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Abstract

Hybrid control system is an exciting field of research where it contains two distinct types
of systems: one with continuous dynamics continuous variable dynamic system and the
other with discrete dynamics discrete event dynamic system, that interact with each other.
The research in the area of hybrid control can be categorized into two areas: one deals
with the conventional control systems, and the other deals with the decision making
systems. The former addresses the control functions at the low level (field level). The latter
addresses the modeling, analysis, and design at the higher level found in the supervision,
coordination and management levels. The study of hybrid systems is central in designing
intelligent hybrid control systems with high degree of autonomy and it is essential in
designing discrete event supervisory controllers for continuous systems.

Keywords: discrete event systems, supervisory control systems, petri nets, embedded
systems, industrial processes

1. Introduction

In general automation systems’ structure can be categorized into six levels: Sensor/Actuator

Level, Machine/Controller Level, Process Automation Level, Operation Unit Level, Plant

Level. Trends are making this structure possible and desirable to create streamlined three-

level automation systems or even to collapse it [1]. This is due the trend to create embedded

control systems, cyber physical systems, networking, and discrete hybrid control systems. The

trend to reduce machine size and cost while increasing productivity using nanotechnology,

requires new approaches to control systems [2]. Thanks to the increased reliability of industrial

PC technology, traditional rack-based PLCs can be replaced with more powerful PC-based

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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control systems. While Industrial PC’s provide the highest performance and control capacity,

new generations of PC technology based on open embedded operating systems, combine the

functions of a PLC and an operator panel in one unit which is applicable to smaller scale

applications.

The development of complex man-made systems that perform complicated and interacted

tasks, has been accompanied by an ever increasing demand for even more sophisticated

modeling and control schemes. The need for a systematic and mathematical approach to

analysis, design, and control of complex large scale systems is highly demanded. In fact, In

operations research, for example, researchers have been interested for a long time in systematic

methods to deal with large-scale systems [3–6]. However, control engineers have taken up this

challenge in recent years to develop intelligent models for hybrid dynamical systems [7].

The study of hybrid systems is central in designing intelligent hybrid control systems with

high degree of autonomy. Such systems include discrete and continuous activities [8]. The field

of discrete vent systems (DES) is relatively a new research area that combines different formal-

isms, methodologies and tools from Supervisory control theory, artificial intelligence (AI) and

operations research (OR) [9]. The domains of DES are: manufacturing automation, communi-

cation protocols, robotics, process control, nuclear reactors, space exploration systems, aircraft

control systems, fault diagnosis, and refinery systems [5, 10, 11]. Historically, DES were intro-

duced in the early 1980s, in the field of chemical engineering. They quickly gained popularity

in modeling and supervision of hybrid systems [12, 13].

The design of supervisory controllers for discrete event systems has received considerable

attention in research centers [14–16]. There are methods for designing supervisors based on

automata models [17], however, they need exhaustive search over the system states that makes

them impractical for systems with large number of states, as the number of states increases the

state space explosion problem arises [18, 19]. One way of dealing with these problems is to

model discrete event systems with Petri Nets (PNs). In this way the state explosion problem

can be avoided. Some recent contributions on the Petri net based supervisory control can be

found in [20, 21]. PN models are normally more compact compared with automata-based

models and are better suited for the representation of discrete event systems due to its math-

ematical manipulation and graphical representation [22–24]. Timed Petri nets are common

used for industrial control systems [14].

The main objective of this chapter is to explore and step by step construct a supervisory control

scheme in the field of DES modeling and control. It also shows how the continuous activities;

temperature control, pressure control, etc. are represented by few places resided in the embed-

ded PN models. These objectives can be achieved as follows.

1.1. Investigation of DES modeling and supervision

Types of events that may occur in discrete event systems are controllable, and uncontrollable

events (sensors). The latter arises a severe problem when the plant works under control. It

cannot be inhibited from firing by the supervisor. Embedded supervisors should be developed

to deal with such problems.
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1.2. Selection of the best modeling formalism

There are many tools to develop DES models e.g. finite state automata, and Petri nets. The

latter has a good descriptive power compared with the former. Petri nets models are more

compact than automata-based models for representing DES.

1.3. Developing supervisory control scheme

There are two types of supervisors, one is mapping supervisors, and the other is compiled

supervisors. The latter has two notable features, its computational demand is small, and its

structure can be reconfigured online. The developed supervisors should perform resource

allocation, coordination, and deadlock avoidance tasks at the higher level of complex hybrid

industrial systems. Ordinary and timed Petri nets are employed in this chapter to structure

embedded supervisory control models for industrial processes.

