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Abstract

This chapter presents and explains the most used methodologies for the evaluation of
measurement uncertainty in metrology with practical examples. The main topics are basic
concepts and importance, existing documentation, the harmonized methodology of the
Guide to the Expression of Uncertainty in Measurement, types of uncertainty, modeling of
measurement systems, use of alternative methods (including the GUM supplement 1
Monte Carlo numerical method), evaluation of uncertainty for calibration curves, corre-
lated uncertainties, uncertainties arising from the calibration of instruments, and the main
proposals for the new revised GUM. The chapter also discusses the GUM as a tool for the
technical management of measurement processes.

Keywords: metrology, measurement, uncertainty, GUM, Monte Carlo

1. Introduction

Measurement uncertainty is a quantitative indication of the quality of measurement results,

without which they could not be compared between themselves, with specified reference

values or to a standard. Uncertainty evaluation is essential to guarantee the metrological

traceability of measurement results and to ensure that they are accurate and reliable. In

addition, measurement uncertainty must be considered whenever a decision has to be taken

based on measurement results, such as in accept/reject or pass/fail processes.

Considering the context of globalization of markets, it is necessary to adopt a universal

procedure for evaluating uncertainty of measurements, in view of the need for comparability

of results between nations and for mutual recognition in metrology. As an example, laborato-

ries accredited under the ISO/IEC 17025:2017 standard [1] need to demonstrate their technical

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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competence and the ability to properly operate their management systems, and so they are

required to evaluate the uncertainty for their measurement results.

In addition, the use of uncertainty evaluation methods as a tool for technical management of

measurement processes is extremely important to reduce, for example, the large number of

losses that occurs in the industry, which can be highly significant in relation to the gross

domestic product (GDP) of some countries. One of the probable causes of the waste can be

attributed to instruments whose accuracy is inadequate to the tolerance of a certain measure-

ment process.

In this chapter, detailed steps for uncertainty evaluation are given.

2. Main references for uncertainty evaluation

In order to harmonize the uncertainty evaluation process for every laboratory, the Bureau

International des Poids et Mesures (BIPM) published in 1980 the Recommendation INC-1 [2] on

how to express uncertainty in measurement. This document was further developed and orig-

inated the “Guide to the Expression of Uncertainty in Measurement”—GUM in 1993, which

was revised in 1995 and lastly in 2008. This document provides complete guidance and

references on how to treat common situations on metrology and how to deal with uncertainties

in metrology. Currently, it is published by International Organization for Standardization

(ISO) as the ISO/IEC Guide 98-3 “Uncertainty of measurement—Part 3: Guide to the expres-

sion of uncertainty in measurement” (GUM), and by the Joint Committee for Guides in

Metrology (JCGM) as the JCGM 100:2008 guide [3]. The JCGM was established by BIPM to

maintain and further develop the GUM. They are in fact currently producing a series of

documents and supplements to accompany the GUM, four of which are already published

[4–7].

Evaluation of uncertainty, as presented by the JCGM 100:2008, is based on the law of propaga-

tion of uncertainties (LPU). This methodology has been successfully applied for several years

worldwide for a range of different measurement systems and is currently the most used

procedure for uncertainty evaluation in metrology. However, since its twentieth anniversary

in 2013, JCGM decided to revise it again [8–10]. In this new revision, uncertainty terms and

concepts [11] will be aligned with the current International Vocabulary of Metrology (VIM)

[12] and with the new GUM supplements [5, 6]. Aspects such as a new Bayesian approach, the

redefinition of coverage intervals and the elimination of the Welch-Satterthwaite formula to

evaluate the effective degrees of freedom will be covered [9]. In late 2014, a first draft of the

newly revised version of the GUM was circulated among National Metrology Institutes.

Remarkable changes were made that could affect the way laboratories deal with the measure-

ment uncertainty results. This revision is still being discussed, and some information about it

has also been released elsewhere [10].

In the field of analytical chemistry, there is also another document worth mentioning that is the

“Quantifying Uncertainty in Analytical Measurement” guide [13], produced by a joint
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EURACHEM/CITAC Measurement Uncertainty Working Group. This document was first

published in 1995 and further revised in 2000 [14]. This last edition had a widespread imple-

mentation and is among the most highly cited publications in chemical metrology area [14].

Recently, a new revised edition was published in 2012 with improved content and added

information on developments in uncertainty evaluation [14]. This document basically presents

the uncertainty evaluation process following the suggestions of the GUM, but also contains

several examples in the analytical chemistry area.

