
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3

Effects of Genetic Variability in Dopaminergic Pathway

on Treatment Response in Parkinson’s Disease

Sara Redenšek, Maja Trošt and Vita Dolžan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75051

Abstract

Parkinson’s disease (PD) is a chronic progressive neurodegenerative brain disorder
presenting with motor signs and symptoms, such as akinesia, rest tremor, rigidity, and
later in disease progression postural instability. However, nonmotor symptoms may harm
patients’ quality of life even more than the motor ones. The etiopathogenesis is not clear
yet. PD may develop due to a combination of genetic and environmental factors. It is
treated symptomatically with dopaminergic drugs. The gold standard of PD management
is L-Dopa, however also other drugs are frequently used, such as dopamine agonists,
MAOB inhibitors, COMT inhibitors, and occasionally amantadine and anticholinergic
drugs. Many patients experience several adverse events of L-Dopa treatment, such as
different motor complications. Furthermore, nonmotor adverse events of dopaminergic
treatment may occur. The efficacy of drugs varies between patients as well. Several
polymorphic genes have already been associated with treatment outcome in PD, such as
metabolic enzymes, transport and receptor genes, and might serve as treatment outcome
prediction factors. As gene-environment interactions were also shown to contribute to PD
development, they might also be able to predict treatment response. Such genetic bio-
markers could be helpful in personalized care of PD patients to prevent adverse events
and inefficacy of a certain drug.

Keywords: Parkinson’s disease, pharmacogenetics, genetic polymorphisms, personalized
medicine, L-Dopa, dopaminergic treatment

1. Introduction

Parkinson’s disease (PD) is a chronic progressive brain disorder. It is the second most common

neurodegenerative disorder after Alzheimer’s disease [1]. The exact etiopathogenesis is not

clear yet, although it may develop due to various genetic and environmental factors. Twomain
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pathological hallmarks are indicative of PD: intraneuronal inclusions containing α-synuclein

aggregates and neurodegeneration of dopaminergic neurons projecting from substantia nigra

(SN) to striatum. Several motor symptoms occur as a result of striatal dopaminergic deficiency:

akinesia, rest tremor, rigidity, and in later stages also postural instability with gait disorder

[2, 3]. Other motor symptoms encompass hypomimia, micrographia, dysarthria, dysphagia,

and others [4]. Furthermore, patients are also affected by nonmotor symptoms. The most

common are depression, anxiety, cognitive decline, REM-sleep behavior disorders, constipa-

tion, sialorrhoea, and hyposmia. Few of them are present already in the prodromal phase,

which may last up to 20 years before the clinical diagnosis is made [2, 3, 5–7].

The underlying molecular pathogenesis of PD encompasses defects in different cellular path-

ways, such as protein aggregation, protein and membrane trafficking, lysosomal autophagy,

immune response, neurodevelopment, neuron cell differentiation and survival, mitochondrial

homeostasis, and others [8]. Genetic defects in key genes of these pathways may contribute to

the molecular pathogenesis of PD [9].

Clinical diagnosis is normally established by a clinical examination, when motor symptoms

are already present. At that time, nearly 80% of dopaminergic neurons in the nigrostriatal

pathway are irreversibly lost and only symptomatic treatment is available to alleviate the

symptoms. PD management is based on the replacement of dopamine. Some symptoms can

also be managed by concomitant supportive therapy, depending on the symptom [2–4].

1.1. Dopaminergic pathway

Dopamine is an organic compound of the catecholamine family. It plays several roles especially

in the brain and also in the periphery. It acts as a neurotransmitter and is thus responsible for the

transmission of either inhibitory or excitatory stimuli to the postsynaptic neuron depending on

the type of the binding receptor. Dopaminergic neurons projecting from substantia nigra pars

compacta, part of basal ganglia, to the striatum, which constitutes the nigrostriatal pathway, are

responsible for motor functions [10, 11].

Dopamine synthesis and degradation, along with dopamine function in the nigrostriatal

pathway, is schematically displayed in Figure 1. Tyrosine hydroxylase (TH) converts tyro-

sine to levodopa (L-Dopa), which is then converted to dopamine by dopa decarboxylase

(DDC). Dopamine is then transported to a synaptic vesicle via the vesicular monoamine

transporter 2 (VMAT2). It is excreted from the presynaptic neuron to the synaptic cleft via

exocytosis. Dopamine then binds to dopamine receptors, either on the membrane of post-

synaptic or presynaptic neuron. The downstream effect depends on the receptor it binds to.