1.4. Testing the proposed scheme

Chemical batch processes and kernel railroad crossing system were employed for testing the

proposed control scheme; they have resources scarce, forbidden states, and deadlock prob-

lems. This chapter structures embedded supervisory control scheme that deals with the con-

tinuous activities at the lower level, as well as the discrete ones at the higher level in efficient

manner. The continuous activities can be modeled and supervised using intelligent control

schemes.

2. Supervisory control systems

This section gives an introduction to the hybrid nature of complex systems as well as their

hierarchical structure. It also includes a brief overview of relative work in the area of DES

supervision using finite state automata and Petri nets. A comparison between Petri nets and

finite state automata as modeling formalisms for the purpose of supervisor synthesis is given

in this section.

2.1. Investigation of DES modeling and supervision

Discrete event systems are useful when dealing with dynamic systems that are not fully

modeled by classical models, such as differential or difference equations. It is noted that while

differential and difference equation models evolve with time, a discrete event system evolves

with the occurrence of events. An comprehensive literature on discrete event systems has

appeared in the last 30 years, and their study continues to be an area of ongoing research.

DED combines different formalisms, methodologies and tools from control theory (CT), artifi-

cial intelligence (AI), and operations research (OR) as shown in Figure 1 [9]. These methods

facilitate the modeling of continuous and discrete activities as a unified approach.
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Systemmodeling is an important phase in the supervisory system synthesis procedure. There is a

set of methods for designing supervisors based on automata system models [16, 17]. The disad-

vantage of these methods is that they need a huge search over the system states as mentioned in

Section 1. One way of dealing with these problems is to model discrete event systems with Petri

nets (PNs). Petri net-based solutions have several advantages over finite state automata. These

advantages recommends the Petri nets to be used in this chapter. They are listed as follows.

• The states of a Petri net are represented by the possible markings and not by the places.

Thus Petri nets give a more compact description.

• The plant and the specifications can be represented graphically in an easily understood

format using Petri nets instead of using textual descriptions or mathematical notations,

which are difficult to understand.

• Petri net models can be used for the analysis of their properties, performance evaluation

and the systematic construction of discrete event supervisors [20, 22].

• The Petri net model allows for the simultaneous occurrence of multiple events.

2.2. Structuring a supervisory control scheme

This subsection shows the use of Petri nets to design a supervisor, including its synthesis tech-

niques, methods of handling uncontrollable and unobservable transitions within the plant struc-

ture. The supervision based on place invariants method is employed in this chapter to build an

embedded supervisory control systems. In this method, the control objective is to force the process

to obey linear constraints in the form of linear inequalities. The ideas of developing such supervi-

sors were borrowed from [21]. The developed supervisory control scheme can be employed to

control the processes that have controllable and uncontrollable transitions [25]. Using an embed-

ded Petri net structure, the developed scheme is easy to implement and its computational

demand is relatively small. The design method has numerical properties that make it particularly

appealing for large scale systems. Mathematically, the developed scheme can be detailed as

follows.

Figure 1. DES: the AI-OR-CT intersection.
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A place invariant is an integer vector x that satisfies [21, 25]:

xTμ ¼ xTμ0 (1)

for all reachable marking μ. Thus xTμ is constant for all reachable states if x is a place invariant.

Place invariants can be computed by finding solutions to Eq. (2).

xTD ¼ 0 (2)

Based on the method of place invariants, it is possible to enforce a set of constraints on the

plant state μp. The plant state is represented by an n� 1 marking vector of non-negative

integers, where each vector component is equal to the marking of the corresponding place in

the Petri net model of the plant. The supervisory control goal is to restrict the reachable

marking vectors of a plant μp as:

Lμp ≤B (3)

where L is a nc � n integer matrix (L∈Ζnc�n), and B is a nc � 1 integer vector (B∈Ζ
nc), and nc is

the number of constraints. After adding the slack variables, constraint define in Eq. (3) becomes:

Lμp þ μc ¼ B (4)

Each place invariant defined in Eq. (6) must satisfy Eq. (2) such that:

LDp þDc ¼ 0 (5)

The matrix Dc contains the arcs that connect the controller places to the transitions of the process

net. So, given the Petri net model of the processDp and the constraints, the Petri net controllerDc

is constructed see [25].

DC ¼ �LDP (6)

If the initial marking defined in Eq. (7) does not violate the given set of constraints, these

constraints can be enforced by a supervisor with the incidence matrix Dc [21].

μC0 ¼ B� Lμp0 (7)

where μp0 is the n� 1 initial plant marking vector of non-negative integers. The supervisor is a

Petri net with incidence matrix Dc made up of the process net’s transitions and a separate set of

places. With the addition of supervisor places the overall system is given by.

