∈ L

ψx x; yð Þ � ϕ x; yð Þ � ϕ x� 1; yð Þ
	 
� �2

þ ψy x; yð Þ � ϕ x; yð Þ � ϕ x; y� 1ð Þ
	 


h i2
� �

,

(22)

where L is the set of valid pixels in the image. Unfortunately, in most cases noise is present,

therefore, inequality (19) is not always satisfied and the integration does not provide proper

results. Therefore, denoising wrapped phase maps is a fundamental step before the phase

unwrapping process.

4. The 2D continuous wavelet transform for processing fringe patterns

It is clear that the phase demodulation of fringe images with carrier may be easily realized.

Owing that, in this case, the fringe image may represent a quasi-stationary signal along the

direction of the frequency carrier, the use of classical linear operators such as the Fourier

The 2D Continuous Wavelet Transform: Applications in Fringe Pattern Processing for Optical Measurement…
http://dx.doi.org/10.5772/intechopen.74813

181



transform may be adequate. It works well mainly for few components in the frequency

domain (i.e., for narrow spectrums); however, this is not the case for many signals in the real

world. This dependence is a serious weakness mainly in two aspects: the degree of automa-

tion and the accuracy of the method specially when fringes produce spread spectrums due to

localized variations or phase transients. Additionally, in the case of closed fringes there may

be a wide range of frequencies in all directions. Then, evidently standard Fourier analysis is

inadequate for treating with this kind of images because it represents signals with a linear

superposition of sine waves with “infinite” extension. For this reason, an image with closed

fringes should be represented with localized components characterizing the frequency,

shifting, and orientation. A powerful mathematical tool for signal description that has been

developed in the last decades is the wavelet analysis. Fortunately, for our purposes, a key

characteristic of this type of analysis is the finely detailed description of frequency or phase

of signals. In consequence, it can have a good performance especially with fringes that

produce spread spectrums. Additionally, one of the main advantages using wavelets com-

pared with standard techniques is its high capability to deal with noise. In particular, the 2D

continuous wavelet transform have recently been proposed for the processing of interfero-

metric images. Advantages of denoising and demodulation of interferograms using the 2D

CWT has been discussed in [44–55].

Considering an interferometric image (an interferogram or a wrapped-phase field) G rð Þ, where

r ¼ x; yð Þ∈R2, its 2D CWT decomposition can be defined as

GW s;θ; ηð Þ ¼W G rð Þf g ¼

ð
R
2
G rð Þφ∗

s,θ,η rð Þdr: (23)

In Eq. (23), φ represents the 2D mother wavelet and ∗ indicates the complex conjugated. The

variable s∈R2 represents the shift, θ∈ 0; 2π½ Þ the rotation angle, and η the scaling factor. It has

been shown that a proper mother wavelet for processing interferometric images is the 2D

Gabor wavelet (see Figure 4). The mathematical representation of this kind of wavelet can be

defined as

Figure 4. Example of a 2D Gabor wavelet. (a) Real part and (b) imaginary part.
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φs,θ,η rð Þ ¼ exp �π
∥r� s∥2

η


 �

� exp i2π
ν

η
r� sð Þ �Θð Þ


 �

, (24)

where Θ ¼ cosθ; sinθð Þ, �ð Þ represents the dot product, and ν∈R is the frequency variable.

Figure 5 shows that the 2D CWT is performed along different directions and frequencies.

4.1. Phase recovery with the 2D CWT

Owing that fringe pattern images with closed fringes generally contain elements with high

anisotropy and sparse frequency components, the phase recovery is a complex procedure.

Compounding the problem, the presence of noise makes the process even more complicated

because noise and fringes are mixed in the Fourier domain.

Also, it has been shown that a single fringe pattern without carrier frequency, is not easy to

deal with. Owing to ambiguities in the image formation process, a main drawback analyzing

them is that several solutions of the phase function can satisfy the original observed image.

Therefore, it is necessary to restrict the solution space of ϕ in Eq. (4). Fortunately, as in most

practical cases the phase to be recovered is continuous, the algorithm to process the fringe

pattern usually seeks for a continuous phase function. However, the recovery of the continu-

ous phase function is not a simple task to carry out as occur with fringe patterns with carrier

frequency. It can be observed that the phase gradient represents the local frequencies of the

fringe pattern in the x and y directions; however, the sign of ∇ϕ is ambiguous because negative

and positive frequencies are mixed in the Fourier domain.