D1-like receptors (DRD1 and DRD5) are excitatory, whereas D2-like receptors are inhibitory

(DRD2, DRD3, and DRD4), which depends on the type of secondary messengers. Binding to

the presynaptic receptor inhibits dopamine synthesis and continuous release of dopamine to

the synaptic cleft. Once dopamine is released from the receptor, it is reuptaken to the

presynaptic neuron via the dopamine transporter (DAT), where it gets deactivated or

repackaged into the vesicles by VMAT2 for future release. Metabolism of dopamine is

managed by two main enzymes, catechol-O-methyltransferase (COMT) and monoamine

oxidase (MAO). Furthermore, aldehyde dehydrogenase (AD) also participates in dopamine
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metabolism. COMT introduces a methyl group to the dopamine, whereas MAO catalyzes

oxidative deamination. There are two types of the MAO enzyme, MAOA and MAOB.

MAOB is more specific for the breakdown of dopamine, whereas MAOA also degrades other

catecholamines. Furthermore, AD catalyzes oxidation of aldehydes. As a result of degrada-

tion reactions, several different metabolites are produced, such as 3-methoxythyramine (3-

MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) as the end

metabolite, which gets eliminated in the urine. Degradation of dopamine can either be

carried out in the presynaptic neuron after reuptake via DAT or in the glial cells. COMT is

predominantly expressed in the glial cells, MAOB in the astrocytes, and MAOA in the

catecholaminergic neurons like dopaminergic neurons of SN [12–14].

L-Dopa, which is also the gold standard treatment option in PD, is transported to the brain

through the blood-brain barrier (BBB) via large neutral amino acid transporter (LAT1) [15]. L-

Dopa can be broken down in the peripheral tissues by COMT and DDC, which might be the

source of peripheral adverse events occurring during the treatment. Thus, DDC inhibitors and

sometimes also COMT inhibitors are concomitantly administered to shield L-Dopa from deg-

radation. Dopamine itself is not suitable for oral treatment, because it cannot be transported to

the brain through the BBB due to its high polarity. Moreover, it is also not an amino acid

compound and is thus not a transporter substrate [13].

1.2. Treatment of Parkinson’s disease

PD is an incurable disease. Management of PD is based on dopamine replacement and endog-

enous dopamine enrichment or activation of dopamine receptors. All dopaminergic drugs,

Figure 1. Dopamine synthesis, function, and degradation in the nigrostriatal pathway.
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such as MAOB inhibitors, dopamine agonists (DA), L-Dopa, COMT inhibitors, and amanta-

dine, aim to enhance or replenish the dopamine function in the striatum [3].

The least potent drug compounds are MAOB inhibitors, rasagiline, and selegiline. Rasagiline is

more broadly used. MAOB inhibitors increase the concentration of dopamine in the synapse

and prolong its action by the inhibition of MAOB enzyme. They can either be used as a

monotherapy as one of the first prescribed drugs in the early stages of PD or concomitantly

with L-Dopa to prolong its action. MAOB inhibitors demonstrate a very small symptomatic

benefit, although they might according to some studies have a slight neuroprotective effect.

MAOB inhibitors are taken once a day [3, 16–18].

Next line of PD treatment represents DA. DA mimic the dopamine action as they bind to

postsynaptic dopamine receptors. Two main types of DA, ergoline and nonergoline derivatives,

are available, but usually nonergoline DA are used in clinical practice, such as pramipexole,

ropinirole, and rotigotine. They can be used either as monotherapy or in combination with L-

Dopa and/or MAOB inhibitors. As their half-life is longer compared to L-Dopa’s and the

prolonged release forms are available, they can be administered once a day. Rotigotine is

available as a transdermal patch. Furthermore, their action is believed to be less pulsatile com-

pared to L-Dopa’s, which might be the reason for less motor complications after years of

treatment. Nevertheless, their overall symptomatic effect is less pronounced, which means that

usually L-Dopa has to be added to therapy in few years after diagnosis. Moreover, apomorphine

is a very potent DA, which can be applied subcutaneously, intermittently or as a continuous

infusion in advanced disease stages to reduce motor fluctuations [3, 16, 17].

L-Dopa is the gold standard of PD management. L-Dopa crosses the BBB and gets converted to

dopamine by DDC in the brain. L-Dopa is always administered in combination with DDC

inhibitors, either carbidopa or benserazide. DDC inhibitor is added to prevent L-Dopa conver-

sion to dopamine in the periphery, which could cause several adverse events. L-Dopa alleviates

most motor symptoms very effectively, although it poses a high risk for motor complication

development. Consequently, many physicians are postponing the L-Dopa prescription to avoid

motor complications. Particularly in PD patients younger than 65 years, DA or rasagiline is the

common first treatment with L-Dopa being added when the symptomatic effect of DA is not

sufficient. However, since the continuous dopaminergic treatment options for advanced PD

became available (subcutaneous apomorphine infusion, levodopa/carbidopa intrajejunal gel

infusion, and deep brain stimulation), physicians are less hesitant to prescribe L-Dopa early in

the disease course. L-Dopa is usually administered in the form of tablets, which are taken a few

times daily (3–6 times) to deliver L-Dopa as continuously as possible [3, 13, 16, 17]. Furthermore,

COMT inhibitors, especially entacapone, are commonly used concomitantly with L-Dopa when

early motor fluctuations (wearing-off phenomena) occur. On the other hand, amantadine may be

used to alleviate L-Dopa-induced dyskinesia [16].