D ¼
Dp

DC

� �

μ ¼
μp

μC

� �

(8)

This method admits the structure of the process net as well as a set of specifications. This is

because the constraints on these transitions is a subset of the specifications. Supervisors are used

to insure that the behavior of the plant does not violate a set of constraints defined in Eq. (3)

under a variety of operating conditions. Every single constraint is transformed to a marking

Supervisory Control Systems: Theory and Industrial Applications
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invariant that corresponds to a place invariant of the supervised system. The regulatory actions

of the supervisor are based on observations of the plant state, resulting in feedback control. More

details about the P-invariant-based supervisory control schemes can be found in [17, 21, 25].

2.3. Step by step developing P-invariant-based supervisory control scheme

The most common examples of hybrid systems are batch processes which are characterized by

combination of discrete and continuous dynamics [17, 26]. Batch processes are currently used

in the chemical and food process industries. A comprehensive model of batch systems has to

include discrete event aspects as well as continuous ones. As a consequence, their automation

and optimization pose difficult issues mainly because it is necessary to operate concurrently

with continuous and discrete models.

Batch plants consist of many transport resources (transporters) like valves and pipes, and

processing resources (processors) like mixing tanks, batch reactor vessels, and other container

like units [27–29]. Transporters and processors are involved in transforming a batch from raw

materials to final products.

The main problems inherent to the modeling and supervision of batch processes are:

• The hybrid nature of the process. State variables like the tank level or the pump speed are

continuous, others like the on-off valves, are discrete-state components. Moreover, the

whole process behaves as a cycle of discrete events.

• The variety of knowledge. Some elements of the process can be described by physical

equations, e.g. the tank level, and others by experimental models, e.g. the behavior of the

pump described by a transfer function.

The event driven part of a batch plant is modeled using Petri nets. The most appropriate

method in batch plants modeling is the Petri net Bottom-up synthesis method [30, 31], where

plants in process industries generally exhibit less flexible structure than manufacturing pro-

cesses and the individual process units are well defined and standardized [29].

This section uses the bottom-up approach to Petri net modeling of the chemical batch pro-

cesses. It also employs the P-invariant supervisory control scheme described in Section 2.2 to

structure an embedded PN-supervisory control model of the batch process.

2.3.1. Example 1: a simple batch plant

This process used to illustrate the idea of supervisor design for the purpose of resource

allocation for two process lines chemical process shown in Figure 2.

In this figure, two mixing tanks shared the same supply tank and only one tank can be filled at

a time. Based on the receipt given in Table 1, using Petri net tool ver. 2.1 [33] the PN model of

the two individual process lines shown in Figure 2 is constructed as depicted in Figure 3. This

model is structured using the bottom-up synthesis method [31].

In this sample, the places Pm3 are corresponding to the outlet valve of the supply tank. The

invariant-based supervision discussed in Section 2.2 is employed for the purpose of supervisor
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synthesis. This is particularly interesting, because the resulting supervisory mechanism is

computed efficiently. All transitions are assumed to be controllable.

It is clear that, if transitions Tma1 and Tmb1 are fired, the place Pm3 contains two tokens and

therefore the Petri net model is not safe. The safeness of the place Pm3 is required, because it

represents the operation of opening and closing the outlet valve of the supply tank. The double-

booking problem should be avoided in this case, otherwise, the situation is considered as a

malfunction. To overcome this problem, the supervisor has to be designed to co-ordinate the

two mixers in such a way that only one will be filled at a time. This requirement is written as:

μ
m3 ≤ 1 (9)

Figure 2. Batch process cell.

Place Associated action

Pm1 Process ready

Pm2 Open the inlet valve of the mixing tank

Pm3 Open the valve of supply tank

Pm4 Stir the content of mixing tank

Pm5 Discharge the mixing tank (open the outlet valve)

Transition Associated event

Tm1 Start a new batch

Tm2 Mixing tank is filled

Tm3 Duration of mixing operation is vanished

Tm4 Empty the mixing tank

Table 1. Places and transitions for each submodel of Figure 3.
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where μ3 is the marking vector component that corresponds to place Pm3. The requirement can

be easily transformed to the form Eq. (6) with the plant marking vector being:

μp ¼ μma1 μma2 μm3 μma4 μma5 μmb1 μmb2 μmb4 μmb5

� �T

μp0 ¼ 1 0 0 0 0 1 0 0 0½ �T , L ¼ 0 0 1 0 0 0 0 0 0½ � and B ¼ 1.