The following is a general description of the phase recovery method using the 2D CWT. First,

it is necessary to consider a normalized version of the fringe pattern. The normalization

Figure 5. Frequency localization of the 2D wavelets in the Fourier domain (f ¼ ν
η).
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procedure can be carried out using the method proposed in [56]. Consider we represent the

normalized fringe pattern in complex form:

G rð Þ ¼ cos ϕ rð Þ
� �

¼
exp iϕ rð Þ

� �

2
þ
exp �iϕ rð Þ

� �

2
: (25)

In this particular case, the 2D CWT of G rð Þ is

W G rð Þf g ¼
Ð

R
2

exp iϕ rð Þ
� �

2
exp �π

∥r� s∥2

η


 �

� exp �i2π
ν

η
r� sð Þ �Θð Þ


 �

dx

þ
Ð

R
2

exp �iϕ rð Þ
� �

2
exp �π

∥r� s∥2

η


 �

� exp �i2π
ν

η
r� sð Þ �Θð Þ


 �

dx:

(26)

Note that W G rð Þf g represents a four-dimensional function depending on x, y, η, and θ. The

process to recover the phase ϕ rð Þ using the 2D CWTconsists on realizing the well-known ridge

detection. To understand the phase recovery from the ridge detection, first it is necessary to

know the meaning of Eq. (26). To do so, let ~r ¼ r� s and νθ ¼ ν
η cosθ; sinθð Þ, where νθ ∈R

2.

Using Taylor’s expansion we know that

ϕ ~r þ sÞ ≈ϕ sð Þ þ ∇ϕ sð Þ � ~r:
	

(27)

Then, we can now rewrite Eq. (26) as

W G rð Þf g ≈
exp iϕ sð Þ

� �

2

ð

R
2
exp i ∇ϕ sð Þ � ~r

	 
� �

� exp �π
∥~r∥2

η


 �

exp �i2π ~r � νθÞð �d~r½

þ
exp �iϕ sð Þ

� �

2

ð

R
2
exp �i ∇ϕ sð Þ � ~r

	 
� �

� exp �π
∥~r∥2

η


 �

exp �i2π ~r � νθÞð �d~r,½ (28)

or, which is the same

W G rð Þf g ≈
exp iϕ sð Þ

� �

2
F exp i ∇ϕ sð Þ � ~r

	 
� �

� exp �π
∥~r∥2

η


 �� �

þ
exp �iϕ sð Þ

� �

2
F exp �i ∇ϕ sð Þ � ~r

	 
� �

� exp �π
∥~r∥2

η


 �� �

: (29)

The two terms in (29) contains Fourier transforms of complex periodic functions of frequencies

∇ϕ sð Þ=2π and �∇ϕ sð Þ=2π. Then, applying the Fourier’s similarity and modulation theorems

this last equation can be finally written as

W G rð Þf g ≈ η
exp iϕ sð Þ

� �

2
exp �ηπ νθ �

∇ϕ sð Þ

2π

�

�

�

�

�

�

�

�

2
" #

þ η
exp �iϕ sð Þ

� �

2
exp �ηπ νθ þ

∇ϕ sð Þ

2π

�

�

�

�

�

�

�

�

2
" #

:

(30)
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In this case, νθ is the two-dimensional frequency variable. Note that for a fixed s, W G rð Þf g

represents two Gaussian filters in the Fourier domain localized at polar coordinates ν
η ;θ

� �

. It

can also be visualized as an orientation and frequency decomposition of the fringe pattern.

To detect the analytic function and consequently compute the phase ϕ sð Þ at a given pixel s (i.e.,

the ridge detection), we can choice one of two possibilities: at νθ ¼
∇ϕ sð Þ
2π or νθ ¼ �

∇ϕ sð Þ
2π . Owing

that the sign of the phase gradient cannot be determined from the image intensity, there exists

a sign ambiguity of the phase in the θ� η map. In Figure 6, it can be observed that in this

situation, there are two maximum in each θ� η map. Also, it can be deduced that the

magnitude of the coefficients map is periodic with respect to θ with period π. To solve the

problem of sign ambiguity, Ma et al. [48] proposed a phase determination rule according to

the phase distribution continuity. Also, Villa et al. [55] proposed a sliding 2D CWT method

that assumes that the phase is continuous and smoothly varying, in this way, the ridge

detection is realized assuming that the coefficient maps are similar in adjacent pixels, reducing

the processing time too.

Once detected the ridgeW G rð Þf gridge that represents a 2D function, the wrapped phase can be

computed with

W ϕ rð Þ
� �

¼ tan �1
Real W G rð Þf gridge

n o

Imag W G rð Þf gridge

n o

0

@

1

A

: (31)

Figures 7 and 8 show examples of fringe pattern phase recovery using the 2D CWT method

reported in [55]. It is important to remark that this method is highly robust against noise.

Figure 6. (a) Example of noisy simulated fringe pattern. The square indicates a region around a pixel swhere the phase is

estimated. (b) Magnitude of the θ� η map at the pixel s, codified in gray levels. Horizontal direction represents the

rotation angle while the vertical direction represents the scale. The two white regions represent the two terms in Eq. (30).
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A big advantage of using the 2D CWT method to compute the phase from fringe patterns

without carrier is that the sign ambiguity of ∇ϕ can be easily solved, for example, with the

method reported in [55]. The key idea of the method is the assumption that the phase ϕ is

smooth; in other words, the fringe frequency and fringe orientation are very similar in neigh-

bor pixels, hence the ridge detection at each θ� η map is simplified registering the previous

computation of neighbor pixels.