Management of PD should be individualized in the scope of options available. Patient’s age,

symptoms’ severity, and cognitive status are considered in the process of choosing the most

suitable drug [2, 17].
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1.3. Adverse events of dopaminergic treatment

Dopaminergic therapy can cause several adverse events (AEs), which can be classified as motor

and nonmotor ones.

Several peripheral AEs can occur during PD treatment. The common peripheral AEs are

nausea and vomiting, which occur in approximately 15% of PD patients treated with dopami-

nergic drugs. Nausea and vomiting can be avoided by a very slow titration of a drug dose or

by concomitant administration of domperidone at the initiation of treatment. Furthermore,

orthostatic hypotension is also common in PD patients as 34% of patients experience this AE

after the first dose of a DA. Peripheral edema usually limited to ankles is mostly occurring in

DA treatment rather than L-Dopa treatment. It affects 6.4% of patients treated with ropinirole

and 15% of patients treated with pramipexole. Risk factors for the development of edema are

female sex and cardiovascular comorbidities [19–21].

Central AEs are excessive daytime sleepiness and sleep attacks, hallucinations, and impulse

control disorders (ICD). Excessive daytime sleepiness and sleep attacks affect approximately

30% of patients taking dopaminergic medications, especially DA. Sleep attacks are defined as a

sudden, irresistible, and overwhelming sleepiness without awareness of falling asleep. Good

sleep hygiene is very important in PD patients to prevent daytime sleepiness, so some

nonpharmacological interventions can be undertaken to achieve as many hours of sleep dur-

ing night as possible to avoid this AE. It is important to warn the patients about this possible

AE and advise them not to drive a vehicle during DA titration phase. Furthermore, hallucina-

tions in PD are mostly visual. Patients usually see simple and not threatening images of silent

animals and people. Although all dopaminergic drugs are associated with this AE, patients

taking DA are more likely to be affected. Longer duration of the disease and cognitive impair-

ment are risk factors for the development of visual hallucinations [19–21]. They affect from 25

to 39.8% of PD patients [19]. ICD prevalence rates reports are quite variable and range from 6

to 39%. This AE presents as pathological gambling, hypersexuality, compulsive buying, and

binge eating. The AE should be recognized early due to possible severe personal, financial, and

socio-familial consequences when it remains unrecognized [19–21].

Motor AEs occur after fewmonths to few years of treatment with L-Dopa and affect almost every

PD patient chronically treated with L-Dopa. The time and severity of motor complications vary

among patients and cannot be predicted yet. The most common motor complications are motor

fluctuations, which first manifest as wearing-off of the drug effect before the next dose is admin-

istered. Consequently, patient fluctuates between on and off periods. During the on period, motor

symptoms are least pronounced, whereas in the off period, symptoms re-emerge. Motor fluctua-

tions may occur because of long-lasting pulsatile stimulation of striatal dopamine receptors, and

as the disease advances, the ability to store dopamine is diminished and finally lost. Conse-

quently, the patients’ clinical picture parallels the blood L-Dopa level. The fluctuations may be

managed either by increasing the number of smaller L-Dopa doses and/or by adding the COMT

inhibitors, MAOB inhibitors or DA, which may prolong L-Dopa action. Dyskinesia is another

type of motor complications. It is usually defined as involuntary and choreatic movements most
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often related to the peak dopamine levels (peak-dose dyskinesia). This type of dyskinesia is

usually managed by reducing the single L-Dopa doses or by discontinuation of COMTorMAOB

inhibitors, but this intervention may prolong the off periods. Furthermore, diphasic dyskinesia

may occur as plasma L-Dopa levels are rising or falling. It is more bothersome for the patient,

with dystonic features and difficult to treat. The same strategies may be used as for the treatment

of peak-dose dyskinesia. The third type of dyskinesia occurs in the off state, and is usually

presented as painful early morning leg dystonia, when the blood L-Dopa level falls low due to

long time since the last L-Dopa dose. It can be managed by taking the prolonged release L-Dopa

at night or by adding COMT inhibitors, MAOB inhibitors or DA [2, 14, 17, 19–21]. Botulinum

toxin injection in the affected muscle is effective too [22]. L-Dopa-induced dyskinesia can also be

treated by adding amantadine to the therapy scheme [2, 14, 17, 19–21].