Given the incident matrix of the PN model shown in Figure 3; Dp:

Dp ¼

�1 0 0 1 0 0 0 0

1 �1 0 0 0 0 0 0

1 �1 0 0 1 �1 0 0

0 1 �1 0 0 0 0 0

0 0 1 �1 0 0 0 0

0 0 0 0 �1 0 0 1

0 0 0 0 1 �1 0 0

0 0 0 0 0 1 �1 0

0 0 0 0 0 0 1 �1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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The supervisor can be computed by Eqs. (6) and (7) as follows:

Dc ¼ �LDp ¼ �1 1 0 0 �1 1 0 0½ �, μC0 ¼ B� Lμp0 ¼ 1� 0 ¼ 1.

Figure 3. Petri net model of the overall system.
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The supervisor consists of a single place that is connected to the plant Petri net as shown in

Figure 4. The marking invariant that is enforced by the supervisor is:

μm3 þ μc1 ¼ 1 (10)

The simulation of the unsupervised system via Reachability graph analysis method of PN

indicates that the unsupervised plant has 16 reachable states, one of them indicates the absence

of safety condition, this marking vector is: μ4 ¼ 0 1 2 0 0 0 1 0 0½ �T i.e. μm3 ¼ 2. On the other

hand, the simulation of the supervised system indicates that the supervised plant has 15

reachable states. In this case, the supervisor eliminates the marking μ4 which is forbidden

state, and all the reachable states satisfy the safety condition. This procedure can be general-

ized for more complex batch processes such as coordination, deadlock avoidance, and resource

allocation discussed in [17].

Quiz 1: With the help of our work in [14], can you model the chemical batch process shown in

Figure 2 using timed Petri nets?

2.3.2. Control of continuous activities as a part of hybrid systems

The main objective of this subsection is to control the continuous part of a complex batch process

shown in Figure 5. This process comprises six input buffers, two mixing tanks and two reactor

vessels. In this case, heating and cooling are continuous variables of this batch process. The

preparation of the input substances takes place in two mixing tanks to which the raw materials

are supplied from three supply tanks (buffers). The substance is composed from one of the two

basic components (component ‘a’ or component ‘b’) that is diluted to the required concentration

by component ‘c’. The filling of the mixing tank is controlled by the on/off valve Vma in

Figure 4. Petri net model of the supervised system.
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combination by one of the supply tank valves Vsa, Vsb, or Vsc. The discharging of the mixer is

controlled by the on/off valve Vmb. The level in the mixing tank is measured by the level sensor;

L. The required quantities of each input depend on the recipe detailed in [17].

The mathematical differential equations of the heat system of the reactor is detailed in [22]. In

this case, the temperature of the reaction for each reactor is controlled using fuzzy neural

systems-based local controllers [32] that are designed for each of heating and cooling phases

in each process line. It is controlled by feeding hot or cold glycol through the reactor jacket,

which surrounds the reactor vessel.

Using the P-invariant supervisory control method discussed in Section 2.2, the embedded PN-

based supervisory control model is structured using Petri net tool ver. 2.1 [33]. A part of this

embedded model is shown in Figure 6. The main objective of this subsection is to show how

can activate the continuous activities resided inside the embedded model of the process. It also

shows the control result of heating phase as a set of continuous places resided in the embedded

model using fuzzy neural controller. The full simulation results can be found in our work [17].

To show the firing of the continuous activity resided in the embedded model, consider the

initial marking vector, μ0 defined below.

μ0 ¼ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1½ �T

Starting from this initial marking vector, the simulation of a part of the embedded PN-based

model shown in Figure 6 [17], can be carried out. When the transition Trb3 is fired, the fuzzy

neural controller resided in place 8; Prb8, is activated as shown in Figure 6 and the marking

vector becomes, μ
HR

.

μ
HR

¼ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1½ �T

The response of the reaction at the desired set point 50�C is depicted in Figure 7.

Figure 5. Batch process cell with two mixers and two reactors.
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2.3.3. Example 3: KRC modeling and supervision using timed PNs

The kernel railroad crossing (KRC) shown in Figure 8 is a standard benchmark in real time

systems [14]. When a train is sensed to approach the crossing, a signal is sent to the supervisor

Figure 6. A part of the embedded PN model of batch process shown in Figure 5.

Figure 7. Reactor temperature for the heating phase.
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that sends a command to the specified gate that is closed to prevent cars crossing that survives

ourselves. Having more than one track and more than one train may enter crossing zone, leads

to a complicated situation that is out of our paper scope. For simplicity let us merge the two

depicted zones as one zone (region). The Petri net of the system is depicted in Figure 9. The

train needs one time unit (t.u.) to enter the R-Y zoon and five (t.u.) to leave it for departure

phase. The gate needs no time to start closing and requires two (t.u.) to be completely closed. It

needs extra two (t.u.) to be completely opened after firing the transition T5. The problem arises

Figure 8. A kernel railroad crossing system.