3. Using the GUM approach on uncertainty evaluation

The following main steps summarize the methodology presented by the GUM.

3.1. Definition of the measurand and of input quantities

It must be clear to the analyst which quantity will be the final object of the measurement in

question. This quantity is known as the measurand. In addition, it is important to identify all

the variables that directly or indirectly influence the measurand. These variables are known as

the input quantities. As an example, Eq. (1) shows a measurand y as a function of three

different input quantities: x1, x2, and x3:

y ¼ f x1; x2; x3ð Þ (1)

3.2. Modeling the measurement process

In this step, the measurement procedure should be modeled in order to have a functional

relationship expressing the measurand as a result of all the input quantities. The measurand y

in Eq. (1) could be modeled, for example, as in Eq. (2)

y ¼
x1x2
x23

(2)

The modeling step is critical for the uncertainty evaluation process as it defines how the input

quantities impact the measurand. The better the model is defined, the better its representation

of reality will be, including all the sources that impact the measurand on the uncertainty

evaluation. The modeling process can be easily visualized by using a cause-effect diagram

(Figure 1).

Example: To illustrate these steps, let us consider a measurement model for a torque test.

Torque is a quantity that represents the tendency of a force to rotate an object about an axis. It

can be mathematically expressed as the product of a force and the lever-arm distance. In

metrology, a practical way to measure it is by loading a known mass to the end of a horizontal

arm while keeping the other end fixed (Figure 2).

Note: This example is also presented, with a few adaptations, in other publications by the same

authors [15].

Methods for Evaluation of Measurement Uncertainty
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A simple model that describes this experiment can be expressed as follows:

T ¼ mgL (3)

where T is the torque (N.m), m is the mass of the applied load (kg), g is the local gravity

acceleration (m/s2), and L is the total length of the arm (m). Thus, m, g, and L are the input

quantities for this model. This example will be further discussed in the subsections ahead.

3.3. Evaluating the uncertainties of the input quantities

This step is also of great importance. Here, uncertainties for all the input quantities are

individually evaluated. The GUM classifies uncertainty sources as being of two main types:

Type A, which usually originates from some statistical analysis, such as the standard deviation

obtained in a repeatability study; and Type B, which is determined from any other source of

information, such as a calibration certificate or deduced from personal experience.

Type A uncertainties from repeatability studies are evaluated by the GUM as the standard

deviation of the mean obtained from the repeated measurements. For example, if a set of n

indications xi about a quantity x are available, the uncertainty ux due to repeatability of the

measurements can be expressed by s xð Þ as follows in Eq. (4):

Figure 1. A cause-effect diagram representing the model from Eq. (2).

Figure 2. A conceptual illustration of the experimental setup for a measurement of torque (T), where F is the applied

force, m is the mass of the load, g is the local gravity acceleration, and L is the length of the arm.

Metrology12



ux ¼ s xð Þ ¼ s xið Þ
ffiffiffi

n
p (4)

where x is the mean value of the repeated measurements, s xið Þ is its standard deviation, and

s xð Þ is the standard deviation of the mean. As such, the statistical distribution associated with

this input source is considered to be normal or Gaussian.

Note: This evaluation is not consistentwith theGUMsupplement 1 [5], where repeated indications

are treated as Student’s t-distributions to account for the lack of degrees of freedom or a low

number of indications. In this way, the new proposal for the draft GUM is to consider repeated

indications as t-distributions, just like in supplement 1. Therefore, its uncertainty would be evalu-

ated as in Eq. (5). This equation takes the degrees of freedom for the indications (n� 1) into account,

raising the uncertainty for a low number of indications. This correction would then be in accor-

dance with the approach suggested by the other GUM supplements for this type of uncertainty

ux ¼
n� 1

n� 3

� �1=2
s xið Þ

ffiffiffi

n
p (5)

It is important to note that the evaluation of uncertainties of Type B input sources must be

based on careful analysis of observations or in an accurate scientific judgment, using all

available information about the measurement procedure. This uncertainty type is generally

used when repeated experiments would not be possible, not available, or would be too costly

or time-consuming. In this case, the GUM also suggests the use of two more types of statistical

distributions: the uniform and the triangular distributions.