1.4. Treatment efficacy evaluation with the MDS-unified Parkinson’s disease rating scale

(MDS-UPDRS)

MDS-UPDRS is a four part scale for the evaluation of PD severity and treatment efficacy. Part I

evaluates nonmotor aspects of experiences of daily living, Part II motor aspects of experiences

of daily living, Part III motor examination, and Part IV motor complications. The first part of

Part I and Parts III and IV are evaluated by physicians, whereas the second part of Part I and

the whole Part II are self-administered by patients. MDS-UPDRS can be used for different

applications, but in some pharmacogenetic studies, where the efficacy of dopaminergic drugs

is evaluated in association with genetic factors, the main efficacy criterion is a difference in

MDS-UPDRS score over a particular period of time [16, 23–26].

1.5. Genetic factors and treatment response in PD

Genetic characteristics of each person are encoded in the genome. Interindividual differences

occur due to changes in DNA in only 1% of the whole sequence. Different variants of the same

gene or locus are called alleles. Furthermore, a variant is called a polymorphism when at least

two different alleles are present in the population and the less frequent allele is carried by at least

1% of population. The most common type of genetic variation are single nucleotide polymor-

phisms (SNPs), where one nucleotide is substituted with the other. Furthermore, many other

types of polymorphisms can change the DNA sequence, such as deletions, insertions, duplica-

tions of nucleotides or longer sequences, microsatellites, changes in variable number of tandem

nucleotide repeats (VNTR), and others. These genetic polymorphisms may lead to changes in

transcription, translation, and/or function of proteins [27, 28]. These polymorphisms may also

influence expression and function of proteins involved in metabolism, transport and effector

pathways of drugs, and also structure and function of drug targets. Consequently, polymor-

phisms may have an effect on drug response in terms of efficacy and occurrence of AEs. Also in

PD, this effect has already been shown in several pharmacogenetic studies [29, 30].

The aim of this chapter is to summarize the current knowledge on the effect of different

polymorphisms, mostly SNPs, on dopaminergic treatment outcome, especially the occurrence

of AEs. The chapter focuses on the polymorphisms within the dopaminergic pathway, but also

includes polymorphisms from other pathways, that have already been associated with
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treatment response. The rationale behind investigating polymorphisms is that they may serve

as the possible predictive biomarkers of treatment response in PD patients and could therefore

support personalized treatment approaches. Furthermore, this chapter also discusses gene-

environment interactions already investigated in PD.

2. Genetic variability in dopaminergic receptor genes affecting

response to PD treatment

Dopaminergic receptors reside in the membrane of postsynaptic neurons in striatum. There are

five types of dopaminergic receptors, divided into two groups—type-1 and type-2. Dopami-

nergic receptors are coded by DRD1–5 genes [14]. At least 11 pharmacogenetic studies

(Table 1) have already been performed searching for associations between different DRD gene

variants and AEs or efficacy and have found positive results [23, 31–40].

Genes Variants p-Value No. of PD patients Outcome Reference

DRD1 rs4867798

c.*863A>G

0.0054 91 Impulse control disorder [31]

rs4532

c.-48G>A

0.0024

DRD2/ANKK1 rs1800497

c.2170G>A

p.Glu724Lys

0.0009 274 Sleep attacks [32]

0.0044 91 Impulse control disorder [31]

-141CIns/Del 0.007 199 Dyskinesia [33]

rs2283265

c.724-353G>T

rs1076560

c.811-83G>T

rs6277

c.957C>T

p.Pro319=

rs1800497

c.2170G>A

p.Glu724Lys

rs2734849

c.1469A>G

p.His490Pro

DRD2 (CA)n-STR 0.005 215 Dyskinesia [34]

0.04

(14 allele)

0.003

(14/15 genotype)

92 Dyskinesia [35]

rs1799732

c.-486_-485insC

0.027 217 Nausea and vomiting [36]

DRD3 0.0094 404 Impulse control disorder [37]
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DRD1was reported to be associated with L-Dopa-induced dyskinesia. Carriers of the rs4867798

C allele and rs4532 T allele were more prone to develop this AE [31]. Association of DRD2

variants with drug response was shown in at least six studies [31–36].DRD2 (CA)n-STR (intronic

short tandem repeat with four common alleles—13, 14, 15, and 16 CA repeats) was checked for

association with dyskinesia after L-Dopa treatment. Results showed association of allele with 14

repeats and 14 repeats/15 repeats genotype as associated with earlier development of dyskinesia

[35]. The same variant was also evaluated in the study performed by Zappia et al. Male carriers

of the 13 and/or 14 repeat alleles had a decreased risk for developing dyskinesia, whereas in

females the association was not confirmed [34]. Furthermore, DRD2 haplotype of six variants (-

141CIns/Del, rs2283265, rs1076560, rs6277, rs1800497, and rs2734849) was checked for associa-

tion with dyskinesia. Carriers of the TTCTA haplotype were more likely to develop L-Dopa-

induced dyskinesia [33]. Association of DRD2 rs1800497 with ICDs was found in a study

performed by Zainal Abidin et al. T allele significantly increased risk for ICD [31]. This SNP

was also associated with sleep attacks, namely G allele increased chances of this AE [32].