Figure 9. The simplified Petri net model of Figure 8.
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at the beginning of opening the gate that has unknown time units “[0, ∞]”. This is due to the

reason that no expectation for beginning the departure phase of the train; its departure

depends on the passenger riding. The analysis should be performed to get the exact period

time unit required to activate the transition T5 every departure phase. This means that this

transition is continuously evaluated. The system comprises two tasks, train task and gate task.

In our work [14], consider that the controllable events are the beginning of each task. However,

the accomplishing of the tasks is uncontrollable. Therefore, our goal was to control the begin-

ning of the tasks in order to obtain safe arrival and departure of the train. Also, the synthesized

control scheme should avoid the forbidden state (P2, P4). This means that the train in the R-Y

zone and the gate still opened.

Using Petri net tool software ver. 2.1 [33], the system incidence matrix is of the PN model

shown in Figure 9 is:

DP ¼

�1 0 0 0 0 0

1 �1 0 0 0 0

0 1 0 0 0 0

0 0 �1 0 0 1

0 0 1 �1 0 0

0 0 0 1 �1 0

0 0 0 0 1 �1

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

In this simulation, there are 11 reachable states starting from the initial marking vector μ0 to the

final vector μ11. The firing sequence shows that the marking vector, μ1 ¼ 0 1 0 1 0 0 0½ �T is a

forbidden state. It is clear that the marking vector μ1 includes the forbidden state (P2, P4). Based

on P-invariant, a supervisory control scheme for the KRC system is synthesized in Section 2.2. The

constraints vector is L ¼ 0 1 0 1 0 0 0½ �, the controller incidence matrix isDc ¼ �LDp ¼

�1 1 1 0 0 �1½ �, the initial marking of the controller is μc0 ¼ B� Lμ0 ¼ 0, and B ¼ 1.

The developed supervised time Petri net of the KRC system is depicted in Figure 10. There are 10

reachable states starting from the initial marking vector μ0 to the final vector μ10 and the supervi-

sor eliminates the forbidden state vector μ1 ¼ 0 1 0 1 0 0 0½ �T.

Another issue, in distributed hybrid systems, each process line is controlled by its own logic

controller and supervisory part resides in another level. The interaction among different modules

is performed through synchronized transitions. In practical implementation, it is difficult to

achieve such synchronization among the logic controllers of the embedded systems. Because of

the communication delays, it cannot be guaranteed that transitions in different controllers fire

simultaneously. One way for dealing with this problem is to define the firing order of the

transitions. In the cases when the two logic controllers share the same resource and the supervi-

sor performs the resource allocation such as indicated in Figure 4, the transition that reserve the

resource must be fired in the supervisor first and then in the local controller. In the opposite case

the communication delay would allow double booking problem of the shared resource by the

two controllers or even deadlock. Due to the pages limitation, more details about this implemen-

tation problem the readers can be directed to read our work detailed in [34].
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Quiz 2: With the help of our work in [17], can the reader complete the missing part of the

supervised embedded PN model depicted in Figure 6 using P-invariant supervisory control

discussed in Section 2.2?

Quiz 3: With the help of our work in [34], can you overcome the communication problems

through the embedded PN model of Quiz 2?

3. Conclusions

Hybrid systems modeling and supervision have been used extensively in automation, robot-

ics, and manufacturing applications. Different frameworks for dynamic supervisory control-

lers are used in flexible manufacturing systems and automated batch processes. The high-

level system changes in hybrid systems are modeled as discrete event dynamic systems,

while the low-level systems changes are modeled as continuous variable dynamic systems.

The major issue in studying hybrid systems is the consistency between continuous and

discrete models evolution. Petri nets possess many assets as models for DES. They provide

more compact representation for larger reachable state spaces, and increase the behavioral

complexity compared with automata-based models. Batch plants are common examples of

hybrid systems. In this chapter Petri net embedded models were developed by abstracting

the behavior of hybrid systems. As a final conclusion, the work in this chapter allows the

readers to design and analysis their own supervisory control schemes using Petri net tools

ver. 2.1 or higher [33]. Although the developed schemes are tested using batch chemical

Figure 10. The supervised timed Petri net of the KRC (Figure 8).
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processes, they are promising to control complex industrial automated processes. This chap-

ter opens several research directions to be considered and investigated. It may extend this

work to optimization of supervisory control schemes, modeling and supervision of hybrid

industrial systems using timed Petri nets, and implementing the proposed schemes for large

scale systems.
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