The uniform distribution should be used when only a range of values are available, that is, an

interval with the minimum and maximum values, and no detailed information about the

probability of values within this interval is available. The standard uncertainty associated with

such an interval is given by Eq. (6):

ux ¼
b� a
ffiffiffiffiffi

12
p (6)

where b is the maximum and a is the minimum values for the range. For example, if the only

information about the room temperature of a laboratory is known to be 20� 2ð Þ�C, then
b� a ¼ 22� 18 ¼ 4�C and the standard uncertainty associated with the room temperature

would be evaluated as uθ ¼ 4=
ffiffiffiffiffi

12
p �C ¼ 1:15�C.

The triangular distribution can be used when there is a strong evidence that the most probable

value lies in the middle of a given interval, but still without knowing exactly how this

probability behave within the interval. In chemistry, for example, the uncertainty associated

with the volume of a measuring flask could be evaluated by a triangular distribution. The

standard uncertainty for a triangular distribution is given by Eq. (7):

ux ¼
a
ffiffiffi

6
p (7)

where a is the semi-interval for the total range of the triangular distribution.

Methods for Evaluation of Measurement Uncertainty
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Another common Type B source of uncertainty is due to calibration certificates, related to a

standard or to a calibrated instrument. In this case, the standard uncertainty to be used is

normally obtained by dividing the expanded uncertainty U by the coverage factor k, both

provided by the calibration certificate (Eq. (8))

ux ¼
U

k
(8)

Several good examples on how to treat some of the most common uncertainty sources can be

found on the GUM [3], the EURACHEM/CITAC guide [13], and elsewhere [16].

Example: Returning to the example of torque measurement and considering the model defined

in Eq. (3), the following sources of uncertainty are considered:

Mass (m). The mass m was repeatedly measured 10 times in a calibrated balance. The average

mass was 35.7653 kg, with a standard deviation of 0.3 g. This source of uncertainty is purely

statistical and is classified as being of Type A according to the GUM. The standard uncertainty

(umR
) that applies in this case is obtained by Eq. (4), that is, umR

¼ 0:3 g=
ffiffiffiffiffi

10
p

¼ 9:49� 10�5 kg.

In addition, the balance used for the measurement has a certificate stating an expanded

uncertainty for this range of mass of Um = 0.1 g, with a coverage factor k = 2 and a coverage

probability of 95%. The uncertainty of the mass due to the calibration of the balance constitutes

another source of uncertainty involving the same input quantity (mass). In this case, the

standard uncertainty (umC
) is calculated by using Eq. (8), that is, umC

¼ Um=k ¼ 0:1 g=2 ¼
0:00005 kg.

Local gravity acceleration (g). The value for the local gravity acceleration is stated in a

certificate of measurement as 9.80665 m/s2, as well as its expanded uncertainty of Ug =

0.00002 m/s2, for k = 2 and p = 95%. Again, Eq. (8) is used to calculate the standard uncertainty

(ug), that is, ug ¼ Ug=k ¼ 0:00002 m=s2
� �

=2 ¼ 0:00001 m/s2.

Length of the arm (L). Let us suppose that in this hypothetical case, the arm used in the

experiment has no certificate of calibration, indicating its length value and uncertainty, and that

the onlymeasuring method available for the arm’s length is by the use of a ruler with a minimum

division of 1 mm. The use of the ruler leads then to a measurement value of 2000.0 mm for the

length of the arm. However, in this situation, very poor information about the measurement

uncertainty of the arm’s length is available. As the minimum division of the ruler is 1 mm, one

can assume that the reading can be donewith amaximumaccuracy of up to 0.5mm,which can be

thought as an interval of �0.5 mm as limits for the measurement. As no information of probabil-

itieswithin this interval is available, the assumption of a uniformdistribution is the best option, on

which there is equal probability for the values within the whole interval. Thus, Eq. (6) is used to

determine the standard uncertainty (uL), that is, uL ¼ 2000:5� 1999:5ð Þmm=
ffiffiffiffiffi

12
p

¼ 0:000289 m.

In practice, one can imagine several more sources of uncertainty for this experiment, like, for

example, the thermal dilatation of the arm as the room temperature changes. However, the

objective here is not to exhaust all the possibilities, but instead to provide basic notions of how

to implement the methodology of the GUM on a simple model.
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3.4. Propagation of uncertainties

3.4.1. The law of propagation of uncertainties

The GUM uncertainty approach is based on the law of propagation of uncertainties (LPU).