Moreover, DRD2 rs1799732 Ins/Ins genotype was associated with gastrointestinal AEs (nausea

and vomiting) after L-Dopa therapy [36]. Association of DRD3 variants with drug outcome in

PD was shown in at least five pharmacogenetic studies [23, 36–39]. DRD3 rs6280 AA genotype

(Ser/Ser) was shown to be associated with increased risk for developing ICDs and gastrointesti-

nal AE [36, 37]. Furthermore, the same genotype was also associated with higher response rate in

treatment with pramipexole [23]. Another study showed that heterozygous genotype carriers of

this were more prone to develop ICDs [38]. Lastly, Gly/Gly genotype of rs6280 was associated

with higher doses of DA needed to manage PD [39]. DRD4 was also already reported to be

associated with AE in dopaminergic treatment. Sleep attacks were more likely to develop in

carriers of the short allele of the 48-bp VNTR in exon 3 of the gene [40].

3. Genetic variability in transporter genes affecting response to PD

treatment

Most frequently studied transporter gene in pharmacogenetic of PD is SLC6A3 encoding

DAT. DAT is located in the membrane of presynaptic dopaminergic neurons and of glial

cells almost exclusively in striatum. It pumps dopamine from the synaptic cleft back to the

presynaptic neuron or into the glial cell. Consequently, it ends the action of dopamine in

Genes Variants p-Value No. of PD patients Outcome Reference

rs6280

c.25G>A

p.Gly9Ser

0.024 30 Therapeutic efficacy [23]

0.041 170 Impulse control disorder [38]

0.022 217 Nausea and vomiting [36]

0.001 168 Dose of dopamine agonist [39]

DRD4 48-bp VNTR <0.0001 204 Sleep attacks [40]

Table 1. Genetic polymorphisms in dopaminergic receptor genes associated with dopaminergic treatment outcome in

patients with PD.

Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies34



the synaptic cleft. At least four studies (Table 2) have already shown association of poly-

morphisms in SLC6A3 with response to dopaminergic treatment [41–44]. First, a study by

Kaiser et al. showed association of the nine copy allele 40-bp VNTR of the DAT with the

occurrence of dyskinesia and psychosis after L-Dopa treatment [41]. Furthermore, this

variant showed association with L-Dopa equivalent dose (LED) needed for proper disease

management, where nine repeat allele of the DAT 3’-UTR VNTR was associated with

lower LED [42]. In the same study, SLC6A3 rs2652511 C allele was shown to be associated

with visual hallucinations [42]. Moreover, C allele of the rs393795 in SLC6A3 was recog-

nized as one of the factors that extend the time to dyskinesia occurrence in L-Dopa

treatment [43]. After an acute L-Dopa challenge, patients with six repeat/six repeat geno-

type of the VNTR in intron 8 responded better [44].

Organic cation transporters (OCT) are involved in the absorption, distribution, and elimination

of a wide variety of compounds. Pramipexole and amantadine are substrates for OCT1 and

OCT2. L-Dopa is also transported by one of the OCTs, but the subtype has not been deter-

mined yet. Becker et al. evaluated the association between the rs622342 and the dose of

dopaminergic drugs needed for proper disease management (Table 2). Between the first and

fifth L-Dopa prescription, for each minor rs622342 C allele, the prescribed doses were 0.34

defined daily dose higher (DDD), where DDD is a standardized dosing measure representing

the recommended daily dose for the main indication in an adult [45].

4. Genetic variability in dopamine metabolic pathway genes affecting

response to PD treatment

Three enzymes in the metabolic pathway of dopamine, COMT, MAO-B, and DDC, have

already been associated with the response to dopaminergic treatment in PD (Table 3).

Genes Variants p-Value No. of PD

patients

Outcome Reference

SLC6A3 rs28363170

3’-UTR 40 bp VNTR

0.006 183 Psychosis and dyskinesia [41]

rs2652511

c.-972T>C

0.02 196 Visual hallucinations and levodopa

equivalent dose

[42]

rs28363170

3’-UTR 40 bp VNTR

0.01

rs393795

c.653+4065C>A

4.1E�5 352 Dyskinesia [43]

rs3836790

(VNTR in intron 8–5/6 repeat)

<0.0001 61 Motor response to acute L-Dopa

challenge

[44]

SLC22A1 rs622342

c.1386-2964C>A

0.017 99 Levodopa dose [45]

Table 2. Genetic polymorphisms in dopaminergic transporter genes associated with dopaminergic treatment outcome in

patients with PD.
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Polymorphism rs4680 has been the most studied SNP in the COMT gene in association with

treatment outcome by now. The substitution of nucleotides in the SNP results in the switch of

valine to methionine (p.Val158Met). This substitution causes lower activity of the enzyme. In

the majority of the studies, this switch was associated with motor complications of L-Dopa

treatment. Watanabe et al. showed that homozygosity for the low-activity allele (AA genotype)

increased chances for wearing-off phenomenon (p = 0.047) and dyskinesia (p = 0.045) [46]. On

the contrary, a later study found association of the GG genotype with wearing-off phenomenon