Figure 8. Example of the 2D CWT method applied to phase recovery. (a) Experimentally obtained moiré fringe pattern.

(b) Recovered phase.

Figure 7. Example of the 2D CWT method applied to phase recovery. (a) Synthetic noisy fringe pattern. (b) Recovered

phase.
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4.2. The 2D CWT for wrapped phase maps denoising

Other of the most relevant tasks in fringe pattern processing is the wrapped phase maps den-

oising. Owing that the phase unwrapping is a key step in fringe pattern processing for optical

measurement techniques, the previous denoising of the wrapped phase is crucial for a proper

measurement. Several optical measurement techniques, such as the electronic speckle pattern

interferometry, use different phase recovery methods, inherently produces highly noisy wrapped

phase maps. In these situations, the phase map denoising is a crucial pre-process for a successful

phase unwrapping. Considering the problem of denoising wrapped phase maps, the drawback

is that owing to 2π phase jumps of the wrapped phaseψ, direct application of any kind of filter is

not always a proper procedure to solve it. For example, the application of a simple mean filter

may smear out the phase jumps. In order to avoid this drawback, the wrapped phase filtering

must be realized computing the following complex function:

G rð Þ ¼ exp iψ rð Þ½ �, (32)

where i ¼
ffiffiffiffiffiffiffi

�1
p

. As both imaginary and real parts are continuous functions, we can properly

apply a filter over G rð Þ, and the argument of the filtered complex signal will contain the

denoised phase map. Again, substituting (32) in (23), we now obtain

W G rð Þf g ¼
ð

R
2
exp iψ rð Þ½ �exp �π

∥r� s∥2

η


 �

� exp �i2π
ν

η
r� sð Þ �Θð Þ


 �

dx: (33)

Following the same reasoning to obtain Eq. (30), for this case, we obtain:

W G rð Þf g ≈ ηexp iψ sð Þ½ �exp �ηπ νθ �
∇ψ sð Þ
2π

�

�

�

�

�

�

�

�

2
" #

: (34)

The difference of this equation with the result shown in Eq. (30) is that at each θ� ηmap, there

is only one maximum: at νθ ¼ ∇ψ sð Þ
2π (see Figure 9). Thus, in this case, the ridge detection is

simpler and the filtered wrapped phase map ψf rð Þ can be computed with

Figure 9. (a) Zoom of a small square region in a noisy wrapped phase map (around some pixel s). (b) Magnitude of the

θ� η map at the pixel s, codified in gray levels. Horizontal direction represents the rotation angle while the vertical

direction represents the scale.
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ψf rð Þ ¼ tan �1
Real W G rð Þf gridge

n o

Imag W G rð Þf gridge

n o

0

@

1

A∈ �π;π½ Þ: (35)

Figures 10 and 11 are examples of the results applying the 2D CWT in wrapped phase map

denoising. Note the outstanding performance removing the structures due to the gratings in

the experimentally obtained wrapped phase map with moire deflectometry (Figure 11).

The key step in the 2D CWTmethod for phase map denoising is the ridge detection. In this way,

all the coefficients in the θ� η map contributed by the noise and spurious information are

Figure 10. (a) Simulated noisy wrapped phase map. (b) Filtered wrapped phase map.

Figure 11. (a) Experimentally obtained moiré noisy wrapped phase map. (b) Filtered wrapped phase map.
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removed. A comparison of the performance of this method compared with the windowed Fourier

transform method [22] and the localized Fourier transform method [21] is shown in Table 1. In

this case, the normalized-mean-square-error (NMSE) was used as the metric applied over a

synthetic noisy phase map ψ (Figure 10). Although the performance against noise of the WFT is

better that the 2D CWTmethod, this last is much simpler to implement, as discussed in [53].

NMSE ¼

∥ψ� ψf ∥
2

∥ψ∥2
: (36)

5. Conclusions

It canbeobviouslydeduced that often fringepatterns contain elementswithhigh anisotropy, sparse

frequency components, and noise, which makes the processing of this kind of images by means of

classical LTI methods inadequate. Several authors have shown that the use of multiresolution

analysis bymeans of the 2DCWT for processing fringe patterns has resulted a proper and interest-

ing alternative for this task. The 2D CWTmethods present some attractive advantages compared

with other commonly used techniques. (1) The use of the Gabormotherwavelet for processing this

kind of images is a natural choice to model them, as can be obviously deduced analyzing the

physical theory of fringe image formation. (2) In most classical methods for processing fringe

images, the previous estimation of the fringe direction or orientation is a must, especially for fringe

patterns without a fringe carrier frequency. Owing that the multiresolution analysis using the 2D

CWTmethods models the image by means of the angle θ, fringe direction or orientation is inher-

ently computed through the ridgedetection. (3)As the2DCWTmethodsmodels the interferograms

bymeans of scale and orientation, all spurious information andnoise contributing in theθ� ηmap

is efficiently removed through the ridge detection, resulting a powerful tool to remove the noise.
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