This methodology encompasses a set of approximations to simplify the calculations and is

valid for a range of simplistic models.

According to the LPU, the propagation of uncertainties is accomplished by expanding the

measurand model in a Taylor series and simplifying the expression by considering only the

first-order terms. This approximation is viable as uncertainties are very small numbers com-

pared with the values of their corresponding quantities. In this way, the treatment of a model

where the measurand y is expressed as a function of N variables x1,…, xN (Eq. (9)) leads to the

general expression for the propagation of uncertainties shown in Eq. (10)

y ¼ f x1;…; xNð Þ (9)

u2y ¼
XN

i¼1

∂y

∂xi

� �2

u2xi þ 2
XN�1

i¼1

XN

j¼iþ1

∂y

∂xi

� �

∂y

∂xj

� �

COV xi; xj
� �

(10)

where uy is the combined standard uncertainty for the measurand y and uxi is the uncertainty

for the ith input quantity. The second term of Eq. (10) is due to the correlation between the

input quantities. If there is no supposed correlation between them, Eq. (10) can be further

simplified as

u2y ¼
XN

i¼1

∂y

∂xi

� �2

u2xi (11)

The partial derivatives of Eq. (11) are known as sensitivity coefficients and describe how the

output estimate y varies with changes in the values of the input estimates x1, x2,…, xN. It also

converts the units of the inputs to the unit of the measurand.

Another important observation regarding the sensitivity coefficient occurs when the mathe-

matical model that defines the measurand does not contemplate a given quantity, known

as influence quantity. In this case, the determination of the sensitivity coefficient of the

measurand in relation to the input quantity must be done experimentally. For example, bio-

diesel is susceptible to oxidation when exposed to air, and this oxidation process affects fuel

quality. The oxidation time is determined by measuring the conductivity of an oil sample when

inflated with air at a given flow rate. There are a number of influence quantities that impact the

oxidation time of biodiesel such as temperature, air flow, conductivity, sample mass, and so on.

In this case, the sensitivity coefficients for oxidation time with respect to each of these influence

quantities are determined from an interpolation function obtained with experimental data. For

example, Figure 3 presents the table and its resulting graph, which shows the model of the

function that relates the oxidation time to the temperature of a biofuel sample (case study of

the authors).

Methods for Evaluation of Measurement Uncertainty
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Example: On returning to the torque measurement example, assuming that all the input

quantities are independent, the combined standard uncertainty for the torque is calculated by

using the LPU (Eq. (11)). The final expression is then

uT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂T

∂m

� �2

u2mR
þ

∂T

∂m

� �2

u2mC
þ

∂T

∂g

� �2

u2g þ
∂T

∂L

� �2

u2L

s

¼ 0:096 N m (12)

It is important to note that the terms (not squared) of Eq. (12), that is, each sensitivity coeffi-

cient multiplied by its corresponding uncertainty, are known as uncertainty components.

These components can be compared to each other as they are in the same units of the

measurand. Figure 4 shows the comparison between the uncertainty components for the

torque measurement model.

As can be noted, the dominant uncertainty component is due to the uncertainty associated with

the measurement of the arm length, which was taken as the resolution of the non-calibrated

Figure 3. A table and a graph representing the variation of the oxidation time of a biofuel sample as a function of

temperature.

Figure 4. Uncertainty component balance for the input quantities in the torque measurement model.
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ruler used in the measurement. This analysis shows to the analyst that, to reduce the final

uncertainty and improve the measurement system, a calibrated ruler, with a better uncertainty,

should be used. This represents the importance of the GUM as a management tool to the

measurement process.

3.4.2. The Kragten method

The Kragten method is an approximation that facilitates the calculation of the combined

uncertainty using finite differences in place of the derivatives [13]. This approximation is valid

when the uncertainties of the inputs are relatively small compared to the respective values of

the input quantities, generating discrepancies in the final result in relation to the LPU that

occur in decimals that can be ignored.