(p = 0.049 for the GG genotype and 0.031 for the G allele) [47]. The same results were also

found in the study by Wu et al. [48]. In another study, the same SNP was checked for

association with the dose of L-Dopa after the first 5 years of treatment. The association was

not significant, but the frequency of homozygotes for the AA genotype was higher in a group

with lower doses of L-Dopa (500 mg/24 h) [49]. The same genotype was also associated with

the development of dyskinesia with evidence of a dose-response effect [50]. One of the studies

Genes Variants p-Value No. of PD

patients

Outcome Reference

COMT rs4680

c.472G>A

p.Val158Met

0.047 121 Wearing-off phenomenon [46]

0.045 Dyskinesia

0.18 (NS) 95 L-Dopa dose [49]

0.004 219 Dyskinesia [50]

0.049 (GG)

0.031 (G allele)

1087 Wearing-off phenomenon [47]

<0.001 259 Wearing-off phenomenon [48]

rs6269

c.-98A>G

<0.05 322 L-Dopa dose and dyskinesia [51]

rs4633

c.186C>T

p.His62=

rs4818

c.408C>G

p.Leu136=

rs4680

c.472G>A

p.Val158Met

MAO-

B

rs1799836

c.1300-36A>G

0.018 1087 Dyskinesia [47]

DDC rs921451

c.-29+9697A>G

0.0097 33 Motor response to acute L-Dopa

challenge

[26]

rs3837091

c.-61_-58delAGAG

NS, not significant.

Table 3. Genetic polymorphisms in dopamine metabolic genes associated with dopaminergic treatment outcome in

patients with PD.
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also checked the association between the most common COMT haplotypes of four SNPs—

rs6269, rs4633, rs4818, and rs4680. The enzyme activity differs between haplotypes: low activ-

ity—ACCG, medium activity—ATCA, and high activity—GCGG. The L-Dopa dose increased

with the activity of the enzyme (low < medium < high). Doses prescribed to low-activity

haplotype carriers were significantly higher in comparison to noncarriers. No association was

found for dyskinesia [51].

Devos et al. investigated DDC variants for the association with response after acute L-Dopa

challenge. Response to L-Dopa was evaluated by the area under the curve for the change in the

UPDRS Part III score (AUCΔUPDRS) 4 h after L-Dopa administration relative to baseline. The

AUCΔUPDRS was significantly lower in rs921451 CC or CT genotypes than in TT genotype.

Furthermore, AUCΔUPDRS was also significantly lower in rs3837091 Del/Del or AGAG/Del

genotypes than in the AGAG/AGAG genotype [26].

MAO-B is also important in dopamine metabolism and its variants affect drug response.

Carriers of the heterozygous genotype at the MAO-B rs3837091 were found to be more prone

to develop dyskinesia [47].

5. Genetic variability in other genes affecting response to PD treatment

Genetic variability in several other pathways and its influence on drug response in PDwas also

investigated in several studies and some statistically significant associations have been found

(Table 4).

At least four pharmacogenetic studies pointed out association of nondopaminergic genes with

the occurrence of dyskinesia [35, 52–54]. Higher chance for developing L-Dopa-induced dys-

kinesia was described in carriers of the following genotypes or alleles within different systems:

opioid system—OPRM1 rs1799971 G allele; neuroprotection system—BDNF rs6265 A allele;

glutamate system—GRIN2A rs7192557 GG genotype, rs8057394 CC genotype; adenosine path-

way—ADORA2A rs2298383 TT and CT genotypes, rs3761422 CC, and CT genotypes [35, 52–

54]. Psychosis as an AE of DA or L-Dopa was already associated with APOE, ACE, HOMER1.

APOE ε4 allele increased risk for the earlier development of psychosis [55]. ACE deletion/

insertion (D/I) of a 287-base pair Alu repeat sequence in the intron 16 was associated with

psychosis after L-Dopa treatment, namely I/I genotype increased risk for development of the

AE [56]. Furthermore, allele A of the HOMER1 rs4704559 increased risk for development of

psychosis, especially hallucinations [57]. Another AE occurring in dopaminergic treatment are

sleep attacks. According to Rissling et al. HCRT rs760282 T allele increased risk for developing

this AE, where TT genotype carriers were even more susceptible to it [58]. GRIN2B and ICDs

are another association of the glutamate system with AE of dopaminergic treatment. GRIN2B

rs7301328 CC genotype increased risk for at least one of the types of ICDs [37]. The same

finding was reported by Zainal Abidin et al. [31]. Also, HTR2A receptor in the serotonin

system was according to Lee et al. associated with ICD. The T allele, which is presumably

associated with higher expression of the receptor, increased risk for developing ICDs in the

lower-L-Dopa-equivalent dose group [59]. SV2C, which participates in the process of
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dopamine storage in vesicles, was associated with L-Dopa dose. The presence of each rs30196

C allele reduced the average dose of L-Dopa for approximately 76 mg per day [60].

6. The role of gene-environment interactions in PD

So far, mostly genetic factors have been investigated as potential modifiers of drug response.

However, drug response can also be influenced either directly or indirectly by environmental

factors. Several environmental factors have already been associated with PD risk, among

them: coffee and alcohol consumption and cigarette smoking are reducing and pesticide

Gene Variants p-Value No. of

PD

patients

Outcome Reference

HCRT rs760282

c.-909T>C

0.024 (TC)

0.018 (TT)

264 Sleep attacks [58]

APOE e4 allele <0.05 87 Psychosis [55]

OPRM1 rs1799971

c.118A>G

p.Asn40Asp

0.05 92 Dyskinesia [35]

ACE A deletion/insertion (I/D) of a 287-base

pair Alu repeat sequence in the intron 16

0.012 251 Psychosis [56]

HOMER1 rs4704559

g.78812909A>G

0.004 131 Psychosis [57]

BDNF rs6265

c.196G>A

p.Val66Met

0.001 315 Dyskinesia [52]

GRIN2B rs7301328

c.366C>G

p.Pro122=

0.0087 404 Impulse control disorders [37]

0.0097 91 Impulse control disorders [31]

GRIN2A rs7192557

c.415-91061C>T

0.0062 101 Dyskinesia [53]

rs8057394

c.415-83080G>C

0.0033

ADORA2A rs2298383

c.-275+1797C>T

0.023 (TT)

0.039 (CT)

208 Dyskinesia [54]

rs3761422

c.-274-2427T>C

0.017 (CC)

0.012 (CT)

HTR2A rs6313

c.102C>T

p.Ser34=

0.011 404 Impulse control disorders [59]

SV2C rs30196

c.-1888G>T

0.024 224 L-Dopa dose [60]

Table 4. Genetic polymorphisms in other genes associated with dopaminergic treatment outcome in patients with PD.
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exposure and well water drinking are increasing the risk. Several single locus and genome

wide studies evaluating gene-environment interactions have already been performed in PD

and these interactions should also be assessed in association with the treatment outcome

(Table 5) [2, 61, 62].

A genome-wide gene-environment study found association between GRIN2A rs4998386 in

combination with coffee consumption and PD risk. Light-coffee drinkers were defined as

people with ccy (cups per day multiplied by the number of years of coffee consumption) less

than median ccy (three datasets with different medians: 67.5, 70.0, and 74.0) and heavy-coffee

drinkers as people with ccy more thanmedian ccy. TheGRIN2A association was present in heavy-

coffee drinkers, but not in light-coffee drinkers. Tallele decreased risk for PD in comparison to CC

genotype in heavy-coffee drinkers. Compared to light-coffee drinkers CC genotype carriers,

heavy-coffee drinkers with CC and CT genotype had lower risk for PD [63]. Furthermore, Gao

et al. investigated interaction of both smoking and coffee drinking with genetic factors and their

combined effect on risk for PD. SLC2A13 rs2896905 was recognized as an important risk modifier.

Each A allele was associated with a 35% higher PD risk among never smokers with low caffeine

intake, but with a 32% lower risk among smokers with high caffeine intake [64]. SV2C, which was

Gene Variants p-Value Number of

participants

Outcome Reference

SV2C rs30196

c.-1888G>T

rs10214163

c.-101-133065C>T

1E-10 1600 cases

1506 controls

PD risk and smoking [65]

SLC12A3 rs2896905

c.556+5639C>T

0.0008 584 cases

1571 controls

PD risk and smoking and coffee drinking [64]

ERCC6L2 rs67383717

g.98626548C>A

2.4E-6 443 cases

443 sibling controls

PD risk and pesticide exposure [68]

BST1 rs11724635

c.852-575C>A

0.024 (AC)

0.008 (CC)

468 cases

487 controls

PD risk and well water drinking [66]

SNCA rs3775423

c.307-7063G>A

<0.05 1098 cases

1098 controls

PD risk in combination with pesticide

exposure and coffee and alcohol

consumption

[67]

MAPT rs4792891

c.-18+1448T>G

H1/H2 haplotype

rs16940806

c.*2289G>A

rs2435211

c.1127-1162C>T

GRIN2A rs4998386

c.415-38137G>A

6E�7 Initial phase: 1458

cases

931 controls

Replication phase:

1014 cases

1917 controls

PD risk and coffee drinking [63]