Assuming a measurand y, which is calculated from the input quantities x1, x2 and x3 according

to the mathematical model of Eq. (2), the uncertainties ux1 , ux2 and ux3 for the input quantities

are evaluated normally, according to methodologies already explained previously. From there,

the calculations of the measurand are performed individually for each input magnitude (yx1 ,

yx2 and yx3 ) so that each time their respective values are added with their uncertainties, as

shown in Eqs. (13)–(15)

yx1 ¼
x1 þ ux1ð Þx2

x23
(13)

yx2 ¼
x1 x2 þ ux2ð Þ

x23
(14)

yx3 ¼
x1x2

x3 þ ux3ð Þ2
(15)

The value of the measurand y varies for yxi due to the addition of the uncertainty uxi to the

value of its respective input quantity. Thus, the uncertainty component of each input source in

the unit of the measurand y is defined by the difference yxi � y
�

�

�

�

�

�, according to Eqs. (16)–(18)

uy x1ð Þ ¼ yx1 � y
�

�

�

�

�

� (16)

uy x2ð Þ ¼ yx2 � y
�

�

�

�

�

� (17)

uy x3ð Þ ¼ yx3 � y
�

�

�

�

�

� (18)

Thus, the combined standard uncertainty of y is finally evaluated as

uy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
u2y xið Þ

r

(19)

or by Eq. (20), if there are correlated uncertainties

Methods for Evaluation of Measurement Uncertainty
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uy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
u2y xið Þ þ 2

XN�1

i¼1

XN

j¼iþ1
uy xið Þuy xj

� �

r xi; xj
� �

r

(20)

where r xi; xj
� �

is the correlation coefficient between xi and xj.

3.5. Evaluation of the expanded uncertainty

The result provided by Eqs. (10) and (11) corresponds to an interval that contains only one standard

deviation (or approx. 68.2%of themeasurements for a normaldistribution). In order tohave abetter

coverage probability for the result, the GUM approach expands this interval by assuming that the

measurand follows the behavior of a Student’s t-distribution. An effective degrees of freedom veff

for the t-distribution can be obtained by using theWelch-Satterthwaite formula (Eq. (21))

νeff ¼
u4y

PN
i¼1

∂y
∂xi

� 	4

u4xi

νxi

(21)

where νxi is the degrees of freedom for the ith input quantity.

The effective degrees of freedom is used to obtain a coverage factor k that depends also of a

chosen coverage probability p, which is often 95%. The expanded uncertainty Uy is then

evaluated by multiplying the combined standard uncertainty by the coverage factor k that

finally expands it to a coverage interval delimited by a t-distribution with a coverage probabil-

ity p (Eq. (22))

Uy ¼ kuy (22)

Note: The draft for the new GUM proposal suggests that the final coverage interval cannot be

reliably determined if only an expectation y and a standard deviation uy are known, mainly if

the final distribution deviates significantly from a normal or a t-distribution. Thus, they

propose distribution-free coverage intervals in the form of y�Up, with Up ¼ kpuy: (a) if no

information is known about the final distribution, then a coverage interval for the measurand

Y for coverage probability of at least p is determined using kp ¼ 1= 1� pð Þ1=2. If p ¼ 0:95, a

coverage interval of y� 4:47uy is evaluated. (b) If it is known that the distribution is unimodal

and symmetric about y, then kp ¼ 2= 3 1� pð Þ1=2
h i

and the coverage interval y� 2:98uy would

correspond to a coverage probability of at least p ¼ 0:95.

Example: The effective degrees of freedom for the torque measurement example is calculated

using Eq. (21). As the number of degrees of freedom for Type B uncertainties is considered

infinite, only Type A uncertainties are accounted. In this case,

νeff ¼
u4T

∂T
∂mR

� 	4

u4mR

νmR

¼ 6:5� 107 (23)

Metrology18



Using t-distribution tables, the coverage factor for this value of υeff and p = 95% is k = 1.96.

Therefore, the expanded uncertainty is calculated as U ¼ kuT ¼ 1:96� 0:096 ¼ 0:2 N m, and

the measurement result is expressed as 668.0 � 0.2 N m. The GUM recommends that the final

uncertainty should be expressed with one or at most two significant digits.

4. Calibration curve and correlated uncertainties

One of the most valuable tools for the metrologist is the calibration curve. It is widely used in

measurement systems on which one cannot directly obtain the property value to be measured

of an object. Instead, a response from the system is measured. In this way, a calibration curve is

used to correlate the response from the system with well-known property values, usually

calibration standards (see Figure 5).

With a calibration curve in hands, the property value for a new unknown sample can be

directly determined by using the equation for the fitted curve, which is usually adjusted by a

linear regression. However, the calibration curve contains errors due to the lack of fit for the

experimental data, causing an uncertainty source to arise. Thus, when evaluating the uncer-

tainty for a predicted property value of xo corresponding to a new observation yo (for a new

unknown sample, for example), the LPU with correlation terms is applied on the linear

regression model in the form of Eq. (24). Eq. (25) represents the model for a predicted value yo
corresponding to a new observed value xo, in the case of the inverse process

x0 ¼
yo � a

b
(24)

yo ¼ aþ bx0 (25)

where a and b are, respectively, the intercept and the slope parameters of the linear regression.

Figure 5. An example of a linear calibration curve for atomic absorption spectroscopy: the absorption signals (instrument

responses) are plotted against the concentrations for a specific analyte.

Methods for Evaluation of Measurement Uncertainty
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The application of the LPU with the correlation term to Eqs. (24) and (25) leads to Eqs. (26) and

(27), respectively, for both cases:

uxo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂xo
∂yo

� �2

u2yo þ
∂xo
∂a

� �2

u2a þ
∂xo
∂b

� �2

u2b þ 2
∂xo
∂a

� �
∂xo
∂b

� �
uaubra,b

s

(26)

uyo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂yo
∂xo

� �2

u2xo þ
∂yo
∂a

� �2

u2a þ
∂yo
∂b

� �2

u2b þ 2
∂yo
∂a

� �
∂yo
∂b

� �
uaubra,b

s

(27)

For Eq. (26), uxo is the combined uncertainty for the predicted value xo and uyo is the uncer-

tainty for the new observed response yo. For Eq. (27), uyo is the combined uncertainty for the

predicted value yo and uxo is the uncertainty for the new observed response xo. In both cases, ua

and ub are, respectively, the uncertainties for the intercept and the slope, and ra,b is the

correlation coefficient between a and b. These last equations can also be found in the ISO/TS

28037 [17], concerning the use of straight-line calibration functions.

The uncertainties for a and b can be obtained by Eqs. (28) and (29), respectively, while the

correlation coefficient ra,b is given by Eq. (30)

ua ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2i

n
P

x2i �
P

xið Þ2

s

(28)

ub ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n
P

x2i �
P

xið Þ2

s
(29)

ra,b ¼ �

P
xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2i

q (30)

where n is the number of points used to construct the curve, xi are the values for the indepen-

dent variable of the linear equation for each yi, and S2e is the residual variance of the fitted

curve, obtained by Eq. (31)

S2e ¼

P
yi � byi
� �2

n� 2
(31)

where byi are the interpolated values in the fitted curve for each xi, that is, byi ¼ aþ bxi.

Example: This time, let us consider that the calibration certificate of a thermometer presents

the results shown in Table 1.

For the data shown in Table 1, the calibration curve of the thermometer is expressed by

byo ¼ 1:1484þ 0:9578xo. For a temperature value indicated by the thermometer of xo = 22�C,

applying the equation of the calibration curve yields a reference value of byo = 22.22�C.
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Using Eqs. (28)–(31), it is possible to calculate the values of Table 2 that shows the statistical

data for the thermometer calibration curve.

Considering that there is no uncertainty for the observed point xo = 22�C, that is, uxo = 0, the

uncertainty of yo arising from the interpolation process of the point xo = 22�C can then be

calculated by applying Eq. (27) and the data from Table 2, resulting in the following:

uyo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12∙0:19432 þ 222∙0:00842 þ 2∙1∙22∙0:1943∙0:0084∙ �0:995ð Þ
q

¼ 0:021�C.

Another frequently used expression for the standard uncertainty of the predicted value uxo is

given by Eq. (32) [13, 18]:

uxo ¼
Se
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m
þ 1

n
þ yo � y

� �2

b2
P

xi � xð Þ2

v

u

u

t (32)

where Se is the residual standard deviation of the fitted line,m is the number of observations of

yo, n is the number of points composing the calibration curve, and yo is the average value

obtained from the observations of yo. In this expression, the uncertainty component due to the

observations of yo is evaluated by [19]

uyo ¼
Se
ffiffiffiffi

m
p (33)

However, Hibbert [19] suggests that if the standard deviation of the indications is known from

consistent data, uyo can be better evaluated by

Indication (xi) (
�C) Reference value (yi) (

�C)

20 20.3

21 21.3

22 22.2

23 23.1

24 24.2

25 25.1

27 27.0

Table 1. Values of the calibration certificate of a thermometer.