Table 5. Results of studies on gene–environment interactions in PD.
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already associated with drug response in one of the pharmacogenetic studies, showed association

with PD risk in combination with smoking. Two SNPs rs30196 and rs10214163 protected from PD

risk, when people carried both wild type alleles (CC and TT, respectively). The risk increased with

number of polymorphic alleles [65]. A single locus study aimed to look for association between

the combined effect of well water drinking and BST1 rs11724635 and PD. The results show that

polymorphic rs11724635 AC and CC genotypes combined with well water drinking increase risk

for PD [66]. Another study investigated gene-environment interactions for SNCA andMAPTwith

multiple environmental factors. Five interactions were associated with PD risk: pesticides �

SNCA rs3775423 or MAPT rs4792891, coffee drinking � MAPT H1/H2 haplotype or MAPT

rs16940806, and alcohol drinking � MAPT rs2435211. Unfortunately, no interaction remained

significant after Bonferroni correction [67]. Lately, a genome-wide gene-interaction study of pesti-

cide exposure and PD risk was performed. No results remained significant after genome-wide

correction for multiple testing. Top signal of the ERCC6L2 gene suggested that this gene may

modify the effect of pesticide exposure on PD risk [68].

7. Future perspectives

PD is a complex and heterogeneous syndrome, which presents with different signs and symp-

toms in different patients and progresses with different rates. The current treatment approach to

individual patients varies depending on the patient’s age, disease duration, disease severity, and

cognitive state. The treatment regime is then adjusted according to treatment’s efficacy, the

disease progression and in regard to AEs. We have searched the current literature to compile a

comprehensive review of today’s knowledge on genetic variants that may influence the outcome

of dopaminergic treatment in PD. At least 35 pharmacogenetic studies have already been

published in PD. Several genetic factors potentially predictive of treatment outcome have

already been found, although some of the studies show conflicting results regarding the same

genetic factors. This may be largely due to the small size of the study cohorts, since many studies

included less than 100 patients. The largest study was performed on a cohort of 1087 patients.

Pharmacogenetic studies in PD mostly look at the treatment outcome of dopaminergic drugs

in general, rarely they focus on a particular drug as patients are usually treated with the

combination of treatments. Furthermore, most of the cohorts included patients with different

symptomatology, which may also reflect differences in pathogenesis of PD in these patients,

consistent with reports that different cellular defects contribute to development of PD or are

even causative of PD [8]. As cohorts in pharmacogenetic studies are so heterogeneous, signif-

icant factors that may predict treatment outcome may be overlooked, because they might be

relevant only for one particular subgroup of PD patients but not for the others. If we could

stratify PD patients according to cellular pathways that may be defective in each subgroup,

predictive genetic factors could be found more easily.

The future studies should also expand the range of polymorphisms investigated as potential

predictive biomarkers. So far, researchers have mostly focused on dopamine receptor genes,

transporter genes, dopamine metabolic genes, and few genes in other pathways, but there

Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies40



are plenty of genes that warrant further analysis. For example, genes involved in the path-

ways of inflammation (IL-1, IL-6, TNFα, and IFNϒ), oxidative stress (CAT, SOD, and GPX),

neurodevelopment (BDNF, GDNF, and NOTCH), mitochondrial and lysosomal function, and

also genes significant in gene-environment interaction studies (SLC12A3, ERCC6L2, BST1,

SNCA, and MAPT). Furthermore, some of the genes that increased PD risk in genome-wide

association studies could also influence treatment outcome (GBA, SYT11, INPP5F, SNCA,

MAPT, TMEM175, GAK, DGKQ, STK39, and HLA-DQB).

The validated pharmacogenetic biomarkers would enable physicians to stratify PD patients

according to their genetic characteristics and not only by their phenotype. Stratification would

allow a more targeted pharmacotherapy and a more individualized approach to treatment.

Pharmacogenetic factors could also be supported with clinical data. Algorithms encompassing

both aspects, clinical and genetic, could be constructed to enable physicians to choose the most

suitable treatment strategy for each patient at the particular stage of the disease. If such

algorithms are constructed, AE and treatment inefficacy could be at least minimized if not

avoided. As PD pharmacotherapy is usually very complex and drugs are taken many times

daily patients’ compliance may be expected to improve with better treatment outcome, as well

as their quality of life.

8. Conclusions

Personalized medicine has been evolving rapidly in the recent years, but the reliable bio-

markers of treatment outcome are not validated yet. The ultimate goal of personalized medi-

cine is to approach every patient individually and provide the best care possible for each

individual patient. In this chapter, we summarized the current knowledge on genetic pre-

dictors of response to dopaminergic treatment in PD patients. Additionally, we looked into

gene-environment interaction studies to find potential biomarkers that should be further

evaluated in pharmacogenetic studies. Many studies have already been performed, but the

cohorts were small and heterogeneous. To be able to validate and translate these findings into

clinical practice, more targeted studies with larger cohorts and better characterized patients

should be conducted. However, some promising candidates have already been identified and

could be used in clinical practice after validation in independent cohorts.
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