Data Value Unit

S2e 0.0024 �C2

ua 0.1943 �C

ub 0.0084

ra,b �0.995

Table 2. Statistical data for the calibration curve of a thermometer.
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uyo ¼
Syo
ffiffiffiffi

m
p (34)

where Syo is the standard deviation of the observations of yo, and Eq. (32) is then expressed as

Eq. (35) [18, 19]:

uxo ¼
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2yo
m

þ S2e
n
þ S2e yo � y

� �2

b2
P

xi � xð Þ2

v

u

u

t (35)

5. Assessment of uncertainty in instrument calibration

The methodology presented in the GUM can also be used to evaluate the uncertainty in the

calibration of a measuring instrument. Following the steps of the GUM, the measurand for the

model used in the calibration must be defined by the quantity that evaluates the systematic

error of an instrument over its entire measurement range. Thus, Eq. (36) can be generally used

for the evaluation of uncertainty in a calibration process:

e ¼ V ind � Vref (36)

where e is the systematic error of the instrument for a fixed range, V ind is the value indicated by

the instrument, and Vref is the reference value corresponding to the indicated value.

From Eq. (36), a basic cause-and-effect diagram can be assembled for the calibration uncer-

tainty assessment of an instrument, as shown in Figure 6.

The sources of uncertainty in this case involve the repeatability of indicated values, the resolu-

tion of the instrument in calibration, and the certificate of calibration of the reference values.

Thus, an evaluation of the uncertainty about the systematic error should be done for each

nominal value of the instrument in calibration. The combined standard uncertainties uei for

each calibrated nominal value are obtained by applying the LPU, as shown in Eq. (37)

Figure 6. A general cause-and-effect diagram for the calibration of an instrument.
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uei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂ei
∂V ind

� �2

u2V indRes
þ

∂ei
∂V ind

� �2

u2V indRep
þ

∂ei
∂Vref

� �2

u2Vref

s

(37)

where uV indRes
, uV indRep

, and uVref
are, respectively, standard uncertainties due to resolution of the

instrument, repeatability of indication values, and certificate of calibration of the reference.

These standard uncertainties are obtained as described in Section 3.

The final calibration result can then be presented according to Table 3. In addition, correction

values or systematic errors can also be reported.

6. Monte Carlo simulation applied to metrology

This section presents the limitations of the GUM and shows an alternative methodology based

on the propagation of distributions that overcome those limitations. For further details, please

refer to the authors’ publication that addresses the use of the Monte Carlo methodology

applied to uncertainty in measurement [15] or to the JCGM 101:2008 guide [5]. Also, in the

field of analytical chemistry, the latest version of EURACHEM/CITAC guide (2012) was

updated with procedures to use Monte Carlo simulations [13].

6.1. Limitations of the GUM approach

As mentioned earlier, the approach to evaluate measurement uncertainties using the LPU as

presented by the GUM is based on some approximations that are not valid for every measure-

ment model [5, 20–22]. These approximations comprise (1) the linearization of the measure-

ment model made by the truncation of the Taylor series, (2) the use of a t-distribution as the

distribution for the measurand, and (3) the calculation of an effective degrees of freedom for

the measurement model based on the Welch-Satterthwaite formula, which is still an unsolved

problem [23]. Moreover, the GUM approach usually presents deviated results when one or

more of the input uncertainties are relatively much larger than others, or when they have the

same order of magnitude than its quantity.

The limitations and approximations of the LPU are overcome when using a methodology that

relies on the propagation of distributions. This methodology carries more information than the

simple propagation of uncertainties and generally provides results closer to reality. It is

Range Indicated value Reference value Expanded uncertainty Coverage factor

Range 1 Vind1 Vref1 U1 k1

Range 2 Vind2 Vref2 U2 k2

… … … … …

Range N VindN VrefN UN kN

Table 3. A typical format for the result of calibration of an instrument.
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described in detail by the JCGM 101:2008 guide (Evaluation of measurement data—Supple-

ment 1 to the “Guide to the expression of uncertainty in measurement”—propagation of

distributions using a Monte Carlo method) [5], providing basic guidelines for using Monte

Carlo numerical simulations for the propagation of distributions in metrology. This method

provides reliable results for a wider range of measurement models as compared to the GUM

approach and is presented as a fast and robust alternative method for cases where the GUM

approach does not present good results.

6.2. Running Monte Carlo simulations

The propagation of distributions as presented by the JCGM 101:2008 involves the convolution

of the probability distributions for the input sources of uncertainty through the measurement

model to generate a distribution for the output (the measurand). In this process, no informa-

tion is lost due to approximations, and the result is much more consistent with reality.

The main steps of this methodology are similar to those presented in the GUM. The measurand

must be defined as a function of the input quantities through a model. Then, for each input, a

probability density function (PDF) must be assigned. In this step, the concept of maximum

entropy used in the Bayesian statistics should be used to assign a PDF that does not contain

more information than that which is known by the analyst. A number of Monte Carlo trials are

then chosen and the simulation can be set to run.

Results are expressed in terms of the average value for the output PDF, its standard deviation,

and the end points that cover a chosen probability p.

Example: Returning once more to the torque measurement example, one can consider the

following PDFs for the input sources:

Mass (m). For repeated indications, the JCGM 101:2008 suggests the use of a scaled and shifted

t-distribution. Thus, the distribution should use 35.7653 kg as its average, a scale value of

s=
ffiffiffi

n
p ¼ 0:3 g=

ffiffiffiffiffi

10
p

¼ 9:49� 10�5 kg, and n� 1 ¼ 9 degrees of freedom.

For the calibration component, the supplement 1 recommends the use of a normal distribution

if the number of degrees of freedom is not available. In this case, the mass value of 35.7653 kg is

taken as the mean and a standard deviation of Um=k ¼ 0:1 g=2 ¼ 0:00005 kg should be used.

However, to facilitate the calculation of the final mean value of the measurand, the mean

should be shifted to zero, since both values for the mass sources will be added together.

Local gravity acceleration (g). This case is similar to the case of the balance certificate,

for which we have values of expanded uncertainty and coverage factor without information

on the number of effective degrees of freedom. Thus, a normal distribution with a mean

of 9.80665 m/s2 and a standard deviation of Ug=k ¼ 0:00002 m=s2ð Þ=2 ¼ 0:00001 m/s2 are

assumed.

Length of the arm (L). In this case, as poor information about the interval is available

(�0.5 mm), an uniform distribution is assumed with a minimum value of 1999.5 mm and a

maximum value of 2000.5 mm.
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Table 4 resumes the input information for the simulation, which was executed for

M ¼ 200; 000 trials, generating the output distribution shown in Figure 7.

Table 5 summarizes the statistical data of the output distribution, including the upper and

lower limits of a probabilistically symmetric range for a 95% coverage probability.

Uncertainty source Type PDF PDF parameters

Mass (repeatability) A t-distribution Mean: 35.7653 kg; scale: 9.49 x 10�5 kg; degrees of freedom: 9

Mass (certificate) B Normal Mean: 0 kg; standard deviation: 0.00005 kg

Local gravity B Normal Mean: 9.80665 m/s2; standard deviation: 0.00001 m/s2

Arm length B Uniform Minimum: 1999.5 mm; maximum: 2000.5 mm

Table 4. A summary of sources of uncertainty and their associated distributions for the measurement of torque.

Statistical data Value (N m)

Mean 667.970

Standard deviation 0.096

Lower limit for p = 95% 667.812

Upper limit for p = 95% 668.129

Table 5. A summary of the statistical data for the output distribution for the measurement of torque.

Figure 7. Output distribution resulting from the Monte Carlo simulation for the evaluation of uncertainty of measure-

ment of torque.
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7. Conclusions

Measurement uncertainty and metrological traceability are interdependent concepts. The eval-

uation of uncertainties of measurement results is essential to ensure that they are reliable and

comparable. Moreover, the process that involves the modeling of measurement systems and

evaluation of their uncertainties is of great importance for the metrologist as it constitutes a

tool for the management of the measurement laboratory, since it can indicate exactly where to

invest to get better, more qualified results.

The GUM and the application of the LPU continue to be the most used and widespread

methodology for bottom-up uncertainty evaluation in metrology. It is adopted worldwide

and provides a strong base for comparability of measurement results between laboratories.

On the other hand, a new version for the GUM is currently under revision. This version should

be aligned with its supplements in a more harmonized way, incorporating concepts from

Bayesian statistics and resolving some inconsistencies. As a consequence, if the mentioned

distribution-free coverage intervals are maintained, results for the expanded uncertainty will

be greatly overestimated compared to the current version of the GUM.

In this way, the best alternative for a more realistic and lean uncertainty assessment would be

through a numerical simulation using the Monte Carlo method, which should lead to a smaller

and more reliable uncertainty result.
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